Болезни Военный билет Призыв

Что такое уравнение. Актуализация опорных знаний. Что такое уравнение: общие понятия

Уравнение - это два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными. Решить уравнение - значит найти все значения неизвестных, при которых оно обращается в верное равенство, или установить, что таких значений нет.

В школьном курсе, как правило, рассматривают уравнения, в которых неизвестные принимают числовые значения. Числовое значение неизвестного, удовлетворяющее уравнению с одним неизвестным, называется корнем или решением этого уравнения. Набор чисел, удовлетворяющих уравнению с несколькими неизвестными, называется его решением.

В математике рассматривают также уравнения, в которых неизвестными являются целые числа (диофантовы уравнения), векторы (векторные уравнения), функции (дифференциальные, интегральные, функциональные уравнения) и объекты другой природы. Вместе с уравнением указывают его область определения (множество допустимых значений неизвестных); если это не сделано, то предполагается, что это естественная общая область определения выражений, стоящих в левой и правой частях уравнения.

Уравнение одно из важнейших понятий математики. В большинстве практических и научных задач, где какую-то величину нельзя непосредственно измерить или вычислить по готовой формуле, удается составить соотношение (или несколько соотношений), которым оно удовлетворяет. Так получают уравнение (или систему уравнений) для определения неизвестной величины.

Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры. Привычная нам буквенная запись уравнений окончательно сложилась в XVI в.; традиция обозначать неизвестные последними буквами латинского алфавита , , , …, а известные величины (параметры) - первыми , , , ... идет от французского ученого Р. Декарта.

Обычный путь алгебраического (чаще говорят, аналитического) решения уравнения состоит в том, что с помощью преобразований его сводят к более простым уравнениям. Если все решения одного уравнения являются решениями другого, то второе уравнение называется следствием первого. Если каждое из двух уравнений - следствие другого (т.е. множества их решений совпадают), то такие уравнения называются равносильными. Применяя к обеим частям уравнения одно и то же преобразование, мы приходим к следствию этого уравнения. Если же это преобразование обратимо, то получается уравнение, равносильное данному. (Например, умножая обе части уравнения на одно и то же число, мы получаем следствие данного уравнения. Если это число отлично от нуля, то выполненное преобразование обратимо, так что полученное уравнение равносильно исходному).

Решая уравнение с одним неизвестным, мы пытаемся прийти к простейшим уравнениям, для решения которых есть готовые формулы. Эго линейные уравнения, квадратные уравнении, уравнения вида , где - число, а - одна из основных элементарных функций: степенная , показательная , логарифмическая , тригонометрические , , .

Заметим, что запись общего решения уравнения требует введения функции , обратной к функции . Если , то ; если , то ; если и , то .

Как же сводятся уравнения к простейшим? Для конкретного типа уравнений (алгебраических, тригонометрических, иррациональных, показательных, логарифмических и т.п.) разработаны частные приемы решения. Из общих методов решения уравнений остановимся на трех, которые встречаются чаще всего.

Если левую часть уравнения удается разложить на множители: , то оно распадается на уравнения , , …, , объединение множеств их решений дает множество решений данного уравнения. Например, уравнение можно решить так:

,

.

Решая уравнения и , находим все корни данного уравнения: 1, 2 и -3. Этот метод принято называть методом разложения на множители.

Часто удается упростить уравнение, принимая в качестве новой неизвестной некоторую функцию от старой неизвестной. Например, уравнение можно свести к квадратному уравнению, положив .Тогда , и мы приходим к уравнению .

Иногда удается решить уравнение, анализируя функциональные свойства его левой и правой частей.

Например, так как левая часть уравнения возрастает, а правая - постоянна, то это уравнение не может иметь более одного корня. Единственный корень легко угадывается.

Решая уравнение , заметим, что при всех выполняются неравенства , , откуда , а так как , то данное уравнение не имеет корней.

До сих пор мы разбирали приемы решения уравнений, позволяющие найти корень уравнения как число или комбинацию известных функций от параметров. Однако далеко не все уравнения, возникающие на практике, можно решить подобным образом. Например, в начале XIX в. было доказано, что не существует общей формулы для решения алгебраических уравнений начиная с пятой степени. Да и в тех случаях, когда уравнение удается решить, формула для корней может быть чересчур громоздкой. Поэтому в математике разработаны различные методы приближенного решения уравнений. Простейший из них основан на том, что если функция непрерывна во всех точках отрезка и принимает на его концах значения разных знаков, то уравнение имеет на этом отрезке корень.

