Болезни Военный билет Призыв

Что значит интенсивность света. А.4.1 Характеристики поля излучения

Вычислим теперь полную энергию, излучаемую зарядом при ускорении. Для общности возьмем случай произвольного ускорения, считая, однако, движение нерелятивистским. Когда ускорение направлено, скажем, по вертикали, электрическое поле излучения равно произведению заряда на проекцию запаздывающего ускорения, деленному на расстояние. Таким образом, нам известно электрическое поле в любой точке, а отсюда мы знаем энергию , проходящую через единичную площадку за .

Величина часто встречается в формулах распространения радиоволн. Обратную ей величину можно назвать импедансом вакуума (или сопротивлением вакуума); она равна . Отсюда мощность (в ваттах на квадратный метр) есть средний квадрат поля, деленный на 377.

С помощью формулы (29.1) для электрического поля мы получаем

, (32.2)

где - мощность на , излучаемая под углом . Как уже отмечалось, обратно пропорционально расстоянию. Интегрируя, получаем отсюда полную мощность, излучаемую во всех направлениях. Для этого сначала умножим на площадь полоски сферы, тогда мы получим поток энергии в интервале угла (фиг. 32.1). Площадь полоски вычисляется следующим образом: если радиус равен , то толщина полоски равна , а длина , поскольку радиус кольцевой полоски есть . Таким образом, площадь полоски равна

(32.3)

Фигура 32.1. Площадь кольца на сфере, равна .

Умножая поток [мощность на , согласно формуле (32.2)] на площадь полоски, найдем энергию, излучаемую в интервале углов и ; далее нужно проинтегрировать по всем углам от до :

(32.4)

При вычислении воспользуемся равенством и в результате получим . Отсюда окончательно

Необходимо сделать несколько замечаний по поводу этого выражения. Прежде всего, поскольку есть вектор, то в формуле (32.5) означает , т. е. квадрат длины вектора. Во-вторых, в формулу (32.2) для потока входит ускорение, взятое с учетом запаздывания, т. е. ускорение в тот момент времени, когда была излучена энергия, проходящая сейчас через поверхность сферы. Может возникнуть мысль, что энергия действительно была излучена точно в указанный момент времени. Но это не совсем правильно. Момент излучения нельзя определить точно. Можно вычислить результат только такого движения, например колебания и т. п., где ускорение в конце концов исчезает. Следовательно, мы можем найти только полный поток энергии за весь период колебаний, пропорциональный среднему за период квадрату ускорения. Поэтому в (32.5) должно означать среднее по времени от квадрата ускорения. Для такого движения, когда ускорение в начале и в конце обращается в нуль, полная излученная энергия равна интегралу по времени от выражения (32.5).

Посмотрим, что дает формула (32.5) для осциллирующей системы, для которой ускорение имеет вид . Среднее за период от квадрата ускорения равно (при возведении в квадрат надо помнить, что на самом деле вместо экспоненты должна входить ее действительная часть - косинус, а среднее от дает ):

Следовательно,

Эти формулы были получены сравнительно недавно - в начале XX века. Это замечательные формулы, они имели огромное историческое значение, и о них стоило бы почитать в старых книгах по физике. Правда, там использовалась другая система единиц, а не система СИ. Однако в конечных результатах, относящихся к электронам, эти осложнения можно исключить с помощью следующего правила соответствия: величина где - заряд электрона (в кулонах), раньше записывалась как . Легко убедиться, что в системе СИ значение численно равно , поскольку мы знаем, что и . В дальнейшем мы будем часто пользоваться удобным обозначением (32.7)

Если это численное значение подставить в старые формулы, то все остальные величины в них можно считать определенными в системе СИ. Например, формула (32.5) прежде имела вид . А потенциальная энергия протона и электрона на расстоянии есть или , где СИ.

I(t) = \frac{1}{T}\int\limits_t^{t+T}\left|\vec S(t)\right|dt,

где вектор Пойнтинга \vec S(t)=\frac{c}{4\pi}\left[\vec E(t)\times\vec B(t)\right], (в системе СГС), E - напряжённость электрического поля, а B - магнитная индукция.

Для монохроматической линейно поляризованной волны с амплитудой напряжённости электрического поля E_0 интенсивность равна:

I = \frac{\epsilon_0cE_0^2}{8\pi}.

Для монохроматической циркулярно поляризованной волны это значение в два раза больше:

I = \frac{\epsilon_0cE_0^2}{4\pi}.

