Болезни Военный билет Призыв

Что вы знаете о явлении сверхпроводимости. Что такое сверхпроводимость. Теоретическое объяснение эффекта сверхпроводимости

Явление сверхпроводимости заключается в том, что при очень низких температурах, близких к абсолютному нулю, некоторые материалы полностью теряют электросопротивление.

Явление сверхпроводимости в материалах

Явление сверхпроводимости впервые открыл в 1911 году голландский ученый . С тех пор ведутся интенсивные поиски новых сверхпроводящих материалов , которые бы позволили использовать это явление в конкретных устройствах с максимальной энергетической и экономической выгодой.

Голландский ученый Г. Камерлинг-Онкес — открыл явление сверхпроводимости

Сверхпроводимость открывает фантастические перспективы перед электротехникой, энергетикой, транспортом. Ведь если сопротивление проводника равно нулю, то по нему можно пропускать сколь угодно большой ток, и при этом совершенно не будет потерь на нагревание. Это мечта электротехников! Из-за нагрева обычных проводов безвозвратно теряется до 20 % всей вырабатываемой электроэнергии, а в линиях электропередач из сверхпроводников потери будут мизерными.

Американский профессор Ричард Мак-Фи подсчитал, что сверхпроводящий кабель толщиной в руку может справиться со всей пиковой мощностью, вырабатываемой электростанциями США. Открывается возможность получения сверхмощных магнитных полей , которые так необходимы при создании термоядерных реакторов, уникальных конструкций генераторов тока, новых физических приборов, поездов на магнитной подушке и многих других полезных вещей.

Явление сверхпроводимости в композитах

Создавая композиты , можно формировать необходимые физические свойства и тем самым решать разнообразные физические задачи.

Одна из них - создание сверхпроводящих устройств . Это очень большая проблема, в работе над ней участвуют люди разных профессий. Задача для физиков и химиков - получение веществ, обладающих сверхпроводимостью. А использование уже известных сверхпроводящих материалов для создания определенного изделия - сверхпроводящего провода - типичная задача для материаловедов.

Сверхпроводящий провод - композит

Многолетние теоретические и экспериментальные исследования привели физиков к такому заключению относительно конструкции сверхпроводящих проводов: обеспечить надежную работу сверхпроводящего провода можно в том случае, если он будет представлять собой композит , состоящий из теплопроводной (например, медной) матрицы, в которой равномерно распределены непрерывные сверхпроводящие, волокна, ориентированные вдоль оси провода.


Сверхпроводящий медный провод

Желательно, чтобы диаметр этих волокон не превышал нескольких микрометров, а их количество измерялось тысячами или десятками тысяч. При этом объемная концентрация волокон в матрице должна составлять 5-7 % , а диаметр всего провода - быть порядка 1 мм.

Сверхпроводящие волокна

Задача материаловедов - научиться получать такой провод, задача непростая. Дело в том, что традиционные методы для ее решения не годятся:

  1. Нет сверхпроводящих волокон микрометрового диаметра, имеющих к тому же длину сотни метров или километров.
  2. Если бы даже таковые существовали, вряд ли удалось бы гарантировать, что они где-то не порвутся в процессе переработки, а это значит, что не было бы уверенности в качестве композита и в его надежности.

Здесь нужно искать какие-то новые, нетрадиционные пути.

Необходимо установить, каким материалам присуще явление сверхпроводимости и на сколько целесообразно использовать их в качестве сверхпроводящих волокон . Наиболее подходящими для этого являются сплав ниобий-титан или интерметаллические соединения, такие как Nb 3 Sn; Nb 3 Ge, Nb 3 Ga, и др. Первый сплав имеет температуру перехода в сверхпроводящее состояние Т к =8-10 К, тогда как у интерметаллидов эта температура составляет 17-20 К.

А чем выше температура перехода, тем экономически и технически проще выполнить сверхпроводящую установку в целом. Но у сплавов есть очень существенное преимущество - они пластичны, их можно обрабатывать давлением, не опасаясь, что они разрушатся. А интерметаллиды - хрупкие, они обработке давлением не поддаются.

Чему отдать предпочтение?

Материаловеды решают, как получить композит из меди, армированной тончайшими проволочками из сплава ниобий-титан, а так же разрабатывают использования более перспективных волокон. При этом они осмысливают результаты, анализируют информацию, которая, возможно, подскажет какие-то новые пути.

В процессе обдумывания появилась мысль, что нужно использовать хорошие пластические свойства ниобийтитанового сплава и меди и попробовать их совместно деформировать. Можно взять медный слиток, просверлить в нем несколько отверстий, вставить в них прутки из ниобиевого сплава и такую композитную заготовку подвергнуть волочению до нужного диаметра.

Но количество волокон в таком композите будет равно количеству просверленных отверстий. Сколько их можно просверлить? Десяток, сто. А нужны десятки тысяч волокон.

Если предположить, что взяли лист бумаги и согнули вдвое, потом еще вдвое, потом еще - и так пятьдесят раз - какую толщину будет иметь полученная стопка бумаги? Пусть этот лист имеет толщину 0,1 мм. Согнув его вдвое, получим 0,1 2=0,2 мм, еще вдвое 0,1 2 2 =0,4 мм, еще вдвое - 0,1 2 3 =0,8 мм.

Каждый перегиб увеличивает толщину в два раза, следовательно, согнув лист пятьдесят раз, мы получим толщину стопки 0,1 2 50 мм. Но 2 50 ≈ 10 15 , следовательно, искомая толщина составит 10 14 мм = 10 8 км=100 000 000 км. Сто миллионов километров! Совершенно неожиданный результат. Это же больше, чем половина расстояния от .

Вдруг стало ясно, как решить задачу. Ведь волокна можно заставить размножаться! Все очень просто, нужно использовать свойства геометрической прогрессии. Можно взять заготовку из меди (предположим, диаметром 100 мм), просверлить в ней отверстие диаметром 25 мм, вставить туда пруток из ниобийтитанового сплава и такую заготовку подвергнуть волочению до диаметра, скажем, 10 мм.

Потом длинный биметаллический пруток нужно разрезать на несколько коротких (пусть на 7) прутков одинаковой длины, уложить их вместе в медный стакан и снова подвергнуть совместному волочению или экструзии. Получится длинный медный пруток, в нем уже будет запрессовано 17 ниобийтитановых стерженьков, диаметр которых намного меньше исходного. Его снова можно разрезать на 7 частей, снова уложить в медный стакан и снова продавить через фильеру.

После этого получим медный прут будет уже 7 2 =49 ниобийтитановых проволочек, диаметр которых еще уменьшится. Если повторить те же операции 5 раз, получим в медной матрице 7 5 =16 807, если 6 раз - 7 6 = 117 649 волокон из сверхпроводящего сплава.

Не обязательно, конечно, разрезать прутки на 7 частей, можно на любое другое число, например, 10, 15, 19 и т. д.

Принципиальное решение найдено. Конечно, будет еще немало препятствий при его реализации, еще многое не будет получаться, но когда есть уверенность, что ты на правильном пути, все препятствия преодолимы.

В качестве сверхпроводящего материала использовался пластичный сплав.

Для многих сверхпроводящих устройств свойства полученного композитного провода недостаточны. Необходимо решить, как ввести в композит хрупкие интерметаллические волокна, например из Nb 3 Sn.

О прежней технологии нечего и говорить - пластической деформации Nb 3 Sn не поддается. Волочить его бесполезно даже совместно с медной матрицей - все равно разрушится.

Хотя то же самое межфазное взаимодействие, с которым столько неприятностей при создании , в данном случае можно заставить выполнять полезную работу. Сделать недруга союзником и помощником.

Можно же поступить так: подвергать волочению совместно с матрицей не соединение Nb 3 Sn, а чистый ниобий, а потом, получив нужную структуру материала, превратить каким-нибудь образом ниобий в Nb 3 Sn. Это, наверное, не так и сложно сделать. Нужно решить, как доставить к ниобиевым волокнам олово, а дальше при нагреве ниобий будет взаимодействовать с ним, образуя нужное нам соединение.

Обращаемся к прежней технологии, только вместо сплава ниобий-титан используем чистый ниобий, а вместо чистой меди - ее сплав с оловом (бронзу). И ниобий, и бронзу можно подвергать пластической деформации. После того как композит бронза - ниобий будет доведен до нужной структуры, то есть ниобиевые волокна будут иметь диаметр несколько микронов, нагреем полученный провод. При нагревании резко ускоряется диффузия, атомы олова из бронзы начнут проникать в ниобий и образовывать с ним соединение.


Бронза как материал для создания сверхпроводимого волокна

Недостаток бронзовой матрицы - пониженная тепло- и электропроводность по сравнению с медью. Уменьшить этот недостаток можно за счет использования смешанной матрицы, включающей наряду с бронзой чистую медь. Но при нагреве медь может реагировать с оловом, что опять ухудшит ее электро- и теплофизические показатели. Чтобы этого не произошло, нужно между медью и бронзой поставить барьеры, которые заодно будут снижать вихревые токи. Удобен для этой цели тантал.

Как выглядит провод, содержащий волокна Nb 3 Sn. Схематически его структура состоит из 19 многоугольников, форма которых близка к шестиугольной,- это проволоки из композита бронза - Nb 3 Sn. Все они расположены в медной матрице. Сечение одной такой проволоки состоит из 187 групп, содержащих волокна из Nb 3 Sn, причем в каждой группе по 19 таких волокон, а между ними - бронзовая матрица. Всего в композитном проводе содержится 67 507 волокон диаметром ~ 5 мкм (вернее, каждое волокно состоит из ниобиевого сердечника, покрытого слоем Nb 3 Sn толщиной ~ 1 мкм).

В завершение процесса изготовления всему композиту придается прямоугольное сочетание, чтобы его можно было плотно намотать на сердечник. Такой прямоугольный композитный проводник, имеющий поперечное сечение 1,75×5,46 мм, способен пропускать ток 5000 А в поле 6 Т и 1250 А в поле 12 Т.

Сверхпроводимость: история открытия и сущность явления.

История открытия.

Основой для открытия явления сверхпроводимости стало развитие технологий охлаждения материалов до сверхнизких температур. В 1877 году французский инженер Луи Кайете и швейцарский физик Рауль Пикте независимо друг от друга охладили кислород до жидкого состояния. В 1883 году Зигмунт Врублевски и Кароль Ольшевски выполнили сжижение азота. В 1898 году Джеймсу Дьюару удалось получить и жидкий водород.

В 1893 году проблемой сверхнизких температур стал заниматься голландский физик Хейке Камерлинг-Оннес. Ему удалось создать лучшую в мире криогенную лабораторию, в которой 10 июля 1908 года им был получен жидкий гелий. Позднее ему удалось довести его температуру до 1 Кельвина. Камерлинг-Оннес использовал жидкий гелий для изучения свойств металлов, в частности, для измерения зависимости их электрического сопротивления от температуры. Согласно существовавшим тогда классическим теориям, сопротивление должно было плавно падать с уменьшением температуры, однако существовало также мнение, что при слишком низких температурах электроны практически остановятся и металл совсем перестанет проводить ток. Эксперименты, проводимые Камерлингом-Оннесом со своими ассистентами Корнелисом Дорсманом и Гиллесом Хольстом, вначале подтверждали вывод о плавном спадании сопротивления. Однако 8 апреля 1911 года он неожиданно обнаружил, что при 3 Кельвинах (около −270 °C) электрическое сопротивление ртути практически равно нулю. Следующий эксперимент, проведённый 11 мая, показал, что резкий спад сопротивления до нуля происходит при температуре около 4,2 К (позднее, более точные измерения показали, что эта температура равна 4,15 К). Этот эффект был совершенно неожиданным и не мог быть объяснён существовавшими тогда теориями.

В 1912 году были обнаружены ещё два металла, переходящие в сверхпроводящее состояние при низких температурах: свинец и олово. В январе 1914 года было показано, что сверхпроводимость разрушается сильным магнитным полем. В 1919 году было установлено, что таллий и уран также являются сверхпроводниками.

Нулевое сопротивление - не единственная отличительная черта сверхпроводников. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый Вальтером Мейснером и Робертом Оксенфельдом в 1933 году.

Первое теоретическое объяснение сверхпроводимости было дано в 1935 году Фрицем и Хайнцем Лондоном. Более общая теория была построена в 1950 году Л. Д. Ландау и В. Л. Гинзбургом. Она получила широкое распространение и известна как теория Гинзбурга - Ландау. Однако эти теории имели феноменологический характер и не раскрывали детальные механизмы сверхпроводимости. Впервые сверхпроводимость получила объяснение на микроскопическом уровне в 1957 году в работе американских физиков Джона Бардина, Леона Купера и Джона Шриффера. Центральным элементом их теории, получившей название теории БКШ, являются так называемые куперовские пары электронов.