С помощью графика особенно удобно проводить исследование уравнений; например, по графику (рис. 2) мы сразу видим, что уравнение имеет три корня при , два - при и один - при .

Решение уравнения

Иллюстрация графического метода нахождения корней уравнения

Решение уравнения - задача по нахождению таких значений аргументов, при которых это равенство достигается. На возможные значения аргументов могут быть наложены дополнительные условия (целочисленности, вещественности и т. д.).

При подстановке другого корня получается неправильное утверждение:

.

Таким образом, второй корень нужно отбросить, как посторонний.

Виды уравнений

Различают алгебраические , параметрические , трансцендентные , функциональные , дифференциальные и другие виды уравнений.

Некоторые классы уравнений имеют аналитические решения, которые удобны тем, что не только дают точное значение корня, а позволяют записать решение в виде формулы, в которую могут входить параметры. Аналитические выражения позволяют не только вычислить корни, а провести анализ их существования и их количества в зависимости от значений параметров, что часто бывает даже важнее для практического применения, чем конкретные значения корней.

К уравнениям, для которых известны аналитические решения, относятся алгебраические уравнения, не выше четвёртой степени: линейное уравнение , квадратное уравнение , кубическое уравнение и уравнение четвёртой степени . Алгебраические уравнения высших степеней в общем случае аналитического решения не имеют, хотя некоторые из них можно свести к уравнениям низших степеней.

Уравнение, в которые входят трансцендентные функции называются трансцендентными. Среди них аналитические решения известны для некоторых тригонометрических уравнений, поскольку нули тригонометрических функций хорошо известны.

В общем случае, когда аналитического решения найти не удается, применяют численные методы . Численные методы не дают точного решения, а только позволяют сузить интервал , в котором лежит корень, до определенного заранее заданного значения.

Примеры уравнений

См. также

Литература

  • Бекаревич, А. Б. Уравнения в школьном курсе математики / А. Б. Бекаревич. - М., 1968.
  • Маркушевич, Л. А. Уравнения и неравенства в заключительном повторении курса алгебры средней школы / Л. А. Маркушевич, Р. С. Черкасов. / Математика в школе. - 2004. - № 1.
  • Каплан Я. В. Рівняння. - Киев: Радянська школа, 1968.
  • Уравнение - статья из Большой советской энциклопедии
  • Уравнения // Энциклопедия Кольера. - Открытое общество. 2000.
  • Уравнение // Энциклопедия Кругосвет
  • Уравнение // Математическая энциклопедия. - М.: Советская энциклопедия. И. М. Виноградов. 1977-1985.

Ссылки

  • EqWorld - Мир математических уравнений - содержит обширную информацию о математических уравнениях и системах уравнений.

Wikimedia Foundation . 2010 .

Синонимы :

Антонимы :

  • Хаджимба, Рауль Джумкович
  • ЕС ЭВМ

Смотреть что такое "Уравнение" в других словарях:

    УРАВНЕНИЕ - (1) математическая запись задачи о разыскании таких значений аргументов (см. (2)), при которых значения двух данных (см.) равны. Аргументы, от которых зависят эти функции, называют неизвестными, а значения неизвестных, при которых значения… … Большая политехническая энциклопедия

    УРАВНЕНИЕ - УРАВНЕНИЕ, уравнения, ср. 1. Действие по гл. уравнять уравнивать и состояние по гл. уравняться уравниваться. Уравнение в правах. Уравнение времени (перевод истинного солнечного времени в среднее солнечное время, принятое в общежитии и в науке;… … Толковый словарь Ушакова

    УРАВНЕНИЕ - (equation) Требование того, чтобы математическое выражение принимало определенное значение. Например, квадратное уравнение записывается в виде: ах2+bх+с=0. Решением является такие значения х, при котором данное уравнение становится тождеством. В… … Экономический словарь

    УРАВНЕНИЕ - математическая запись задачи о разыскании значений аргументов, при которых значения двух данных функций равны. Аргументы, от которых зависят эти функции, называются неизвестными, а значения неизвестных, при которых значения функций равны,… … Большой Энциклопедический словарь

    УРАВНЕНИЕ - УРАВНЕНИЕ, два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными. Решить уравнение значит найти все значения неизвестных, при которых оно обращается в тождество, или установить … Современная энциклопедия

Уравнения

Как решать уравнения?