Интенсивность звука

Звук представляет собой волну механических колебаний среды. Интенсивность звука может быть выражена через амплитудные значения звукового давления p и колебательной скорости среды v :

I = \frac{pv}{2}.

Напишите отзыв о статье "Интенсивность (физика)"

Примечания

Отрывок, характеризующий Интенсивность (физика)

– Ежели все русские хотя немного похожи на вас, – говорил он Пьеру, – c"est un sacrilege que de faire la guerre a un peuple comme le votre. [Это кощунство – воевать с таким народом, как вы.] Вы, пострадавшие столько от французов, вы даже злобы не имеете против них.
И страстную любовь итальянца Пьер теперь заслужил только тем, что он вызывал в нем лучшие стороны его души и любовался ими.
Последнее время пребывания Пьера в Орле к нему приехал его старый знакомый масон – граф Вилларский, – тот самый, который вводил его в ложу в 1807 году. Вилларский был женат на богатой русской, имевшей большие имения в Орловской губернии, и занимал в городе временное место по продовольственной части.
Узнав, что Безухов в Орле, Вилларский, хотя и никогда не был коротко знаком с ним, приехал к нему с теми заявлениями дружбы и близости, которые выражают обыкновенно друг другу люди, встречаясь в пустыне. Вилларский скучал в Орле и был счастлив, встретив человека одного с собой круга и с одинаковыми, как он полагал, интересами.
Но, к удивлению своему, Вилларский заметил скоро, что Пьер очень отстал от настоящей жизни и впал, как он сам с собою определял Пьера, в апатию и эгоизм.
– Vous vous encroutez, mon cher, [Вы запускаетесь, мой милый.] – говорил он ему. Несмотря на то, Вилларскому было теперь приятнее с Пьером, чем прежде, и он каждый день бывал у него. Пьеру же, глядя на Вилларского и слушая его теперь, странно и невероятно было думать, что он сам очень недавно был такой же.
Вилларский был женат, семейный человек, занятый и делами имения жены, и службой, и семьей. Он считал, что все эти занятия суть помеха в жизни и что все они презренны, потому что имеют целью личное благо его и семьи. Военные, административные, политические, масонские соображения постоянно поглощали его внимание. И Пьер, не стараясь изменить его взгляд, не осуждая его, с своей теперь постоянно тихой, радостной насмешкой, любовался на это странное, столь знакомое ему явление.
В отношениях своих с Вилларским, с княжною, с доктором, со всеми людьми, с которыми он встречался теперь, в Пьере была новая черта, заслуживавшая ему расположение всех людей: это признание возможности каждого человека думать, чувствовать и смотреть на вещи по своему; признание невозможности словами разубедить человека. Эта законная особенность каждого человека, которая прежде волновала и раздражала Пьера, теперь составляла основу участия и интереса, которые он принимал в людях. Различие, иногда совершенное противоречие взглядов людей с своею жизнью и между собою, радовало Пьера и вызывало в нем насмешливую и кроткую улыбку.

Интенсивность света измеряется при размещении освещения в помещении или при подготовке оборудования к фотосъемке. Термин "интенсивность" используется по-разному, и из этой статьи вы узнаете, какие устройства и методы подойдут для ваших целей. Профессиональные фотографы и светотехники используют цифровые экспонометры, но вы можете сделать простое устройство со схожим действием - фотометр Джоли - самостоятельно.

Шаги

Как измерить интенсивность освещения в помещении и интенсивность света лампы

    Разберитесь в фотометрах, которые измеряют интенсивность света в люкс и фут-канделах. Такие приборы измеряют интенсивность света на поверхности, то есть освещенность . Обычно такие устройства используются для подготовки к фотосъемке и при проверке освещенности помещения.

    Узнайте, как следует интерпретировать данные. Вот несколько примеров типичных показаний, которые помогут вам понять, следует ли вам изменить освещение в помещении:

    • Работать в офисе комфортно при освещенности 250-500 люкс (23-46 фут-канделов).
    • В супермаркетах и на рабочих местах, требующих тонкой работы, используется освещенность 750-1000 люкс (70-93 фут-канделов). Верхнее значение сопоставимо с освещенностью на открытом пространстве на улице в светлый солнечный день.
  1. Узнайте, что такое люмены. Если в описании лампочки встречается слово "люмен", оно описывает, сколько энергии испускает лампочка в виде видимого света. Вам нужно знать следующее:

    Измерьте угол наклона и поле лучей. Эти характеристики применимы к источникам света, которые направляют световой поток узким лучом в определенную сторону (к примеру, фонарики). Эти значения можно измерить экспонометром и с помощью линейки и транспортира.