Позднее было установлено, что сверхпроводники делятся на два больших семейства: сверхпроводников I типа (к ним, в частности, относится ртуть) и II типа (которыми обычно являются сплавы разных металлов). В открытии сверхпроводимости II типа значительную роль сыграли работы Л. В. Шубникова в 1930-е годы и А. А. Абрикосова в 1950-е.

Для практического применения в мощных электромагнитах большое значение имело открытие в 1950-х годах сверхпроводников, способных выдерживать сильные магнитные поля и пропускать большие плотности тока. Так, в 1960 году под руководством Дж. Кюнцлера был открыт материал Nb3Sn, проволока из которого способна при температуре 4,2 К, находясь в магнитном поле величиной 8,8 Тл, пропускать ток плотностью до 100 кА/см².

В 1962 году английским физиком Брайаном Джозефсоном был открыт эффект, получивший его имя.

В 1986 году Карл Мюллер и Георг Беднорц открыли новый тип сверхпроводников, получивших название высокотемпературных. В начале 1987 года было показано, что соединения лантана, стронция, меди и кислорода (La-Sr-Cu-O) испытывают скачок проводимости практически до нуля при температуре 36 К. В начале марта 1987 года был впервые получен сверхпроводник при температуре, превышающей температуру кипения жидкого азота (77,4 К): было обнаружено, что таким свойством обладает соединение иттрия, бария, меди и кислорода (Y-Ba-Cu-O). По состоянию на 1 января 2006 года рекорд принадлежит керамическому соединению Hg-Ba-Ca-Cu-O(F), открытому в 2003 году, критическая температура для которого равна 138 К. Более того, при давлении 400 кбар то же соединение является сверхпроводником при температурах до 166 К.

В 2015 году был установлен новый рекорд температуры, при которой достигается сверхпроводимость. Для H 2 S (сероводород) при давлении 100 ГПа был зафиксирован сверхпроводящий переход при температуре 203 К (-70°C).

Понятие о сверхпроводимости.

Сверхпроводи́мость - свойство некоторых материалов обладать строго нулевым электрическим сопротивлением(при постоянном токе) при достижении ими температуры ниже определённого значения (критическая температура)

Сверхпроводящее состояние возникает скачкообразно при температуре, которая называется температурой перехода. Выше этой температуры металл или полупроводник находится в нормальном состоянии, а ниже ее – в сверхпроводящем. Температура перехода данного вещества определяется соотношением двух «противоположных сил»: одна стремится упорядочить электроны, а другая – разрушить этот порядок. Сверхпроводящее состояние физики называют макроскопическим квантово-механическим состоянием. Квантовая механика, которой обычно пользуются для описания поведения вещества в микроскопическом масштабе, здесь применяется в макроскопическом масштабе. Именно то обстоятельство, что квантовая механика здесь позволяет объяснить макроскопические свойства вещества, и делает сверхпроводимость столь интересным явлением.

Классификация.

Существует несколько критериев для классификации сверхпроводников. Вот основные из них:

    По их отклику на магнитное поле: они могут быть I рода, что значит, что они имеют единственное значение магнитного поля, H c , выше которого они теряют сверхпроводимость. Или II рода, подразумевающего наличие двух критических значений магнитного поля, H c1 и H c2 ,. При приложении магнитного поля в этом диапазоне происходит частичное его проникновение в сверхпроводник с сохранением сверхпроводящих свойств.

    По их критической температуре: низкотемпературные, если Tc < 77 K (ниже температуры кипения азота), и высокотемпературные.

    По материалу: чистый химический элемент (такие как свинец или ртуть, однако не все элементы в чистом виде достигают сверхпроводящего состояния), сплавы (например, NbTi), керамика (например, YBCO, MgB 2), сверхпроводники на основе железа, органические сверхпроводники и т. п.

Принципиальные свойства сверхпроводников

    Нулевое электрическое сопротивление. Для постоянного электрического тока электрическое сопротивление сверхпроводника равно нулю. Это было продемонстрировано в ходе эксперимента, где в замкнутом сверхпроводнике был индуцирован электрический ток, который протекал в нём без затухания в течение 2,5 лет (эксперимент был прерван забастовкой рабочих, подвозивших криогенные жидкости).

    Наличие критических свойств:

Критическое магнитное поле (критическая индукция) . Критическое магнитное поле – значение поля, выше которого сверхпроводник находится в нормальном состоянии. Критические поля обычно лежат в интервале от нескольких десятков гаусс до нескольких сотен тысяч гаусс в зависимости от сверхпроводника и его металлофизического состояния. Критическое поле данного сверхпроводника меняется с температурой, уменьшаясь при ее повышении. При температуре перехода критическое поле равно нулю, а при абсолютном нуле оно максимально

Рис. 2. СВЕРХПРОВОДИМОСТЬ разрушается при сильных магнитных полях и высоких температурах. Представлена фазовая диаграмма магнитное поле – абсолютная температура для олова. При условиях, соответствующих точкеА , олово находится в нормальном, несверхпроводящем состоянии. Если же его охладить до точкиВ , то оно становится

сверхпроводящим.

    Критический ток . Критический ток – максимальный постоянный ток, который может выдерживать сверхпроводник без потери сверхпроводящего состояния. Как и критическое магнитное поле, критический ток сильно зависит от температуры, уменьшаясь при ее увеличении.

    Критическая температура. Температура T c , при достижении которой происходит скачок, называется критической. Внимательное исследование показывает, что такой переход наблюдается в некотором интервале температур. Критическая температура своя для каждого вещества.

Рис. 3 Вид «сверхпроводящего перехода». Зависимость сопротивления от температуры для образца 1 (более «чистого») и 2 (более «грязного»). Критическая температура T c обозначает середину перехода, когда сопротивление падает наполовину по сравнению с нормальным состоянием. Начало падения - T c0 , конец - T ce

    Полное вытеснение магнитного поля - Эффект Мейснера-Оксенфельда, о котором подробно рассказывается далее.

Эффект Мейснера-Оксенфельда. В течение 22 лет после открытия сверхпроводимости считалось, что сверхпроводник - это идеальный проводник, т. е. просто металл с сопротивлением равным нулю.

Посмотрим, как должен вести себя такой идеальный проводник во внеш- нем магнитном поле (достаточно слабом, чтобы не разрушить сверхпро- водимость). Пусть в исходном состоянии идеальный проводник охлажден до некоторой температуры T < T c и внешнее магнитное поле отсутствует. Внесем теперь такой идеальный проводник во внешнее магнитное поле. Что тогда произойдет? Достаточно легко понять, что магнитное поле в такой идеальный проводник не проникнет. Действительно, сразу при появлении внешнего магнитного поля на поверхности идеального проводника возникает ток, который по правилу Ленца создает свое собственное магнитное поле, направленное навстречу приложенному и полное поле в образце будет равно нулю в любой точке образца.

Рис.4. Нормальный проводник, обладающий отличным от нуля сопротивлением при любой температуре (1), внесен в магнитное поле. В соответствии с законом электромагнитной индукции возникают токи, которые сопротивляются проникновению магнитного поля в металл (2). Однако если сопротивление отлично от нуля, они быстро затухают. Магнитное поле пронизывает образец нормального металла и практически однородно (3);

Однако, того же состояния (идеальный проводник при T < Tc во внешнем магнитном поле) можно достигнуть и другим путем: сначала наложить внешнее магнитное поле на ”теплый” образец с T > Tc , а затем охладить его до температуры T < Tc . Тогда электродинамика, основанная на уравнениях Максвелла, предсказывает для идеального проводника иной результат. При T > Tc, ρ0 и магнитное поле хорошо проникает в образец. После охлаждения его ниже Tc поле остается в образце.

Итак, до 1933 года считалось, что сверхпроводник - это идеальный проводник. Но вот Мейснер и Оксенфельд обнаружили, что это не так. Оказалось, что при T < Tc магнитное поле в образце равно нулю всегда B = 0, независимо от пути перехода к условию T < Tc при наличии магнитного поля. Однако, равенство B = 0 не относится к тонкому поверхностному слою тела. В действительности, как мы увидим в дальнейшем, магнитное поле проникает в сверхпроводник на некоторую глубину, большую по сравнению межатомными расстояниями (обычно ∼10 −5 см), зависящую от рода металла и от температуры. По этой же причине равенство B = 0 вообще не имеет места в тонких металлических пленках или малых частицах, толщина или размеры которых порядка величины глубины проникновения.

Это было чрезвычайно важное открытие. Ведь, если B = 0 независимо от предыстории образца, то это равенство можно рассматривать как характеристику сверхпроводящего состояния, которое возникает при H < Hcm. Но тогда можно рассматривать переход в сверхпроводящее состояние как фазовый переход в новую фазу и использовать для исследования сверхпроводящей фазы термодинамический подход. Итак, сверхпроводящее состояние удовлетворяет уравнениям, которые вытекают из экспериментальных данных

Таким образом можно сказать, что сверхпроводник это не идеальный проводник, а идеальный диамагнетик! По этой причине эффект Мейснера приводит ко многим интересным явлениям, например левитации сверхпроводника в магнитном поле – Рис.5, которые можно наблюдать уже сейчас и которые несут с собой фантастические возможности в будущем.

Рис. 5: Магнит, левитирующий над высокотемпературным сверхпроводником, охлаждаемым жидким азотом.

Теоретическое объяснение эффекта сверхпроводимости.

Уравнения Лондонов.

Первая попытка построить макроскопическую теорию сверхпроводников, точнее их электродинамику была осуществлена в 1935 году братьями Ф. Лондоном и Г. Лондоном. Они хотели, не вдаваясь в микроскопические причины сверхпроводимости, невыясненные к тому времени, записать в математической форме основные экспериментальные факты: отсутствие сопротивления и эффект Мейсснера. Они резонно предположили, что носителями тока в сверхпроводнике, так же как в металле, являются электроны проводимости. Равенство нулю сопротивления (ρ = 0) означает что электрон при своем движении не испытывает столкновений, т. е. свободно ускоряется под действием электрического поля E.

где j – плотность тока, – постоянная,n – концентрация электронов.

Эти два уравнения и представляет собой основу Лондоновской электродинамики сверхпроводников.

Г лубина проникновения магнитного поля в сверхпроводник

При помощи уравнения Максвелла запишем, гдеили.

Величина λ называется лондонской длиной проникновения.

Рассмотрим случай, когда сверхпроводник занимает полупространство z > 0 - рис.6 . И пусть x компонента магнитного поля снаружи сверхпроводника равна

Рис. 6: Полупространство занятое сверхпроводником в магнитном поле.

Тогда имеем решение, т.е. магнитное поле экспоненциально спадает вглубь сверхпроводника на длине λ.

Давайте оценим теперь глубину проникновения магнитного поля в сверхпроводник. Согласно полученной нами формуле

Таким образом, магнитное поле в сверхпроводник все же проникает, но на небольшую глубину, порядка 500 − 1000 Å.

Рис. 7: Зависимость глубины проникновения от температуры.

Глубина проникновения не является постоянной величиной и изменяется с изменением температуры - рис. 7. Эта зависимость имеет вид

В точке сверхпроводящего перехода λ обращается в бесконечность.

Куперовские пары. Длина когерентности.

Для описания сверхпроводников даже на макроскопическом уровне необходимо применение квантовой механики. Дело в том, что сверхпроводимость - явление сугубо квантовое. Объяснить ее с классических позиций невозможно. В сверхпроводнике, так же как и в металле, в переносе тока участвуют электроны проводимости. Однако, существенное различие между теми и другими заключается в том, что если в металле электроны движутся нескоррелированно под действием приложенного электрического поля (каждый сам по себе), то в сверхпроводнике возникает корреляция в движении электронов. Пространственный масштаб, на котором электроны сверхпроводника ”чувствуют” друг друга, называется длина когерентности ξ. Физической причиной возникновения корреляции в движении электронов является существующее в сверхпроводнике эффективное притяжение между ними. Это притяжение как бы объединяет электроны с противоположно направленными спинами в пары, называемые куперовскими парами - рис. 8.

Рис. 3: Куперовские пары в сверхпроводнике.

Характерный размер такой пары и является длиной когерентности ξ. В чистых металлах величина ξ " 10−4 см = 10000 Å. Возникает естественный вопрос: как такие пары могут помещаться в металле не мешая друг другу. Ведь из оценок лондоновской длины проникновения следует, что концентрация электронов в металле, принимающих участие в сверхпроводимости, порядка 1022 - 1023 см−3 . Это значит, что пары ”проникают” друг через друга и в то же время как частицы газа являются свободными и практически не взаимодействуют друг с другом. Такое положение возможно только в квантовой механике, так же как течение этого ”газа” куперовских пар через решетку без рассеяния.