В этом разделе мы вспомним (или изучим – уж кому как) самые элементарные уравнения. Итак, что такое уравнение? Говоря человеческим языком, это какое-то математическое выражение, где есть знак равенства и неизвестное. Которое, обычно, обозначается буквой «х» . Решить уравнение - это найти такие значения икса, которые при подстановке в исходное выражение, дадут нам верное тождество. Напомню, что тождество – это выражение, которое не вызывает сомнения даже у человека, абсолютно не отягощенного математическими знаниями. Типа 2=2, 0=0, ab=ab и т.д. Так как решать уравнения? Давайте разберёмся.

Уравнения бывают всякие (вот удивил, да?). Но всё их бесконечное многообразие можно разбить всего на четыре типа.

4. Все остальные.)

Всех остальных, разумеется, больше всего, да...) Сюда входят и кубические, и показательные, и логарифмические, и тригонометрические и всякие другие. С ними мы в соответствующих разделах плотно поработаем.

Сразу скажу, что иногда и уравнения первых трёх типов так накрутят, что и не узнаешь их… Ничего. Мы научимся их разматывать.

И зачем нам эти четыре типа? А затем, что линейные уравнения решаются одним способом, квадратные другим, дробные рациональные - третьим, а остальные не решаются вовсе! Ну, не то, чтобы уж совсем никак не решаются, это я зря математику обидел.) Просто для них существуют свои специальные приёмы и методы.

Но для любых (повторяю - для любых! ) уравнений есть надёжная и безотказная основа для решения. Работает везде и всегда. Эта основа - Звучит страшно, но штука очень простая. И очень (очень!) важная.

Собственно, решение уравнения и состоит из этих самых преобразований. На 99%. Ответ на вопрос: "Как решать уравнения? " лежит, как раз, в этих преобразованиях. Намёк понятен?)

Тождественные преобразования уравнений.

В любых уравнениях для нахождения неизвестного надо преобразовать и упростить исходный пример. Причем так, чтобы при смене внешнего вида суть уравнения не менялась. Такие преобразования называются тождественными или равносильными.

Отмечу, что эти преобразования относятся именно к уравнениям. В математике ещё имеются тождественные преобразования выражений. Это другая тема.

Сейчас мы с вами повторим все-все-все базовые тождественные преобразования уравнений.

Базовые потому, что их можно применять к любым уравнениям – линейным, квадратным, дробным, тригонометрическим, показательным, логарифмическим и т.д. и т.п.

Первое тождественное преобразование: к обеим частям любого уравнения можно прибавить (отнять) любое (но одно и то же!) число или выражение (в том числе и выражение с неизвестным!). Суть уравнения от этого не меняется.

Вы, между прочим, постоянно пользовались этим преобразованием, только думали, что переносите какие-то слагаемые из одной части уравнения в другую со сменой знака. Типа:

Дело знакомое, переносим двойку вправо, и получаем:

На самом деле вы отняли от обеих частей уравнения двойку. Результат получается тот же самый:

х+2 - 2 = 3 - 2

Перенос слагаемых влево-вправо со сменой знака есть просто сокращённый вариант первого тождественного преобразования. И зачем нам такие глубокие познания? – спросите вы. В уравнениях низачем. Переносите, ради бога. Только знак не забывайте менять. А вот в неравенствах привычка к переносу может и в тупик поставить….

Второе тождественное преобразование : обе части уравнения можно умножить (разделить) на одно и то же отличное от нуля число или выражение. Здесь уже появляется понятное ограничение: на ноль умножать глупо, а делить и вовсе нельзя. Это преобразование вы используете, когда решаете что-нибудь крутое, типа

Понятное дело, х = 2. А вот как вы его нашли? Подбором? Или просто озарило? Чтобы не подбирать и не ждать озарения, нужно понять, что вы просто поделили обе части уравнения на 5. При делении левой части (5х) пятёрка сократилась, остался чистый икс. Чего нам и требовалось. А при делении правой части (10) на пять, получилась, знамо дело, двойка.

Вот и всё.

Забавно, но эти два (всего два!) тождественных преобразования лежат в основе решения всех уравнений математики. Во как! Имеет смысл посмотреть на примерах, что и как, правда?)