    • Держите экспонометр прямо перед самым ярким лучом. Подвигайте его, пока не найдете участок с максимальной интенсивностью света (освещенностью).
    • Сохраняя то же расстояние до источника света, сместите экспонометр в одну сторону, пока интенсивность света не уменьшится до 50% от максимального уровня. С помощью линейки или нитки проведите линию от источника света до этой точки.
    • Проделайте то же самое с другой стороны. Проведите линию.
    • С помощью транспортира измерьте угол между двумя линиями. Это и будет углом луча - то есть углом, под которым расходится свет.
    • Чтобы измерить поле, проделайте то же самое, только отметьте точки там, где интенсивность освещения будет равняться 10% от максимального значения.

    Как измерить относительную освещенность самодельным устройством

    1. Сделайте устройство своими руками. Собрать его несложно, если у вас есть нужные материалы. Это изобретение называется фотометром Джоли, и с его помощью можно измерить относительную интенсивность двух источников света. Обладая необходимыми знаниями физики, о которых речь пойдет ниже, можно выяснить, какая из двух лампочек дает больше света и какая из них более эффективная.

      • Поскольку значение будет относительным , оно не будет выражено в точных единицах. Вы будете знать соотношение между двумя источниками света, но не сможете выяснить точные числа, не прибегая к еще одному эксперименту.
    2. Разрежьте кусок парафинового воска пополам. Купите воск в хозяйственном магазине, отрежьте кусочек весом 500 граммов, а затем острым ножом разрежьте этот кусочек пополам.

      Положите фольгу между двумя кусками воска. Оторвите кусочек алюминиевой фольги от листа и положите его на один из кусков, стараясь накрыть всю верхнюю поверхность целиком. Сверху поместите второй кусок воска.

      Поверните полученную конструкцию вертикально. Чтобы устройство заработало, его нужно повернуть так, чтобы фольга оказалась в вертикальном положении. Если воск сам не держится, можете пока оставить его в горизонтальном положении, но помните, что коробка, которую вы будете собирать, должна будет удерживать воск вертикально.

      Прорежьте три окошка в картонной коробке. Возьмите коробку, в которую поместится воск. Возможно, вам подойдет упаковка от воска. Отмерьте окошки и вырежьте их ножницами.

      • Прорежьте два окна одинакового размера с противоположных сторон. Отверстия должны быть напротив разных сторон парафина, когда те окажутся в коробке.
      • Прорежьте третье окно любого размера в передней части коробки. Отверстие должно быть по центру, чтобы вы могли видеть обе части восковых кусочков.
    3. Положите внутрь воск. Фольга между двумя кусками должна находиться в вертикальном положении. Возможно, вам придется использовать изоленту либо скотч, небольшие кусочки картона или и то, и другое, чтобы воск не переворачивался, а фольга - не съезжала.

      • Если у коробки нет крышки, накройте ее картоном или любым другим непрозрачным предметом.
    4. Выберите точку отсчета. Решите, какой источник света вы будете использовать в качестве отправной точки. Если вы будете сравнивать более двух источников света, вы сможете использовать эту лампу при каждом сравнении.

      Расположите два источника света на прямой линии. Положите две небольшие лампочки, светодиоды или другие источники света на ровную поверхность на прямой линии. Расстояние между ними должно быть больше ширины коробки, которую вы только что сделали.

      Расположите экспонометр между двумя источниками света. Он должен быть на такой же высоте, как и лампочки, чтобы лампочки могли полностью освещать воск внутри коробки через окошки. Помните, что источники света должны быть на большом расстоянии друг от друга.

      Выключите свет в помещении. Закройте окно, задвиньте шторы, опустите жалюзи, чтобы сторонний свет не проникал в коробку.

      Поправьте лампочки так, чтобы воск был освещен с обеих сторон одинаково. Поднесите фотометр к стороне с меньшей освещенностью. Передвигая коробку, смотрите в окошко на передней стороне коробки. Остановитесь, когда оба куска воска будут подсвечены одинаково.

    5. Измерьте расстояние от экспонометра до каждого источника света. Рулеткой измерьте расстояние от фольги до лампы, которую вы выбрали в качестве точки отсчета. Обозначьте эту точку как d1 . Запишите расстояние, затем измерьте расстояние от фольги до источника света с противоположной стороны, d2 .