В чем же причина притяжения между электронами в сверхпроводнике. Ведь электроны, являясь отрицательно заряженными частицами, по закону Кулона должны отталкиваться друг от друга. Такое кулоновское отталкивание действительно имеет место в вакууме. Но в сверхпроводнике (в металле) электроны движутся не в вакууме, а в кристаллической решетке. Естественно, что при своем движении они деформируют решетку. Деформация решетки позволяет им понизить потенциальную энергию, поэтому естественно, что электроны будут притягиваться к месту деформации.

Такой механизм сверхпроводимости называется фононным и был введен в работе Бардина, Купера и Шрифера (БКШ в 1956 г.) и одновременно Боголюбовым 6 в 1958 г. Фононным же этот механизм называется потому, что два электрона, пролетая друг мимо друга, обмениваются виртуальным фононом (квантом колебаний кристаллической решетки) с энергией ħ ω и импульсом ħ k - рис. 9.

Рис. 5: Взаимодействие двух электронов за счет обмена виртуальным фононом.

Таким образом, образование куперовских пар или куперовское спаривание электронов в сверхпроводнике выгодно с энергетической точки зрения (это понижает энергию системы). Существенно, что при спаривании образуется частица, называемая куперовской парой, со спином 0.

Поскольку образование куперовских пар энергетически выгодно, то, чтобы разорвать такую пару, необходимо затратить энергию, которую обозначим через ∆. Очевидно, что когда тепловая энергия kT сравняется с ∆, куперовская пара разрушится и сверхпроводимость исчезнет. Поэтому,

Если теперь ввести в рассмотрение скорость электронов в металле -(скорость электронов, обладающих энергией Ферми), то длину когерент- ности можно выразить через них следующим образом

Сверхпроводники I и II рода.

Существует два рода сверхпроводников, магнитные свойства которых, в частности проникновение магнитного поля в сверхпроводник (т. е. эффект Мейснера), существенно различаются. Происхождение этих различий связано с величиной отношения двух характерных длин λ и ξ. Магнитная длина λ характеризует глубину проникновения магнитного поля в сверхпроводник. Длина когерентности ξ дает масштаб расстояний, на которых электроны сверхпроводника ”чувствуют” друг друга и в результате движутся когерентно. Материалы с ξ > λ называют сверхпроводниками I рода, а в случае ξ < λ говорят о сверхпроводниках II рода. К сверхпроводникам I рода относятся, как правило, чистые металлы. Для них типичны λ ∼ 300 Å и ξ ∼ 104 Å. К сверхпроводникам II рода принадлежат грязные металлы, сплавы. Для них характерны ξ = 50 Å и λ ∼ 103 Å.В сверхпроводнике II рода самопроизвольно зарождаются вихревые токи.

Вихри Абрикосова.

Явление квантования магнитного потока играет большую роль в сверхпроводниках II рода. Как мы помним, это сверхпроводники, у которых лондоновская длина проникновения λ значительно больше длины когерентности ξ. Вследствие этого поверхностная энергия на границе сверхпроводящей и нормальной фаз при определенных условиях может стать отрицательной. Тогда ясно, что в сверхпроводящей фазе должны появиться очень измельченные N (нормальные) области, т. к. выгодна именно обширная поверхность раздела. При заданном потоке на бесконечности N области будут иметь форму тонких цилиндрических трубочек, через которые и проходят силовые линии магнитного поля - рис. 9. По периферии такой трубочки течет незатухающий сверхпроводящий ток. Такую вот трубочку и называют вихрем. Абрикосовским вихрем, поскольку Абрикосов 1 был первый, кто догадался о существовании таких вихрей в сверхпроводниках II рода (и вообще понял, что в природе существует два типа сверхпроводников).

Рис. 9: Проникновение магнитного поля в сверхпроводник II рода.

Структура абрикосовского вихря выглядит следующим образом - рис. 10. В центре вихря имеется сердцевина, размером порядка длины когерентности ξ - кор вихря, где плотность сверхпроводящих электронов равна нулю, т. е. там сверхпроводимость разрушена и кор вихря образует собой нормальную фазу N. На больших расстояниях вещество находится в сверхпроводящем состоянии, причем вокруг кора вихря циркулирует незатухающий сверхпроводящий ток I, амплитуда которого убывает вглубь S области и сходит на нет на расстоянии от кора порядка λ.

Рис. 10: Структура абрикосовского вихря.


А при чем здесь квантование магнитного потока? А притом, что поток магнитного поля через абрикосовский вихрь в точности равен кванту магнитного потока Φ 0 = hc/2e . Каждый абрикосовский вихрь несет в себе квант магнитного потока Φ 0 . Пользуясь этим, можно оценить при каком магнитном поле в сверхпроводнике появится первый вихрь.

При меньших полях магнитное поле не проникает в сверхпроводник II рода, а начиная с H = Hc1 начинается его проникновение в виде абрикосовских вихрей. Поле Hc1 называют первым критическим полем.

Фазовая диаграмма для сверхпроводника II рода выглядит следующим образом - рис. 11. Состояние сверхпроводника с абрикосовскими вихрями

называется фазой Шубникова или смешанным состоянием. В поле Hc2 нормальные области (центры вихрей) начинают перекрываться, и весь сверхпроводник переходит в нормальное состояние. Остается только тонкий сверхпроводящий приповерхностный слой, который разрушается в поле Hc3.

Рис. 8: Фазовая диаграмма сверхпроводника II рода.

Вихри «небезразличны» друг другу: текущие в них токи создают вза- имные помехи, поэтому параллельные вихри отталкиваются. Они стара- ются держаться подальше друг от друга, но когда их много, то оттал- кивание идет со всех сторон. Подобно атомам кристалла, вихри (в до- статочно чистом сверхпроводнике) образуют правильную решетку. Если смотреть в направлении магнитного поля, как бы с торца цилиндриков вихрей, то, как правило, получается картина треугольной решетки. Ее удалось наблюдать экспериментально приблизительно теми же способа- ми, что и промежуточное состояние сверхпроводников I рода, но, конеч- но, с помощью микроскопа.

Эффект Дфозефсона. В 1962 Б.Джозефсон, аспирант Кембриджского университета, размышляя над тем, что будет, если сблизить два сверхпроводника на расстояние нескольких ангстрем, высказал предположение, что куперовские пары должны за счет «туннельного» эффекта переходить из одного сверхпроводника в другой при нулевом напряжении.

Было предсказано два замечательных эффекта. Во-первых, через туннельный сверхпроводящий контакт (переход, представляющий собой два сверхпроводника, разделенные слоем диэлектрика) возможно протекание сверхпроводящего (бездиссипативного) тока. Критическое значение этого тока зависит от внешнего магнитного поля. Во-вторых, если ток через контакт превосходит критический ток перехода, то контакт становится источником высокочастотного электромагнитного излучения. Первый из этих эффектов называют стационарным эффектом Джозефсона, второй – нестационарным. Оба эффекта хорошо наблюдаются экспериментально. В частности, наблюдались осцилляции максимального сверхпроводящего тока через переход при увеличении магнитного поля. Если ток, задаваемый внешним источником, превысит критическое значение, то на переходе появляется напряжение U , периодически зависящее от времени. Частота колебаний напряжения зависит от того, насколько ток через контакт превышает его критическое значение.

Конечно, сблизить два сверхпроводника на расстояние нескольких ангстрем невозможно. Поэтому в экспериментах на подложку напылялся тонкий слой сверхпроводящего материала, такого, как алюминий, затем он окислялся с поверхности на глубину нескольких ангстрем, а сверху напылялся еще один слой алюминия. Напомним, что оксид алюминия – диэлектрик. Такой «сэндвич» эквивалентен двум сверхпроводникам, расположенным на расстоянии нескольких ангстрем друг от друга.

Эффект Джозефсона обусловлен фазовыми соотношениями между электронами в сверхпроводящем состоянии. Выше говорилось, что суть сверхпроводящего состояния – в когерентном движении куперовских пар через атомную решетку. Когерентность куперовских пар сверхпроводника определяется тем, что пары электронов движутся «в фазе». Куперовские же пары двух разных сверхпроводников движутся «не в фазе». Если два сверхпроводника тесно приблизить друг к другу, то куперовские пары могут туннелировать через зазор между ними. При туннелировании фаза куперовской пары изменяется. Если изменение таково, что куперовская пара начинает идти «в ногу» с парами во втором сверхпроводнике, то туннелирование возможно. Это и происходит в стационарном эффекте Джозефсона. Величиной магнитного поля определяется сдвиг фазы, который приобретают туннелирующие пары.


Введение

Глава 1 Открытие явления сверхпроводимости

1.2 Сверхпроводящие вещества

1.3 Эффект Мейснера

1.4 Изотопический эффект

Глава 2 Теория сверхпроводимости

2.1 Теория БКШ

2.4 Образование электронных пар

2.5 Эффективное взаимодействие между электронами, обусловленное фононами

2.6 Каноническое преобразование Боголюбова

2.7 Промежуточное состояние

2.8 Сверхпроводники второго рода

2.9 Термодинамика сверхпроводимости

2.10 Туннельный контакт и эффект Джозефсона

2.11 Квантование магнитного потока (макроскопический эффект)

2.12 Найтовский сдвиг

2.13 Высокотемпературная сверхпроводимость

Глава 3. Применение сверхпроводимости в науке и технике

3.1 Сверхпроводящие магниты

3.2 Сверхпроводящая электроника

3.3 Сверхпроводимость и энергетика

3.4 Магнитные подвесы и подшипники

Заключение

Библиография

Введение

У большинства металлов и сплавов при температуре порядка несколько градусов по Кельвину сопротивление скачком обращается в нуль. Впервые это явление, названное сверхпроводимостью, было обнаружено в 1911 г. Камерлинг - Оннесом. Вещества, обладающими таким явлением назвали сверхпроводниками. В 1957 году Дж. Бардин, Л. Купер, Дж. Шриффер разработали микроскопическую теорию сверхпроводимости, позволившую принципиально понять это явление. Теория БКШ объяснила основные факты в области сверхпроводимости (отсутствие сопротивления, зависимость Т к от массы изотопа, бесконечную проводимость (Е = 0), эффект Мейснера (В = 0), экспоненциальную зависимость электронной теплоёмкости вблизи Т = 0 и др.). Ряд выводов теории показывает хорошее количественное согласие с опытом. Многие вопросы нуждаются ещё в разработке (распределение сверхпроводящих металлов в системе Менделеева, зависимость Т к от состава и структуры сверхпроводящих соединений, возможность получения сверхпроводников с максимально высокой температурой перехода и др.). Успехи экспериментального и теоретического исследований дали реальную возможность приступить к работам по освоению этого физического явления. На протяжении почти 100 лет идут разработки в этой области, открываются новые сверхпроводящие материалы, ведутся поиски высокотемпературных сверхпроводников. В последние годы, особенно после создания теории сверхпроводимости, интенсивно развивается техническая сверхпроводимость.

Актуальность. Сегодня сверхпроводимость - это одна из наиболее изучаемых областей физики, явление, открывающее перед инженерной практикой серьёзные перспективы. Большое распространение получили приборы, основанные на явлении сверхпроводимости, без них уже не может обойтись ни современная электроника, ни медицина, ни космонавтика

Цель. Подробнее рассмотреть явление сверхпроводимости, его свойства, практическое применение, изучить теорию БКШ, а также выяснить перспективы развития данной области физики.

1)Выяснить, что собой представляет сверхпроводимость, причины его возникновения и условия возможного перехода вещества из нормального состояния в сверхпроводящее.

2)Объяснить причины, влияющие на разрушение сверхпроводящего состояния.

3)Раскрыть свойства и применение сверхпроводников.

Объект. Объектом данной курсовой работы является явление сверхпроводимости, сверхпроводники.

Предмет. Предметом являются свойства сверхпроводников и их применение.

Практическое применение. Явление сверхпроводимости используется для получения сильных магнитных полей, сверхпроводники применяются при создании вычислительных машин, для устройства модуляторов, выпрямителей, коммутаторов, персисторов и персистронов, измерительных приборов.

Методы исследования. Анализ научной литературы.