Примеры тождественных преобразований уравнений. Основные проблемы.

Начнём с первого тождественного преобразования. Перенос влево-вправо.

Пример для младшеньких.)

Допустим, надо решить вот такое уравнение:

3-2х=5-3х

Вспоминаем заклинание: "с иксами - влево, без иксов - вправо!" Это заклинание - инструкция по применению первого тождественного преобразования.) Какое выражение с иксом у нас справа? ? Ответ неверный! Справа у нас - ! Минус три икс! Стало быть, при переносе влево, знак поменяется на плюс. Получится:

3-2х+3х=5

Так, иксы собрали в кучку. Займёмся числами. Слева стоит тройка. С каким знаком? Ответ "с никаким" не принимается!) Перед тройкой, действительно, ничего не нарисовано. А это значит, что перед тройкой стоит плюс. Так уж математики договорились. Ничего не написано, значит, плюс. Следовательно, в правую часть тройка перенесётся с минусом. Получим:

-2х+3х=5-3

Остались сущие пустяки. Слева - привести подобные, справа - посчитать. Сразу получается ответ:

В этом примере хватило одного тождественного преобразования. Второе не понадобилось. Ну и ладно.)

Пример для старшеньких.)

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Учебник: Математика: Учеб. для 5 кл. общеобразоват. учреждений / Н.Я.Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд. – М.: Мнемозина, 1997 и последующие.

Цели урока:

  • обучение работе в группах, формирование навыков общения “учитель – ученик”, “ученик – ученик”;
  • формирование навыков математической речи, контроля и самоконтроля;
  • обучение работе с учебником;
  • проверка знаний теоретического и практического материала при решении уравнений с помощью компонентов.

Подготовка к уроку:

  • разбить учащихся класса на группы по 4-5 человек так, чтобы в каждой группе были обучающиеся разных уровней;
  • расстановка парт в классе таким образом, чтобы отдельно друг от друга могли работать пять групп по 4-5 человек в каждой;
  • подготовка дидактического материала:

а) карточки с вопросами к зачету (для каждого ученика):

б) лист самопроверки (один на группу):

в) оценочный лист (один на группу):

Фамилия, имя

оценка

ХОД УРОКА

I. Проверка домашней работы (фронтально).

– Что называется уравнением?
– Что значит решить уравнение?
– Что называется корнем уравнения?

Проговорить решение домашних уравнений (№ 395):

Уравнение Образец устного ответа
а) 395 + x = 864,
x = 864 – 395,
x = 469.

Ответ: 469

395 + x = 864.

Чтобы найти неизвестное слагаемое,
надо из суммы вычесть известное слагаемое.
Корень уравнения – 469.

в) 300 – y = 206,
y = 300 – 206,
y = 94.

Ответ: 94

300 – y = 206.

Чтобы найти неизвестное вычитаемое,
надо из уменьшаемого вычесть разность.
Корень уравнения – 94.

д) 166 = m – 34,
m = 166 + 34,
m = 200.

Ответ: 200

166 = m – 34.

Чтобы найти неизвестное уменьшаемое,
надо сложить вычитаемое и разность.
Корень уравнения – 200.

II. Работа в группах

Каждый ученик в группе решает уравнение индивидуально. На теоретические вопросы один ученик в группе отвечает учителю, второй – ученику, который уже ответил, третий – второму и т.д. Во время ответа заполняется “оценочный лист”. Если ученик отвечает правило без учебника, то напротив его фамилии в оценочном листе проставляется “+”, если отвечает с помощью учебника, то “”. При ответе ученика проверяющий, который нетвердо знает правило, пользуется листом самопроверки. Решение уравнений проверяет учитель, и общая оценка выставляется после того, как проверены все задания.

Критерии оценки:

  • оценка “5” выставляется в том случае, если ученик проговорил все правила без помощи учебника и решил все уравнения без ошибок;
  • оценка “4” выставляется в том случае, если ученик при устном ответе обратился к учебнику не более одного раза, допустил при решении уравнения не более одной ошибки;
  • оценка “3” ставится в том случае, если ученик отвечал правила по учебнику, при решении уравнения сомневался в применении правил на нахождение компонентов.

III. Итог урока: оценки каждому ученику.

IV. Домашнее задание: № 396.