      • Расстояние можно измерять в любых величинах, главное - не путать их. К примеру, если вы измеряете в сантиметрах, пишите только сантиметры (без метров).
    6. Например, предположим, что расстояние d 1 до источника света, взятого за точку отсчета, составляет 60 сантиметров, а расстояние d 2 до второго источника света - 1,5 метров.
    7. I 2 = 5 2 /2 2 = 25/4 = 6.25
    8. Интенсивность света второго источника в 6.25 раз больше , чем первого.
  2. Рассчитайте эффективность. Если на лампочках отмечена мощность в ваттах (например, 60 ватт), эти цифры означают, сколько электричества потребляет лампочка. Разделите относительную интенсивность лампочки на это число, и вы получите эффективность лампочки относительно других источников света. Например:

    • У лампочки 60 ватт с относительной интенсивностью 6 относительная эффективность равняется 6/60 = 0.1.
    • У лампочки 40 ватт с относительной интенсивностью 1 относительная эффективность равняется 1/40 = 0.025.
    • Поскольку 0.1 / 0.025 = 4, лампочка 60 ватт в четыре раза эффективнее превращает электрический ток в свет. Помните, что она будет потреблять больше энергии, чем лампочка 40 ватт, а это обойдется вам в более крупную сумму. Эффективность - это процент пользы на каждую потраченную денежную единицу.
  • Рассчитав сравнительную интенсивность света, можно измерить интенсивность освещенности с помощью аналогового или цифрового экспонометра. Новые цифровые экспонометры измеряют интенсивность в люкс, а старые аналоговые - в фут-канделах. 1 фут-кандела =10.76 люкс.

Рассмотрим элементарную площадку с площадью , расположенную в пространстве, заполненном излучением от разных источников. Будем характеризовать ориентацию площадки в пространстве вектором нормали к ее поверхности.

Важное свойство интенсивности: эта величина характеризует излучательные свойства источника и не зависит от того, на каком расстоянии от него поместить элементарную площадку. Отодвинем площадку на некоторое расстояние. Действительно с ростом расстояния r до источника мощность излучения, проходящего через площадку, падает как r 2 , но по такому же закону падает и телесный угол, под которым виден источник. Элементарную площадку можно совместить с наблюдателем, а можно представить находящейся на поверхности источника. Интенсивность будет той же самой.

Определение. Интенсивность излучения – это мощность световой энергии (поток излучения за единицу времени), проходящей через площадку единичного сечения, расположенную перпендикулярно выбранному направлению в единичном телесном угле.

Кандела – (СВЕЧА МЕЖДУНАРОДНАЯ до 1970) единица измерения интенсивности (силы света), равная силе света такого точечного источника, который испускает световой поток в один люмен внутри единичного телесного угла (стерадиана), то есть 1кд =1лм/ср

Интенсивность лучистой энергии имеет размерность – вт/ср, эрг/сек*ср

Надо еще учесть ориентацию площадки в пространстве. В общем случае, если угол между нормалью и выбранным направлением равен q, то

где = - элемент телесного угла.

Телесный угол, под которым виден источник, выражается равенством:

где S –площадь вырезаемая конусом на сфере радиусом r . При телесный угол равен 1.

Эта величина называется стерадианом . Все пространство имеет телесный угол, равный 4p.

Таким образом, интенсивность источника это поток излучения в пределах телесного угла равного стерадиану.

Определение. Источник называют изотропно излучающим, если его интенсивность не зависит от направления в пространстве.

Из (2.1) можно получить мощность излучения, проходящего через единичную площадку. Для этого проинтегрируем интенсивность по телесному углу.

Для изотропного поля излучения получаем полный поток через площадку по формуле = 0. Для изотропно излучающей бесконечной площади интегрирование по полусфере дает поток

Освещенность.

Рассмотрим поток от источника в месте наблюдения. При отсутствии поглощения поток падает с расстоянием как из-за уменьшения телесного угла, под которым виден источник. Поэтому поток можно рассматривать как освещенность в месте наблюдения, создаваемая источником.

Определение. Освещенность E – это световой поток на единицу площади.