Глава 1. Открытие явления сверхпроводимости

1.1 Первые экспериментальные факты

В 1911 году в Лейдене голландский физик Х. Камерлинг-Оннес впервые наблюдал явление сверхпроводимости. Эта проблема исследовалась и ранее, опыты показывали, что с понижением температуры, сопротивление металлов падало. Одним из первых его исследований в области низких температур было изучение зависимости электрического сопротивления от температуры в ходе опыта с ртутной цепью. Ртуть тогда считалась самым чистым металлом, который можно было получить дистилляционной перегонкой. Изучая температурный ход электросопротивления Hg, он обнаружил, что при температуре ниже 4,2 0 К ртуть практически теряет сопротивление. Для этого опыта он использовал аппарат (рис. 1), который состоял из семи U-образных сосудов с сечением 0,005 мм 2 , соединённых перевёрнутыми. Такая форма сосудов нужна была для свободного сжимания и разжимания ртути без нарушения непрерывности ртутной нити. В точках 1 и 2 по трубкам 3 и 4 подводился ток, в точках 5 и 6 измерялось падение напряжения на участках ртутной цепи.

На рис.2 приведены результаты его экспериментов с ртутью. Следует обратить внимание на то, что температурный интервал, в котором сопротивление уменьшалось до нуля, чрезвычайно узок.

Рис. 2. Зависимость сопротивления платины и ртути от температуры.

На графике видно, что при температуре 4,2 0 К электрическое сопротивление ртути резко исчезло. Такое состояние проводника, при котором его электрическое сопротивление равно нулю, называется сверхпроводимостью, а вещества в таком состоянии - сверхпроводниками. Переход вещества в сверхпроводящее состояние происходит в очень узком температурном интервале (сотые доли градуса) и поэтому считают, что переход осуществляется при определённой температуре Т к, называемой критической температурой перехода вещества в сверхпроводящее состояние.

Экспериментально сверхпроводимость можно наблюдать двумя способами:

1) включив в общую электрическую цепь, по которой течёт ток, звено из сверхпроводника. В момент перехода в сверхпроводящее состояние разность потенциалов на концах этого звена обращается в нуль;

2) поместив кольцо из сверхпроводника в перпендикулярное к нему магнитное поле. Охладив затем кольцо ниже Т к, выключают поле. В результате в кольце индуцируется незатухающий электрический ток. Ток в таком кольце циркулирует неограниченно долго.

Камерлинг - Оннес продемонстрировал это, перевезя сверхпроводящее кольцо с текущим по нему током из Лейдена в Кембридж. В ряде экспериментов наблюдалось отсутствие затухания тока в сверхпроводящем кольце в течение примерно года. В 1959 г. Коллинз сообщил о наблюдавшемся им отсутствия уменьшения тока в течение двух с половиной лет. .

Эксперименты показали, что если создать ток в замкнутом контуре из сверхпроводников, то этот ток продолжает циркулировать и без источника ЭДС. Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд). Изучение прохождения тока через ряд различных проводников показало, что сопротивление контактов между сверхпроводниками также равно нулю. Отличительным свойством сверхпроводимости является отсутствие явления Холла. В то время, как в обычных проводниках под влиянием магнитного поля, ток в металле смещается, в сверхпроводниках это явление отсутствует. Ток в сверхпроводнике как бы закреплен на своем месте.

Сверхпроводимость исчезает под действием следующих факторов:

1) повышение температуры;

С повышением температуры до некоторой T к почти внезапно появляется заметное омическое сопротивление. Переход от сверхпроводимости к проводимости тем круче и заметнее, чем однороднее образец (наиболее крутой переход наблюдается в монокристаллах).

2) действие достаточно сильного магнитного поля;

Переход от сверхпроводящего состояния в нормальное можно осуществить путем повышения магнитного поля при температуре ниже критической T к. Минимальное поле B к, в котором разрушается сверхпроводимость называется критическим магнитным полем. Зависимость критического поля от температуры описывается эмпирической формулой:

где В 0 - критическое поле, экстраполированное к абсолютному нулю температуры. Для некоторых веществ по - видимому имеет место зависимость от Т в первой степени. Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. Данная взаимосвязь иллюстрируется следующим графиком (рис. 3).

Если мы начнем увеличивать напряженность внешнего поля, то при критическом его значении сверхпроводимость разрушится. Чем ближе мы подходим к точке критической температуры, тем меньше должна быть напряженность внешнего магнитного поля для разрушения эффекта сверхпроводимости, и наоборот, при температуре, равной температуре абсолютного нуля напряженность должна быть максимальной по отношению к другим случаям для достижения такого же эффекта. При действии магнитного поля на сверхпроводник наблюдается особого вида гистерезис, а именно если повышая магнитное поле уничтожить сверхпроводимость при (H - сила поля, H к - повышенная сила поля):

то с понижением интенсивности поля сверхпроводимость появится вновь при поле, меняется от образца к образцу и обычно составляет 10% H к.

3) достаточно большая плотность тока в образце;

Повышение силы тока также приводит к исчезновению сверхпроводимости, то есть при этом понижается T к. Чем ниже температура, тем выше та предельная сила тока i к при которой сверхпроводимость уступает место обычной проводимости.

4) изменение внешнего давления;

Изменение внешнего давления р вызывает смещение Т к и изменение напряжённости магнитного поля, разрушающего сверхпроводимость.

1.2 Сверхпроводящие вещества

В дальнейшем было установлено, что не только у ртути, но и у других металлов и сплавов электрическое сопротивление при достаточном охлаждении становится равным нулю.

Самой высокой критической температурой среди чистых веществ обладает ниобий (9,22 0 К), а наиболее низкой иридий (0,14 0 К). Критическая температура зависит не только от химического состава вещества, но и от структуры самого кристалла. Например, серое олово--полупроводник, а белое олово - металл, переходящий в сверхпроводящее состояние при температуре 3,72 0 К. Две кристаллические модификации лантана (б-La и в-La) имеют разные критические температуры перехода в сверхпроводящее состояние (для б-La Т к =4,8 0 К, в-La Т к =5,95 0 К). Поэтому сверхпроводимость является свойством не отдельных атомов, а коллективный эффект, связанный со структурой всего образца.

Хорошие проводники (серебро, золото и медь) не обладают этим свойством, а многие другие вещества, которые в обычных условиях проводники очень плохие - наоборот, обладают. Для исследователей явилось полной неожиданностью и еще больше осложнило объяснение этого явления. Основную часть сверхпроводников составляют не чистые вещества, а их сплавы и соединения. Причем сплав двух несверхпроводящих веществ может обладать сверхпроводящими свойствами. Различают сверхпроводники первого и второго рода.

Сверхпроводниками первого рода являются чистые металлы, всего их насчитывается более 20. Среди них нет металлов, которые при комнатной температуре являются хорошими проводниками, а, наоборот, металлы, обладающие сравнительно плохой проводимостью при комнатной температуре (ртуть, свинец, титан и др.).

Сверхпроводниками второго рода являются химические соединения и сплавы, причём не обязательно это должны быть соединения или сплавов металлов, в чистом виде являющиеся сверхпроводниками первого рода. Например, соединения MoN, WC, CuS являются сверхпроводниками второго рода, хотя Mo, W, Cu и тем более N, C и S не являются сверхпроводниками. Число сверхпроводников второго рода составляет несколько сотен и продолжает увеличиваться. .

Долгое время сверхпроводящее состояние различных металлов и соединений удавалось получить лишь при весьма низких температурах, достижимых с помощью жидкого гелия. К началу 1986 г. максимальное наблюдавшееся значение критической температуры составляло уже 23 0 К.

1.3 Эффект Мейснера

В 1933 г. Мейснер и Оксенфельд установили, что за явлением сверхпроводимости скрывается нечто большее, чем идеальная проводимость, т. е. равенство нулю удельного сопротивления. Они обнаружили, что магнитное поле выталкивается из сверхпроводника независимо от того, чем это поле создано - внешним источником или током, текущим по самому сверхпроводнику (рис. 4). Оказалось, что магнитное поле не проникает в толщу сверхпроводящего образца.

Рис 4. Выталкивание потока магнитной индукции из сверхпроводника.

При температурах более высоких, чем критическая температура перехода в сверхпроводящее состояние, в образце, помещённом во внешнее магнитное поле, как и во всяком металле, индукция магнитного поля внутри отлична от нуля. Если, не выключая внешнего магнитного поля, постепенно снижать температуру, то в момент перехода в сверхпроводящее состояние магнитное поле вытолкнется из образца и индукция магнитного поля внутри станет равной нулю (В=0). Этот эффект назвали эффектом Мейснера.

Как известно, металлы, за исключением ферромагнетиков в отсутствие внешнего магнитного поля обладают нулевой магнитной индукцией. Это связано с тем, что магнитные поля элементарных токов, которые всегда имеются в веществе, взаимно компенсируются вследствие полной хаотичности их расположения.

Помещенные во внешнее магнитное поле, они намагничиваются, т.е. внутри "наводится" магнитное поле. Суммарное магнитное поле вещества, внесенного во внешнее магнитное поле, характеризуется магнитной индукцией, равной векторной сумме индукции внешнего и индукции внутреннего магнитных полей, т.е. . При этом суммарное магнитное поле может быть как больше, так и меньше магнитного поля.

Для того чтобы определить степень участия вещества в создании магнитного поля индукцией, находят отношение значений индукции. Коэффициент µ называют магнитной проницаемостью вещества. Вещества, в которых при наложении внешнего магнитного поля возникающее внутреннее поле добавляется к внешнему (µ > 1), называются парамагнетиками. При коэффициенте >1 происходит уменьшение внешнего поля в образце.

В диамагнитных веществах (<1) наблюдается ослабление приложенного поля. В сверхпроводниках В=0, что соответствует нулевой магнитной проницаемости. В поверхностном слое металла возникает стационарный электрический ток, собственное магнитное поле которого противоположно приложенному полю и компенсирует его, что в результате и приводит к нулевому значению индукции в толще образца.

Существование стационарных сверхпроводящих токов обнаруживается в следующем эксперименте: если над металлическим сверхпроводящим кольцом поместить сверхпроводящую сферу, то на ее поверхности индуцируется сверхпроводящий незатухающий ток. Его возникновение приводит к диамагнитному эффекту и возникновению сил отталкивания между кольцом и сферой, в результате будет наблюдаться парение сферы над кольцом. Глубина проникновения поля в образец является одной из основных характеристик сверхпроводника. Обычно глубина проникновения приблизительно равна 100..400Е. С ростом температуры глубина проникновения магнитного поля возрастает по закону:

Наиболее простая оценка глубины проникновения магнитного поля в сверхпроводник была дана братьями Фрицем и Гансом Лондонами. Приведём эту оценку. Будем предполагать, что имеем дело с полями, медленно меняющимися во времени. Так как сверхпроводники не ферромагнитны, то можно пренебречь разницей между и и записать фундаментальные уравнения электродинамики в виде

Причём мы будем также пренебрегать разницей между частной и полной производными по времени. Предполагая, что токи создаются движением только сверхпроводящих электронов, напишем далее, где - концентрация таких электронов. После дифференцирования по времени получим. Ускорение электрона найдётся из уравнения, если пренебречь действием магнитного поля. Тогда

где введено обозначение

Продифференцировав первое уравнение (4) по, исключив из уравнений (4) и (5) величины и, получим

Этому уравнению удовлетворяет, но такое решение не согласуется с эффектом Мейснера, так как внутри сверхпроводника должно быть. Лишнее решение получилось потому, что при выводе дважды применялась операция дифференцирования по времени. Чтобы автоматически исключить это решение, Лондоны ввели гипотезу, что в последнем уравнении производную следует заменить самим вектором. Это даёт

Для определения глубины проникновения магнитного поля внутрь сверхпроводника допустим, что последний ограничен плоскостью по одну сторону от неё. Направим ось внутрь сверхпроводника нормально к его границе. Пусть магнитное поле параллельно оси, так что. Тогда

И уравнение (8) даёт

Решение этого уравнения, обращающееся в нуль при, имеет вид

Постоянная интегрирования даёт поле на поверхности сверхпроводника. На протяжении длины магнитное поле убывает в раз. Величина принимается за меру глубины проникновения поля в металл.

Для получения численной оценки примем, что на каждый атом металла приходится один сверхпроводящий электрон, полагая см -3 . тогда по формуле (6) найдём см, что по порядку величины совпадает со значениями, полученными непосредственными измерениями.

Поверхностный слой сверхпроводника обладает особыми свойствами, связанными с отличной от нуля напряженностью магнитного поля в нем. Эти свойства оказывают очень существенное влияние на получение сверхпроводников с высокими критическими полями.

Возникает ситуация, когда поверхностные токи, часто называемые экранирующими, препятствуют проникновению в образец магнитного потока приложенного поля. Если внутри вещества, находящегося во внешнем поле, магнитный поток равен нулю, то говорят, что он проявляет идеальный диамагнетизм. При снижении плотности приложенного поля до нуля образец остается в своем ненамагниченном состоянии. В другом случае, когда магнитное поле приложено к образцу, находящемуся выше переходной температуры, конечная картина заметно изменится. Для большинства металлов (кроме ферромагнетиков) значение относительной магнитной проницаемости близко к единице. Поэтому плотность магнитного потока внутри образца практически равна плотности потока приложенного поля. Исчезновение электросопротивления после охлаждения не оказывает влияния на намагниченность, и распределение магнитного потока не меняется. Если теперь снизить приложенное поле до нуля, то плотность магнитного потока внутри сверхпроводника не может меняться, на поверхности образца возникают незатухающие токи, поддерживающие внутри магнитный поток. В результате образец остается все время намагниченным. Таким образом, намагниченность идеального проводника зависит от последовательности изменения внешних условий.

Эффект выталкивания магнитного поля из сверхпроводника можно пояснить на основе представлений о намагниченности. Если экранирующие токи, полностью компенсирующие внешнее магнитное поле, сообщают образцу магнитный момент m, то намагниченность M выражается соотношением:

где V - объем образца. Можно говорить о том, что экранирующие токи приводят к появлению намагниченности, соответствующей намагниченности идеального ферромагнетика с магнитной восприимчивостью, равной минус единице.

Эффект Мейсснера и явление сверхпроводимости тесно связаны между собой и являются следствием общей закономерности, которую и установила созданная более чем через полвека после открытия явления теория сверхпроводимости.

1.4 Изотопический эффект

В 1950 г. Е. Максвелл и Ч. Рейнольдс открыли изотопический эффект, который имел большое значение для создания современной теории сверхпроводимости. Исследование нескольких сверхпроводящих изотопов ртути показало, что существует связь между критической температурой перехода в сверхпроводящее состояние и массой изотопов. При изменении массы М изотопа от 199,5 до 203,4 критическая температура изменялась от 4,185 до 4,14 К. Для данного сверхпроводящего химического элемента была установлена формула, оправдывающаяся с достаточной точностью:

где const имеет определённое значение для каждого элемента.

Масса изотопа является характеристикой кристаллической решётки, так как в неё основной вклад вносят ионы металла. Масса определяет многие свойства решётки. Известно, что частота щ колебаний решётки связана с массой:

Сверхпроводимость, которая является свойством электронной системы металла, оказывается связанной, ввиду обнаружения изотопического эффекта, с состоянием кристаллической решетки. Следовательно, возникновение эффекта сверхпроводимости обусловлено взаимодействием электронов с решеткой металла. Это взаимодействие ответственно за сопротивление металла в обычном состоянии. При определенных условиях оно должно приводить к исчезновению сопротивления, то есть к эффекту сверхпроводимости.

1.5 Предпосылки создания теории сверхпроводимости

Первой теорией, достаточно успешной описавшей свойства сверхпроводников, была теория Ф. Лондона и Г. Лондона, предложенная в 1935 г. Лондоны в своей теории основывались на двухжидкостной модели сверхпроводника. Считалось, что при в сверхпроводнике имеются «сверхпроводящие» электроны с концентрацией и «нормальные» электроны с концентрацией, где -полная концентрация проводимости). Плотность сверхпроводящих электронов уменьшается с ростом и обращается в нуль при. При она стремится к плотности всех электронов. Ток сверхпроводящих электронов течёт через образец без сопротивления.

Лондонами в дополнение к уравнения Максвелла были получены уравнения для электромагнитного поля в таком сверхпроводнике, из которых вытекали его основные свойства: отсутствие сопротивления постоянному току и идеальный диамагнетизм. Однако в силу того, что теория Лондонов была феноменологической, она не отвечала на главный вопрос, что представляют собой «сверхпроводящие» электроны. Кроме того, она имела ещё ряд недостатков, которые были устранены В.Л. Гинзбургом и Л.Д. Ландау.

В теории Гинзбурга - Ландау для описания свойств сверхпроводников была привлечена квантовая механика. В этой теории вся совокупность сверхпроводящих электронов описывалась волновой функцией от одной пространственной координаты. Вообще говоря, волновая функция электронов в твёрдом теле есть функция координат. Введением функции устанавливалось когерентное, согласованное поведение всех сверхпроводящих электронов. Действительно, если все электронов ведут себя совершенно одинаково, согласовано, то для описания их поведения достаточно той же самой волновой функции, что и для описания поведения одного электрона, т.е. функции от одной переменной.

Несмотря на то что теория Гинзбурга - Ландау, получившая дальнейшее развитие в работах А.А.Абрикосова, описывала многие свойства сверхпроводников, она не могла дать понимания явления сверхпроводимости на микроскопическом уровне.

В данной главе рассматриваются вопросы открытия явления сверхпроводимости, первые опытные факты, первые теории, а также некоторые свойства сверхпроводников.

Анализируя вышеизложенное можно сделать следующие выводы:

1) Такое состояние проводника, при котором его электрическое сопротивление равно нулю, называется сверхпроводимостью, а вещества в таком состоянии - сверхпроводниками.

2) Токи Фуко в сверхпроводниках сохраняются очень долгое время и не затухают из-за отсутствия джоулева тепла (токи до 300А продолжают течь много часов подряд).

3) Сверхпроводимость исчезает под действием следующих факторов: повышение температуры, действие достаточно сильного магнитного поля, достаточно большая плотность тока в образце, изменение внешнего давления.

4) Магнитное поле выталкивается из сверхпроводника независимо от того, чем это поле создано - внешним источником или током, текущим по самому сверхпроводнику.

5) Существует связь между критической температурой перехода в сверхпроводящее состояние и массой изотопов, которое называется изотопическим эффектом.

6) Изотопический эффект указал на то, что колебания решетки участвуют в создании сверхпроводимости.

Глава 2. Теория сверхпроводимости

2.1 Теория БКШ

В 1957 г. Бардиным, Купером и Шриффером была построена последовательная теория сверхпроводящего состояния вещества (теория БКШ). Ещё задолго до этого Ландау была создана теория сверхтекучести гелия II. Оказалось, что сверхтекучесть - это макроскопический квантовый эффект. Однако перенести теорию Ландау на явление сверхпроводимости мешало то обстоятельство, что атомы гелия, обладая нулевым спином, подчиняются статистике Бозе-Эйнштейна. Электроны же, обладая половинным спином, подчиняются принципу Паули и статистике Ферми - Дирака. Для таких частиц невозможна бозе-эйнштейновская конденсация, необходимая для возникновения сверхтекучести. Учёные предположили, что электроны группируются в пары, которые обладают нулевым спином и ведут себя как бозе - частицы. Независимо от них в 1958 г. Н.Н. Боголюбов разработал более совершенный вариант теории сверхпроводимости.

Теория БКШ относится к идеализированной модели, в которой пока полностью отбрасываются структурные особенности металла. Металл рассматривается в виде потенциального ящика, заполненного электронным газом, подчиняющимся статистике Ферми. Между отдельными электронами действуют силы кулоновского отталкивания, в большей мере ослабленные за счёт поля атомных остовов. Изотопный эффект в сверхпроводимости указывает на наличие взаимодействия электронов с тепловыми колебаниями решётки (с фононами).

Электрон, движущийся в металле, электрическими силами деформирует--поляризует кристаллическую решетку образца. Вызванное этим смещение ионов решетки отражается на состоянии другого электрона, поскольку он теперь оказывается в поле поляризованной решетки, несколько изменившей свою периодическую структуру. Таким образом, кристаллическая решетка выступает в роли промежуточной среды в межэлектронных взаимодействиях, так как с ее помощью электроны реализуют притяжение друг к другу. При высоких температурах достаточно интенсивное тепловое движение отбрасывает частицы друг от друга, фактически уменьшая силу притяжения. Но при низких температурах силы притяжения играют очень важную роль.

Два электрона отталкиваются друг от друга, если находятся в пустоте. В среде же сила их взаимодействия равна:

где е - диэлектрическая проницаемость среды. Если среда такова, что е<0, то одноименные заряды, в том числе и электроны, будут притягиваться. Кристаллическая решетка некоторых веществ является той средой, в которой выполняется это условие, а значит при определенных температурах возможно возникновение эффекта сверхпроводимости. Таким образом, эффект взаимного притяжения электронов не противоречит законам физики, так как происходим в некоторой среде.

Рассмотрим металл при Т=0 0 К. Его кристаллическая решетка совершает «нулевые» колебания, существование которых связано с квантово-механическим соотношением неопределенностей. Электрон, движущийся в кристалле, нарушает режим колебаний и переводит решетку в возбужденное состояние. Обратный переход на прежний энергетический уровень сопровождается излучением энергии, захватываемой другим электроном и возбуждающей его. Возбуждение кристаллической решетки описывается звуковыми квантами - фононами, поэтому описанный выше процесс можно представить как излучение фонона одним электроном и поглощение его другим электроном, кристаллическая решетка же играет промежуточную роль передатчика. Обмен фононами обуславливает их взаимное притяжение.

При низких температурах это притяжение у ряда веществ преобладает над кулоновскими силами отталкивания электронов. При этом электронная система превращается в связанный коллектив, и чтобы ее возбудить требуется затрата некоторой конечной энергии. Энергетический спектр электронной системы в этом случае не будет непрерывным - возбужденное состояние отделено от основного энергетической щелью.

Теперь установлено, что нормальное состояние металла отличается от сверхпроводящего характером энергетического спектра электронов вблизи поверхности Ферми. В нормальном состоянии при низких температурах электронное возбуждение соответствует переходу электрона из первоначально занятого состояния к (<к F) под поверхностью Ферми в свободное состояние к (>к F) над поверхностью Ферми. Энергия, необходимая для возбуждения такой электронно - дырочной пары в случае сферической поверхности Ферми, равна

Поскольку к и к 1 могут лежать достаточно близко к поверхности Ферми, то.

Электронную систему в сверхпроводнике можно представить как состоящую из связанных пар электронов (куперовских пар), а возбуждение, как разрыв пары. Размер электронной пары составляет приблизительно ~10 -4 см, размер периода решетки - 10 -8 см. То есть электроны в паре находятся на огромном расстоянии.

Наиболее характерным свойством металла в сверхпроводящем состоянии является то, что энергия возбуждения пары всегда превышает некоторую определённую величину 2Д, которую называют энергией спаривания. Другими словами, в спектре энергий возбуждения со стороны малых энергий имеется щель. Например, для металлов Hg, Pb, V, Nb значение 2Д соответствует тепловой энергии при температурах 18 0 К, 29 0 К, 18 0 К и 30 0 К.

Величина энергии спаривания измеряется непосредственно на опыте: при исследовании поглощения электромагнитного излучения - поглощается только излучение с частотой ђщ = 2Д, при исследовании экспоненциального изменения затухания звука и др.

При наличии щели в энергетическом спектре квантовые переходы системы не всегда будут возможны. Электронная система не будет возбуждаться при малых скоростях движения, следовательно, движение электронов будет происходить без трения, что означает отсутствие сопротивления. При определенном критическом токе электронная система сможет перейти на следующий энергетический уровень и сверхпроводимость разрушится.

2.2 Щель в энергетическом спектре

Первые указания на существование энергетической щели были получены из экспоненциального закона спадания электронной теплоёмкости сверхпроводника:

c es ~ г T k e - bTk / T ~ c ns e - bTk / T . (16)

Энергетическая щель в сверхпроводниках непосредственно наблюдается на опыте, при этом не только подтверждается существование щели в спектре, но и измеряется ее величина. Исследовался переход электронов через тонкий непроводящий слой толщиной ~10Е, разделяющий нормальную и сверхпроводящую пленки. При наличии барьера имеется конечная вероятность прохождения электрона через барьер. В нормальном металле заполнены все уровни энергии, вплоть до максимального е F , в сверхпроводящем же до е F -Д. Прохождение тока при этом невозможно.

Наличие энергетической щели в сверхпроводнике приводит к отсутствию соответствующих состояний, между которыми происходил бы переход. Для того чтобы переход мог произойти, необходимо поместить систему во внешнее электрическое поле. В поле вся картина уровней смещается. Эффект становится возможным, если приложенное внешнее напряжение становится равным Д/e. Туннельный ток появляется при конечном напряжении U, когда eU равно энергетической щели. Отсутствие туннельного тока при сколь угодно малом приложенном напряжении является доказательством существования энергетической щели.