С учетом (2.2) получаем:

Если площадка, ограничивающая конус, расположена под углом q к нормали, то в общем виде можно записать выражение для освещенности площадки в виде:

За единицу освещенности принимается люкс – когда через площадку 1м 2 проходит поток равный 1 люмену. 1лк = 1лм/м 2

Освещенность в энергетических единицах - вт/см 2 , эрг/сек*см 2

От точечного источника телескоп может регистрировать только поток излучения, а не интенсивность. Рассмотрим излучение от звезды радиуса R , которую можно представить в виде сферически-симметричного изотропного источника, находящегося на расстоянии r. Непосредственно измеряемый поток от звезды будет:

где - интенсивность в точке приемника (телескопа), а = - телесный угол под которым видна звезда. Поток с единицы поверхности от звезды для изотропной интенсивности есть просто = . В отсутствии поглощения = . Поэтому для измеряемой величины находим:

= (2.7)

Так как , то переход от непосредственно измеряемой величины к интенсивности возможен, если только известен угловой диаметр R/r источника, то есть если он не воспринимается как точечный.

Может очень сильно различаться, причем визуально мы не в состоянии определить степень освещенности, т. к. человеческий глаз наделен способностью приспосабливаться к разному освещению. Между тем, интенсивность освещения имеет чрезвычайно важное значение в самых разнообразных сферах деятельности. Для примера можно взять процесс кино- или видеосъемки, а также, допустим, выращивание комнатных растений.

Человеческий глаз воспринимает световые от 380 нм (фиолетового цвета) до 780 нм (красного). Лучше всего мы воспринимаем волны с длиной, как раз не самой пригодной для растений. Яркое и приятное нашему глазу освещение может быть неподходящим для растений в теплице, которые могут недополучать важных для фотосинтеза волн.

Интенсивность света измеряется в люксах. Ярким солнечным полднем в нашей средней полосе она достигает примерно 100 000 люкс, к вечеру снижается до 25 000 люкс. В густой тени ее значение составляет десятые доли этих величин. В помещениях интенсивность солнечного освещения значительно меньше, т. к. свет ослаблен деревьями и оконными стеклами. Самое яркое освещение (на южном окне летом сразу за стеклами) в лучшем случае 3-5 тысяч люкс, на середине комнаты (в 2-3 метрах от окна) - всего 500 люкс. Это минимально необходимое для выживания растений освещение. Для нормального роста даже неприхотливым требуется не менее 800 люкс.

Интенсивность света на глаз мы определить не можем. Для этого существует прибор, название которого - люксметр. При его покупке необходимо уточнить измеряемый им диапазон волн, т.к. возможности прибора хоть и шире возможностей человеческого глаза, но все же ограничены.

Интенсивность света также можно измерить с помощью фотоаппарата или фотоэкспонометра. Правда, придется сделать перерасчет полученных единиц в люксы. Для проведения измерения нужно в месте замера положить белый лист бумаги и навести на него фотоаппарат, светочувствительность которого установлена на 100, а диафрагма на 4. Определив выдержку, следует ее знаменатель умножить на 10, полученное значение будет приблизительно соответствовать освещению в люксах. Например, при полученной выдержке 1/60 сек. освещение около 600 люкс.

Если вы увлекаетесь разведением цветов и уходом за ними, то, конечно же, знаете, что энергия света жизненно необходима растениям для нормального фотосинтеза. Свет оказывает влияние на скорость роста, направление, развитие цветка, размер и форму его листьев. С уменьшением световой интенсивности пропорционально замедляются все процессы в растениях. Количество его зависит от того, насколько удален источник света, от стороны горизонта, на которую обращено окно, от степени затененности уличными деревьями, от наличия штор или жалюзи. Чем светлее помещение, тем активнее происходит рост растений и тем больше им требуется воды, тепла и удобрений. Если растения растут в тени, то и ухода они требуют в меньшем количестве.

При съемке фильма или телевизионной передачи освещенность имеет очень важное значение. Высококачественная съемка возможна при освещенности порядка 1000 люкс, достигаемой в телевизионной студии при помощи специальных ламп. Но приемлемое качество изображения можно получить и при меньшем освещении.

Интенсивность освещения в студии до начала и в процессе съемки измеряют с помощью экспонометров или высококачественных цветных мониторов, которые подключаются к видеокамере. До начала съемки лучше всего пройтись с экспонометром по всей съемочной площадке с целью определения затемненных или чрезмерно освещенных ее участков во избежание негативных явлений при просмотре отснятого материала. Кроме того, правильной регулировкой освещения можно добиться дополнительной выразительности снимаемой сцены и нужных режиссерских эффектов.