В настоящее время разработан ряд методов, позволяющих обнаружить такую щель и измерить её ширину. Один из них основан на изучении поглощения электромагнитных волн далёкой инфракрасной области металлами. Идея метода состоит в следующем. Если на сверхпроводник направить поток электромагнитных волн и непрерывно изменять их частоту щ, то до тех пор, пока энергия квантов ђщ этого излучения остаётся меньше ширины щели Е щ, (если таковая, конечно, есть), энергия излучения поглощаться сверхпроводником не должна. При частоте же щ к, для которой ђщ к = Е щ, должно начаться интенсивное поглощение излучения, возрастая до его значений в нормальном металле. Измерив щ к, можно определить ширину щели Е щ.

Опыты полностью подтвердили факт наличия щели в энергетическом спектре электронов проводимости у всех известных сверхпроводников. В качестве примера в таблице приведены ширина щели Е щ при Т = 0 0 К для ряда металлов и критическая температура перехода их в сверхпроводящее состояние. Из данных этой таблицы видно, что щель Е щ является весьма узкой ~ 10 -3 -10 -2 эВ; между шириной щели и критической температурой перехода Т к наблюдается непосредственная связь: чем выше Т к, тем шире щель Е щ. теория

БКШ приводит к следующему приближённому выражению, связывающему Т к с Е щ (0):

Е щ (0)=3,5кТ к, (17)

которое достаточно хорошо подтверждается опытом.

В теории сверхпроводимости большинство результатов получено для изотропной модели. Реальные же металлы в действительности анизотропны, что проявляется во многих экспериментах. При довольно широких предположениях можно получить формулу:

где - единичный вектор по направлению импульса р; и - радиус вектор ферми поверхности и скоростей на ней. Величина зависит от направления. Согласно экспериментальным данным, изменение. В то же время температурная зависимость одинакова для всех направлений, т.е. .

Таблица 1.

Вещество

Е щ (0),10 -3 эВ

Е щ =3,5кТ к

Анизотропия видна уже при сопоставлении теоретических и экспериментальных данных для теплоёмкости. При низких температурах

где - минимальная щель, а по теоретической кривой (для изотропной модели) , где - некоторая усреднённая щель. Поэтому, как правило, теоретическая кривая при проходит ниже экспериментальной.

Существуют различные методы более детального определения анизотропии щели. Так, измерение теплопроводности монокристальных одноостных сверхпроводников даёт возможность определить, расположена ли минимальная щель в направлении главной оси или лежит в базисной плоскости. Характер анизотропии щели удаётся установить и из экспериментов с туннельным контактом, если один из сверхпроводников является монокристаллом. Наиболее интересные результаты об анизотропии дают эксперименты по поглощению звука. Если частота звука - энергии связи пар, то при низких температурах поглощение происходит только на возбуждениях, т.е. пропорционально. Однако надо учесть, что механизм поглощения звука есть обратный эффект Черенкова. Это значит, что звук поглощают только те электроны, у которых проекция скорости на направление распространения звука совпадает со скоростью звука, т.е. . Но величина скорости электронов в металле см/сек, а скорости звука см/сек; это значит, что, т.е. перпендикулярно, иначе говоря, звук поглощается электронами, лежащими на контуре, получающемся при пересечении ферми поверхностью плоскостью, перпендикулярной. Ввиду этого низкотемпературное поглощение звука определяется минимальным значением щели на этом контуре. Меняя направление распространения звука можно получить довольно детальные сведения о щели.

Анизотропия щели проявляется также в том, что изменение термодинамических величин при введении в сверхпроводник дефектов больше, чем для изотропной модели. Например, при уменьшение по сравнению с (для чистого металла) , т.е. пропорционально средней квадратичной анизотропии.

2.3 Бесщелевая сверхпроводимость

В первые годы после создания теории БКШ наличие энергетической щели в электронном спектре считалось характерным признаком сверхпроводимости, но также известна сверхпроводимость и без энергетической щели - бесщелевая сверхпроводимость.

Как было впервые показано А.А. Абрикосовым и Л.П. Горьковым при введении магнитных примесей критическая температура эффектно уменьшается. Атомы магнитной примеси обладают спином, а значит спиновым магнитным моментом. При этом спины пары оказываются как бы в параллельном и антипараллельном магнитном поле примеси. С увеличением концентрации атомов, магнитной примеси в сверхпроводнике все большее число пар будет разрушаться, и в соответствии с этим ширина энергетической щели будет уменьшаться. При некоторой концентрации n, равной 0,91n кр (n кр - значение концентрации, при которой полностью исчезает сверхпроводящее состояние), энергетическая щель становиться равной нулю.

Можно предположить, что появление бесщелевой сверхпроводимости связано с тем, что при взаимодействии с атомами примеси часть пар оказывается временно разорванными. Такому временному распаду пары соответствует появление локальных энергетических уровней в пределах самой энергетической щели. С ростом концентрации примесей щель все больше заполняется этими локальными уровнями до тех пор, пока не исчезнет совсем. Существование электронов образовавшихся при разрыве пары, приводит к исчезновению энергетической щели, а оставшиеся куперовские пары обеспечивают равенство нулю электронного сопротивления.

Мы приходим к выводу, что существование щели само по себе вовсе не является обязательным условием проявление сверхпроводящего состояния. Тем более что бесщелевая сверхпроводимость, как оказалось явление не столь уж и редкое. Главное - это наличие связанного электронного состояния - куперовской пары. Именно это состояние может проявлять сверхпроводящие свойства и в отсутствии энергетической щели.

2.5 Образование электронных пар

Запрещённые зоны в энергетическом спектре полупроводников возникают вследствие взаимодействия электронов с решёткой, создающей в кристалле поле с периодически меняющимся потенциалом.

Естественно предположить, что и энергетическая щель в зоне проводимости металла, находящегося в сверхпроводящем состоянии, возникает из-за какого-то дополнительного взаимодействия электронов, появляющегося при переходе металла в это состояние. Природа этого взаимодействия состоит в следующем.

Свободный электрон зоны проводимости, двигаясь сквозь решётку и взаимодействуя с ионами, слегка «оттягивает» их из положения равновесия (рис 5), создавая в «кильваторе» своего движения избыточный положительный заряд, к которому может быть притянут другой электрон. Поэтому в металле помимо обычного кулоновского отталкивания между электронами может возникать косвенная сила притяжения, связанная с наличием решётки положительных ионов. Если эта сила оказывается больше силы отталкивания, то энергетически выгодным становится объединение электронов в связанные пары, которые получили название куперовских пар.

При образовании куперовских пар энергия системы уменьшается на величину энергии связи Е св электронов в паре. Это означает, что если в нормальном металле электроны зоны проводимости при Т=0К обладали максимальной энергией Е F , то при переходе в состояние, в котором они связаны в пары, энергия двух электронов (пары) уменьшается на Е св, а энергия каждого из них - на Е св /2, так как именно такую энергию надо затратить, чтобы разрушить эту пару и перевести электроны в нормальное состояние (рис. 6а). Поэтому между верхним энергетическим уровнем электронов, находящихся в связанных парах, и нижним уровнем нормальных электронов должна существовать щель шириной Е св, которая как раз и необходима для появления сверхпроводимости. Легко убедиться, что эта щель является подвижной, т. е. способной смещаться под действием внешнего поля вместе с кривой распределения электронов по состояниям.

На рис. 7 показана схематическая модель куперовской пары. Она состоит из двух электронов, движущихся вокруг индуцированного положительного заряда, напоминая в какой-то мере атом гелия. Каждый электрон, входящий в пару, может обладать большим импульсом и волновым вектором; пара же в целом (центр масс пары) может при этом покоиться, обладая нулевой скоростью поступательного движения. Это разъясняет непонятное на первый взгляд свойство электронов, заселяющих верхние уровни заполненной части зоны проводимости при наличии щели (рис.6а). У таких электронов и огромны (и), а скорость поступательного движения. Поскольку центральный положительный заряд пары индуцирован самими движущимися электронами, то под действием внешнего поля куперовская пара может свободно перемещаться по кристаллу, а энергетическая щель Е щ смещаться вместе со всем распределением, как показано на рис. 6б. Таким образом, и с этой точки зрения удовлетворяются условия появления сверхпроводимости.

Рис.5 рис. 7

Однако не все электроны зоны проводимости способны связываться в куперовские пары. Так как этот процесс сопровождается изменением энергии электронов, то связываться в пары могут лишь те электроны, которые способны изменять свою энергию. Таковыми являются только электроны, размещающиеся в узкой полоске, расположенной у уровня Ферми («фермиевские электроны»). Грубая оценка показывает, что число таких электронов составляет ~ 10 -4 от общего числа, а ширина полоски по порядку величины равна 10 -4 .

На рис. построена в пространстве импульсов сфера Ферми радиусом.

На ней проведены кольца шириной dl, расположенные относительно оси р у под углами ц 1, ц 2 , ц 3 . электроны, векторы которых своими концами попадают на площадь данного кольца, образуют группу, обладающую практически одинаковым импульсом. Число электронов в каждой такой группе пропорционально площади соответствующего кольца. Так как с ростом ц площадь колец увеличивается и число электронов в соответствующих им группах. Связываться в пары могут, вообще говоря, электроны любой из этих групп. Максимальное же число пар образуют те электроны, которых больше. А больше всего электронов, у которых импульсы равны по величине и противоположны по направлению. Концы векторов у таких электронов располагаются не на узкой полоске, а по всей поверхности Ферми. Этих электронов так много по сравнению с любыми другими электронами, что практически образуется лишь одна группа куперовских пар - пары, состоящие из электронов, имеющих равные по величине и противоположные по направлению импульсы. Замечательной особенностью этих пар является их импульсная упорядоченность, состоящая в том, что центры масс всех пар имеют одинаковый импульс, равный нулю, когда пары покоятся, и отличный от нуля, но одинаковый для всех пар, когда пары движутся по кристаллу. Это приводит к довольно жёсткой корреляции движения каждого отдельного электрона с движением всех остальных электронов, связанных в пары.

Электроны «движутся наподобие альпинистов, которые связаны друг с другом верёвкой: если один из них выходит из строя благодаря неровности рельефа (обусловленной тепловым движением атомов), то соседи возвращают его обратно». Это свойство делает коллектив куперовских пар мало восприимчивым к рассеянию. Поэтому если пары тем или иным внешнем воздействием приведены в упорядоченное движение, то созданный ими электрический ток может существовать в проводнике сколь угодно долго даже после прекращения действия того фактора, который его вызвал. Так как таким фактором может быть только электрическое поле Е, то это означает, что в металле, в котором фермиевские электроны связаны в куперовские пары, возбуждённый электрический ток i продолжает существовать неизменным и после прекращения действия поля: i=const при Е=0. Это является свидетельством того, что металл действительно находится в сверхпроводящем состоянии, обладая идеальной проводимостью. Грубо такое состояние электронов можно сравнить с состоянием тел, движущихся без трения: такие тела, получив начальный импульс, могут двигаться сколь угодно долго, сохраняя его неизменным.

Выше мы сравнивали куперовскую пару с атомом гелия. Однако к этому сравнению следует относится очень осторожно. Как уже отмечалось, положительный заряд пары является непостоянным и строго фиксированным, как у атома гелия, а наведённым самими движущимися электронами и перемещающимися вместе с ними. Кроме того, энергия связи электронов в паре на много порядков ниже энергии связи их в атоме гелия. Согласно данным таблицы 1, для куперовских пар Е св =(10 -2 -10 -3) эВ, в то время как для атомов гелия Е св =24,6 эВ. Поэтому размер куперовской пары на много порядков больше размера атома гелия. Расчёт показывает, что эффективный диаметр пары L ? (10 -7 -10 -6) м; его называют также длиной когерентности. В объёме L 3 , занимаемой парой, размещаются центры массы ~ 10 6 других таких пар. Поэтому эти пары нельзя рассматривать как какие-то пространственно разделённые «квазимолекулы». С другой стороны, возникающее колоссальное перекрытие волновых функций всех пар усиливает квантовый эффект спаривания электронов до макроскопического его проявления.

Существует другая аналогия, причём очень глубокая, куперовских пар с атомами гелия. Она состоит в том, что пара электронов представляет собой систему с целом спином, так же как и атомы. Известно, что сверхтекучесть гелия можно рассматривать как проявление специфического эффекта конденсации бозонов на нижнем энергетическом уровне. С этой точки зрения сверхпроводимость можно считать как бы сверхтекучестью куперовских пар электронов. Эта аналогия идёт ещё дальше. Другой изотоп гелия, ядра которого имеют полуцелый спин, не обладает сверхтекучестью. Но самый замечательный факт, открытый совсем недавно, состоит в том, что при понижении температуры атомы могут образовывать пары, вполне аналогичные куперовским, и жидкость становится сверхтекучей. Теперь можно сказать, что сверхтекучесть - это как бы сверхпроводимость пар его атомов.

Таким образом, процесс спаривания электронов является типичным коллективным эффектом. Силы притяжения, возникающие между электронами, не могут привести к спариванию двух изолированных электронов. В образовании пары участвует по существу как весь коллектив фермиевских электронов, так и атомы решётки. Поэтому и энергия связи (ширина щели Е щ) зависит от состояния коллектива электронов и атомов в целом. При абсолютном нуле, когда все фермиевские электроны связаны в пары, энергетическая щель Е щ достигает максимальной ширины Е щ (0). С повышением температуры появляются фононы, способные сообщить электронам при рассеянии энергию, достаточную для разрыва пары. При низких температурах концентрация этих фононов невелика, вследствие чего и случаи разрыва электронных пар будут редкими. Разрыв некоторых пар не может привести к исчезновению щели для электронов остальных пар, но делает её несколько уже; границы щели приближаются к уровню Ферми. С дальнейшим повышением температуры концентрация фононов растёт очень быстро, кроме того, растёт их средняя энергия. Это приводит к резкому увеличению скорости разрыва электронных пар и соответственно к быстрому уменьшению ширины энергетической щели для остающихся пар. При некоторой температуре Т к щель исчезает полностью, края её сливаются с уровнем Ферми и металл переходит в нормальное состояние.

2.5 Эффективное взаимодействие между электронами, обусловленное фононами металла

Фрелих показал, что взаимодействие электронов с фононами может приводить к эффективному взаимодействию между электронами. Ниже мы изложим основные положения его теории.

В идеальной решётке движение электрона в зоне проводимости определяется блоховской функцией

которая представляет плоскую волну, модулированную функцией u k (r), удовлетворяющей условию периодичности u k (r) = u k (r+n), где n - вектор решётки, k - волновой вектор; ч у - функция спинового состояния. Её явный вид и вид функции u k (r) нам далее не потребуется.

Электронная волновая функция всего металла, содержащего N электронов в объёме V, является антисимметричным произведением N функции ц k,у. Основное состояние соответствует заполнение состояний, лежащих в k - пространстве внутри поверхности Ферми. Будем предполагать, что эта поверхность лежит далеко от границы зоны и изотропна, т. е. представляет собой сферу радиуса k 0 . при возбуждении электроны из состояний |k| < k 0 переходят в состояния k| > k 0 .

Если е k - энергия состояния электрона с квазиимпульсом ђk, то в представлении вторичного квантования гамильтониан системы электронов (с точностью до постоянного слагаемого) имеет вид

где a + kу, a kу - фермиевские операторы рождения и уничтожения квазичастиц.

Для определения оператора взаимодействия с фононами решётки металла учтём, что при смещении положительного иона, занимающего n - е место в решётке, на величину о n , энергия взаимодействия электрона с решёткой изменится на величину. Следовательно, в представлении вторичного квантования оператор электрон - фононного взаимодействия можно написать в виде

где - оператор, выражающийся через ферми-операторы a kу и блоховские функции с помощью равенства

Оператор смещения ионов определён, следовательно,

Где, - бозе-операторы; s - скорость продольных звуковых волн, соответствующих волновому вектору q, так как только продольные волны дают вклад и для них щ(q) = sq.

Учитывая, что сумма, если, и равна нулю, если, получаем окончательное выражение операторов электрон-фононного взаимодействия в представлении чисел заполнения

где (1825) - сокращённое обозначение сумм произведений ферми-операторов; - малая величина, определяющая электрон-фононное взаимодействие. Интегрирование ведётся по одной элементарной ячейке. Буквами «э.с.» указываются члены, эрмитово сопряжённые ко всем предыдущим.

Оператор взаимодействия (24) не зависит от спинового состояния электронов, поэтому в дальнейшем спиновый индекс у можем не писать. Оператор (24) получен в предположении, что ионы в решётке движутся как единое целое, что D(q) зависит только от q и не зависит от k и что колебания ионов в решётке делятся на продольные и поперечные для всех значений q, поэтому взаимодействие осуществляется только с продольными фононами. Без этих упрощений вычисления сильно усложняются. Такое усложнение оправдывается только при необходимости получить количественные результаты.

Подобные документы

    Квантование магнитного потока. Термодинамическая теория сверхпроводимости. Эффект Джозефсона как сверхпроводящее квантовое явление. Сверхпроводящие квантовые интерференционные детекторы, их применение. Прибор для измерения слабых магнитных полей.

    контрольная работа , добавлен 09.02.2012

    Понятие и природа сверхпроводимости, ее практическое применение. Характеристика свойств сверхпроводников 1-го и 2-го рода. Сущность "теории Бардина-Купера-Шриффера" (БКШ), объясняющей явление сверхпроводимости металлов при сверхнизких температурах.

    реферат , добавлен 01.12.2010

    Открытие сверхпроводников, эффект Мейснера, высокотемпературная сверхпроводимость, сверхпроводящий бум. Синтез высокотемпературных сверхпроводников. Применение сверхпроводящих материалов. Диэлектрики, полупроводники, проводники и сверхпроводники.

    курсовая работа , добавлен 04.06.2016

    Открытие особенностей изменения сопротивления ртути в 1911 году. Сущность явления сверхпроводимости, характерного для многих проводников. Наиболее интересные возможные промышленного применения сверхпроводимости. Эксперимент с "магометовым гробом".

    презентация , добавлен 22.11.2010

    Гипотезы монополя Дирака. Магнитный заряд электрона, который тождественен кванту магнитного потока, наблюдаемого в условиях сверхпроводимости. Анализ эффекта квантования магнитного потока. Закон Кулона: взаимодействие электрического и магнитного заряда.

    статья , добавлен 09.12.2010

    Обращение в нуль электрического сопротивления постоянному току и выталкивание магнитного поля из объема. Изготовление сверхпроводящего материала. Промежуточное состояние при разрушении сверхпроводимости током. Сверхпроводники первого и второго рода.

    курсовая работа , добавлен 24.07.2010

    Свойства сверхпроводящих материалов. Определение электрического сопротивления и магнитной проницаемости немагнитных зазоров. Падение напряженности магнитного поля по участкам. Условия для работы устройства. Применение эффекта Мейснера и его изобретение.

    научная работа , добавлен 20.04.2010

    Великие физики, которые прославились, занимаясь теорией и практикой сверхпроводимости. Изучение свойств вещества при низких температурах. Реакция сверхпроводников на примеси. Физическая природа сверхпроводимости и перспективы ее практического применения.

    презентация , добавлен 11.04.2015

    История открытия сверхпроводников, их классификация. Фазовый переход в сверхпроводящее состояние. Научные теории, описывающие это явление и опыты, его демонстрирующие. Эффект Джозефсона. Применение сверхпроводимости в ускорителях, медицине, на транспорте.

    курсовая работа , добавлен 04.04.2014

    Научно-теоретическая поддержка обоснования проекта, опирается на теперь, считающимися элементарными знания теоретической физики. Это ряд открытий законов и замечательных эффектов, во многих случаях до сегодняшнего дня почему-то не используемых.

Особенные свойства сверхпроводников, которые используются в современных технологиях

    Сверхпроводники имеют сопротивление около нуля, а значит, могут проводить ток без тепловых потерь, если они находятся при температурах ниже критических, в магнитных полях и токах ниже критических.

    В том случае, если сверхпроводники находятся в магнитных полях ниже некоторого критического значения, то сверхпроводник является идеальным диамагнетиком (магнитное поле внутрь сверхпроводника не проникает).

    Если сверхпроводник имеет форму кольца или цилиндра, то его магнитный момент изменяется дискретно (на квант магнитного потока).

    Если частота тока ниже критической, то поверхностное сопротивление сверхпроводника в десятки и даже сотни раз меньше, чем у хороших проводников при той же температуре.

Применение сверхпроводников

Применение сверхпроводников весьма разнообразно. С их помощью можно получить большие токи, используя источник, который имеет небольшое напряжение. При этом практически отсутствуют потери на джоулево тепло, что позволяет использовать сверхпроводник в измерительных приборах. Так, чувствительность гальванометра, имеющего рамку из сверхпроводника, очень велика ($\sim {10}^{-12}B$).

В настоящее время из-за наличия сопротивления подводящих проводов потери электроэнергии составляют $30-40\%$. Если бы стало возможным передавать электроэнергию по сверхпроводящим проводам, то потери на джоулево тепло отсутствовали, что стало бы равносильно увеличению выработки электричества на треть. На основе сверхпроводников можно было бы изготавливать генераторы и электродвигатели с гораздо более высоким КПД, чем существующие сейчас.

Сильноточные технологии, которые предназначаются для устройств больших мощностей, применяются в электроэнергетике, промышленности и на транспорте. В этих отраслях сверхпроводниковые технологии ведут к созданию электрооборудования в $2-3$ раза меньшей массы, более экологичного, более надежного с большим сроком эксплуатации. Предполагается, что в электроэнергетике будет происходить постепенная замена традиционного резисторного оборудования на более дешевое и компактное сверхпроводниковое оборудование, которое существенно выше по надежности и эффективности.

Примечание 1

Способность сверхпроводника переходить в нормальное состояние из сверхпроводящего и обратно, под воздействием магнитного поля используют для усиления небольших постоянных токов и напряжений. В данном случае слабый постоянный сигнал подается на сверхпроводник, который находится в переменном магнитном поле. При этом напряженность магнитного поля такова, что состояния сверхпроводника чередуются: нормальное состояние -- сверхпроводящее состояние. Так получают переменный ток с частотой равной частоте магнитного поля. Для создания резонаторов высокой добротности с небольшим затуханием для изготовления стенок резонатора применяют сверхпроводники, в которых происходит малое затухание.

Примечание 2

Сверхпроводники используют для получения магнитных полей с большой индукцией. Для этого используют сверхпроводниковые сплавы с большой критической индуктивностью. Из них изготавливают проволоку для обмоток трансформаторов. В подобных обмотках создается ток высокой плотности, значит, электромагнит имеет магнитное поле большой силы. Индукция получаемых полей достигает 10Тл. В обычных обмотках из меди при магнитном поле 10 Тл выделяется огромное количество тепла, тогда как в сверхпроводниках мощность не рассеивается.

Примечание 3

С помощью сверхпроводящих соленоидов создают сверхсильные магнитные поля, которые применяют для удержания плазмы при термоядерном синтезе. Магнитные поля большой индукции необходимы для работы транспортных средств на магнитной подушке.

Принцип разрушения магнитным полем сверхпроводящего состояния полагается в основу переключающих устройств (криотронов). Пленочные криотроны имеют очень небольшие размеры, короткий интервал переключения (${10}^{-9}-{10}^{-10}c\ $).

Проблемы практического использования сверхпроводимости заключены в том, что необходимо работать в области очень низких температур. Отыскание сверхпроводящих материалов с температурой перехода в сверхпроводящее состояние около комнатной, открыло бы большие возможности применения таких материалов в науке и технике.

Примечание 4

Первые успехи в этом направлении были сделаны в 1986 г. Беднорцем и Мюллером , которые выяснили, что керамика $La-Ba-Cu-O$ становится сверхпроводником, при температуре $35 К$. За это открытие ученые были удостоены Нобелевской премии в области физики.

Изученные образцы представляли собой смесь нескольких фаз и имели поликристаллическую структуру. Большинство ученых работающих над созданием высокотемпературных сверхпроводников называют подобные материалы «керамикой» .

Керамики в нормальном состоянии являются оксидами металлов. Их сложно получить в виде монокристаллов. Они в настоящее время изготавливаются в виде совокупности кристаллов (зерен) довольно слабо связанных друг с другом. В нормальном состоянии эти соединения имеют удельное сопротивление существенно большее, чем у металлов. У керамик удельное сопротивление растет с ростом температуры (при $T>T_k$). Все металлооксиды имеют слоистую структуру тетрагональной или ромбической симметрии. При переходе через температуру равную критической, кристаллическая структура высокотемпературный сверхпроводников не изменяется. Как в обычных сверхпроводниках в керамике найдена зависимость критической температуры от массы атомов, которые входят в структуру керамики (изотопический эффект). В высокотемпературных проводниках переход к состоянию с нулевым удельным сопротивлением происходит в более широком интервале температур, чем в обычных сверхпроводниках. В керамиках наблюдается эффект Мейсснера -- Оксенфельда . Для них существует критическое магнитное поле. Эти материалы относят к сверхпроводникам второго рода. Глубина проникновения магнитного поля в керамиках существенно больше, чем в низкотемпературных сверхпроводниках.

Так в конце восьмидесятых годов были открыты сверхпроводники с температурой перехода около 240 К.

Второй проблемой, сдерживающей развитие сферы применения сверхпроводниковых материалов, служит наличие критического магнитного поля и критических токов. Ограничения по критическому полю и току особенно важны при проектировании и создании сильноточных приборов.

Пример 1

Задание: На сегодняшний день самым точным прибором для измерения магнитных полей служит сверхпроводниковый квантовый интерферометр, который используют в широком диапазоне областей от прогнозирования землетрясений до медицинской диагностики. Действие этого прибора основано на эффекте Джозефсона. Объясните принцип действия этого прибора.

Решение:

Выделяют стационарный и нестационарный эффекты Джозефсона. Суть стационарного эффекта в том, что ток может течь через малый зазор между сверхпроводниками в отсутствии внешнего электрического поля. Это значит, что куперовские пары, которые переносят ток в сверхпроводнике, могут туннелировать из одного сверхпроводника в другой даже через слой диэлектрика. Туннельный ток проходит через зазор без падения напряжения, если его плотность не выше некоторой критической величины. Этот ток чувствителен к наличию магнитного поля.

В том случае, если плотность туннельного тока превышает критическое значение, то на контакте появляется разность потенциалов и при этом должен появиться высокочастотный переменный ток. Или постоянное напряжение прикладывают к сторонам зазора. Куперовские пары будут перемещаться через зазор в одном, а затем в противоположном направлении. Появляется переменный ток с частотой, зависящей от приложенного напряжения. Это нестационарный эффект Джозефсона. В этом эффекте постоянное электрическое поле может порождать переменный ток.

Изготавливается маленький контур из сверхпроводника с двумя зазорами, через которые осуществляются переходы Джозефсона. Через контур пропускают ток. Так получают прибор -- квантовый интерферометр. Ток по цепи прибора может изменяться от 0 (это случай, когда токи, идущие по двум переходам, взаимно гасятся) до максимума (токи имеют одно направление и взаимно усиливаются) и это зависит от величины внешнего магнитного поля. В настоящее время используя сверхпроводниковый квантовый интерферометр, подключив датчики можно измерить электромагнитные сигналы, которые вырабатывает мозг человека.

Пример 2

Задание: Сверхпроводящие катушки с самоиндукциями $L_1\ \ и\ L_2$ включены в цепь рис.1. Гальванический элемент имеет ЭДС равную $\mathcal E$. Найдите токи в катушках. Коэффициентом взаимной индукции катушек пренебречь.

Рисунок 1.

Решение:

За основу решения задачи примем закон Ома:

где $R$ -- внешнее сопротивление, $r$ -- сопротивление источника. До того как источник тока включен поток через сверхпроводящий контур ABCD равен нулю. Он сохранится и после выключения тока, то есть можно записать, что:

Из выражения (2.2) следует, что:

\[\frac{I_1}{I_2}=\frac{L_2}{L_1}\left(2.3\right).\] \

Из уравнений (2.3) и (2.4) следует, что:

Ответ: $I_1=\frac{IL_2}{L_1+L_2},\ I_2=\frac{IL_1}{L_1+L_2}$, где $I=\frac{{\mathcal E}}{R+r}.$

Чудо сверхпроводимости (авт. Валерий Старощук)

Немного теории

Уже первые опыты с электричеством показали, что серебро, медь и алюминий хорошо проводят электрический ток, а фарфор, стекло, резина и шелк его практически не проводят. Соответственно, из первых материалов люди стали делать проводники, а из вторых - изоляцию для проводов и защиту от поражения электрическим током. На фото вы видите современный сетевой двужильный провод. Каждая жила состоит из семи медных проволочек заключенных в пластиковую изоляцию. Учитывая, что провод работает при опасном напряжении 220В, две изолированные жилы покрыты еще одним общим слоем пластиковой изоляции.

Когда по проводнику проходит электрический ток, он разогревается. Это свойство используют в нагревательных приборах, таких как утюг, чайник, в электробатареях, а также в лампах накаливания. На фото вы видите вольфрамовую нить, которая так разогрелась под действием тока, что начала излучать свет.

Сейчас все чаще применяют энергосберегающие люминесцентные лампы, но и в них есть маленькая нить накала для излучения электронов.

Если по проводнику идет ток, он не только нагревается, но и создает вокруг себя магнитное поле. Это свойство первым заметил и описал в 1820 году датский ученый Ганс Христиан Эрстед. На фото вы видите, как под действием магнитного поля железные опилки выстраиваются вокруг медного проводника с током.

Магнитное поле тока используют в работе электродвигателя, генератора и электромагнита.

Итак, если по проводнику идет ток, то энергия источника тока превращается в тепловую и энергию электромагнитного поля. Иногда это нужно и полезно, а иногда просто вредно. Например, зачем нам нагревание и магнитное поле провода, которым мы подключили утюг к розетке? Греются также провода, по которым электрический ток от электростанции идет к нашим домам. Чтобы уменьшить эти потери энергии, сопротивление проводника стараются сделать как можно меньше.

Так как электрическое сопротивление образца сильно зависит от материала, из которого он сделан, температуры и геометрических размеров, решили измерять удельное сопротивление , то есть сопротивление образца из данного материала длиной 1м, площадью поперечного сечения 1мм 2 при 20 0 С. Например, удельное сопротивление меди равно r = 0,0125 Ом·мм 2 /м. Это значит, что если вы возьмете проводник из меди (Cu) длинной 1 м и площадью сечения 1мм 2 , то его сопротивление электрическому току будет 0,0125 Ом. Сопротивление дает возможность узнать, какой ток пройдет по проводнику для данного напряжения. Например, если напряжение на концах нашего образца будет равно 0,1В, то через него пойдет ток I = U/R= 0,1/0,0125 = 8A. Для наглядности представим электроны в виде бегущих синих человечков.

Тогда при токе 8А за одну секунду их забежит в проводник 5·10 19 (50 миллиард миллиардов!). Это почти в 70 миллиардов раз больше, чем людей на планете Земля. Обратите внимание, что выбежит из проводника их за секунду столько же. Договорились, что направление тока определяют по движению положительно заряженных частиц. Но в металлах ток проводят отрицательные электроны, поэтому направление тока показано противоположно скорости электронов. В проводнике находятся положительные ионы меди, с которыми наши электроны-человечки играются, хватая руками. Ведь между отрицательными электронами и положительными ионами существуют силы притяжения. Забрать ион с собой человечку-электрону не удастся, так как ионы намного тяжелее электронов и крепко связаны силами между собой в кристаллической решетке. А вот раскачать ионы нашим «человечкам» будет под силу. При этом электроны теряют свою скорость, а значит и энергию движения, а проводник соответственно нагревается.

История открытия


Голландский ученый Хейке Камерлинг Оннес (Heike Kammerlingh Onnes) (на фото справа) решил первым в мире достичь в своих экспериментах абсолютный ноль по шкале Кельвина (примерно минус 273 градуса по Цельсию). Как вы знаете, в природе не существует температуры ниже. Сорокалетний ученый, используя свои связи с голландскими промышленниками в 1893 году начинает строительство в Лейденском университете одной из лучших лабораторий в мире, которую оснастил самым современным оборудованием. Первый успех пришел 10 июля 1908 года, когда удалось получить жидкий гелий при 5К (это минус 268 градусов Цельсия!). Через 2 года напряженного труда они получают температуру 1К! И тут ученый понимает, что это предел, который можно достичь на данном оборудовании, поэтому принимается решение изменить направление научной работы. Теперь все силы были направлены на изучение физических свойств разных материалов при низких температурах. Естественно, один из пунктов программы включал измерение удельного электрического сопротивления материала. Многие ученые того времени высказывали предположение, что при очень низких температурах металлы должны стать диэлектриками. Якобы свободные электроны настолько замедлят свое движение, что «приклеятся» к ионам и не смогут переносить электричество. Но физика - наука, прежде всего экспериментальная! Опыты Хейке Камерлинг Оннеса показали, что у платины с понижением температуры сопротивление не растет, а падает, и после 4К остается постоянным. Ученый сделал предположение, что сопротивление должно стремиться к нулю, потому что ионы прекращают колебательное движение и «не мешают» двигаться свободным электронам. Понимая, что в платине есть малые примеси, он решил проверить ртуть, самый очищенный металл, который у него был.

8 апреля 1911 года группа Хейке Камерлинг Оннес, с ассистентами Корнелисом Дорсманом (Cornelis Dorsman) и Гиллесом Хольстом (Gilles Holst) проверяли работу нового криостастата (устройство для поддержания низких температур в данном объеме). Сначала думали только заправить жидким гелием, но потом установили газовый термометр и два образца из золота и ртути, чтобы измерить их удельное сопротивление. Измерив сопротивление металлов при 4,3К, решили уменьшить давление в криостате над гелием. Гелий начал быстро испаряться, и температура упала до 3К. Эксперимент длился уже 9 часов! При повторном измерении сопротивление ртути оказалось равным нулю! Так была открыта сверхпроводимость!

На фото вы видите историческую запись ученого, сделанную в тот день. В рамку взята голландская фраза Kwik nagenoeg nul — «Сопротивление ртути практически нулевое» (3 К). Следующее предложение Herhaald met goud означает «Повторено с золотом».

Критическая температура перехода ртути в сверхпроводящее состояние в тот день не была определена, да такой задачи и не ставилось. Ее выяснили в следующем эксперименте, проведенном 11 мая. Камерлинг-Оннес тогда пришел к выводу, что ртуть делается сверхпроводником при охлаждении до 4,2 К.

В дальнейшем открытия пошли одно за другим. В 1912 году открыли еще два сверхпроводника - свинец и олово. В 1914 понимают, что сильное магнитное поле разрушает сверхпроводимость. В том же году проводят эффектный эксперимент со сверхпроводящим кольцом из свинца. В нем кратковременно индуцировали ток, а потом наблюдали его циркуляцию на протяжении нескольких часов без малейшего затухания. Само кольцо становится магнитом.

В 1919 году из Лейдена пришла весть, что сверхпроводниками становятся также таллий и уран.

Объяснение сверхпроводимости

Объяснить явление сверхпроводимости с точки зрения классической электродинамики невозможно. Только с развитием квантовой физики в 1957 году (спустя 46 лет после открытия!) три американских физика - Бардин, Купер и Шриффер, объяснили сверхпроводимость спариванием электронов, то есть образованием куперовских пар, которое осуществляется за счет обмена колебаниями кристаллической ячейки - фононами.

Чтобы понять, как образуются куперовские пары, рассмотрим очень упрощенную модель прохождения тока в сверхпроводнике.

Красными кружками обозначены положительные ионы кристаллической решетки.

Когда электрон А под действием электрического поля движется в пространстве решетки, он немного искривляет её. В результате концентрация положительных ионов за ним возрастает. Скопление положительных ионов притягивает отрицательный электрон В с силой F. В результате энергия, которую потратил электрон А на прохождение ионной кристаллической решетки, передается через колебания решетки электрону В. Получается, что электроны А и В связаны между собой через ионную решетку, образуют пару и вместе не тратят энергии при движении. Сопротивление току в этом случае равно нулю.

Применение сверхпроводников

Современная наука уже получила материалы, которые обладают сверхпроводимостью при 165К (минус 107 0 С). Если будут получены материалы обладающие сверхпроводимостью при комнатной температуре, это будет огромный скачок в развитии человечества. Ведь одну треть электроэнергии мы тратим во время её передачи от источника потребителю. Пока же сверхпроводники приходится охлаждать жидким азотом.

С другой стороны, без них уже трудно представить работу Большого адронного коллайдера в ЦЕРНе, и строительство термоядерного реактора ITER в Кадараше.

Сверхпроводимость характеризуется также эффектом Мейснера , заключающемся в полном вытеснении магнитного поля из объема сверхпроводника. В результате образец, как видно на фото, зависает над магнитом.

На основе этого явления уже созданы поезда на магнитной подушке, которые могут разгоняться до скорости 500 км/ч.

Мощные магниты на сверхпроводниках используют в медицине при создании томографов, использующем принцип ядерно-магнитного резонанса (ЯМР). Сканирование тканей человека позволяет врачам увидеть на экране компьютера срез внутренностей, не оперируя больного. Такой метод позволяет быстро поставить правильный диагноз, а значит быстрее вылечить пациента.

Современная квантовая теория сверхпроводимости принципиально не ограничивает значение температуры, при которой наблюдается этот эффект. Значит дело за созданием новых материалов и соединений, которые, возможно, в скором будущем откроете вы.