Болезни Военный билет Призыв

Что такое работа в термодинамике определение. Работа в термодинамике определение

>>Физика: Работа в термодинамике

В результате каких процессов может меняться внутренняя энергия? Вы уже знаете, что есть два вида таких процессов: совершение работы и теплопередача. Начнем с работы. Чему она равна при сжатии и расширении газа и других тел?
Работа в механике и термодинамике. В механике работа определяется как произведение модуля силы, модуля перемещения точки ее приложения и косинуса угла между ними. При действии силы на движущееся тело работа равна изменению его кинетической энергии.
В движение тела как целого не рассматривается, речь идет о перемещении частей макроскопического тела друг относительно друга. В результате может меняться объем тела, а его скорость остается равной нулю. Работа в термодинамике определяется так же, как и в механике, но она равна не изменению кинетической энергии тела, а изменению его внутренней энергии.
Изменение внутренней энергии при совершении работы. Почему при сжатии или расширении тела меняется его внутренняя энергия тела? Почему, в частности, нагревается воздух при накачивании велосипедной шины?
Причина изменения температуры газа в процессе его сжатия состоит в следующем: при упругих соударениях молекул газа с движущимся поршнем изменяется их кинетическая энергия . Так, при движении навстречу молекулам газа поршень во время столкновений передает им часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги. Нога сообщает мячу скорость, значительно большую той, которой он обладал до удара.
И наоборот, если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует и футболист, для того чтобы уменьшить скорость летящего мяча или остановить его, - нога футболиста движется от мяча, как бы уступая ему дорогу.
При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.
Вычисление работы. Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис.13.1 ).

Проще всего вначале вычислить не работу силы , действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сила давления газа, действуя на поршень с силой . Согласно третьему закону Ньютона . Модуль силы, действующей со стороны газа на поршень, равен , где p - давление газа, а S - площадь поверхности поршня. Пусть газ расширяется изобарно и поршень смещается в направлении силы на малое расстояние . Так как давление газа постоянно, то работа газа равна:

Эту работу можно выразить через изменение объема газа. Начальный его объем V 1 =Sh 1 , а конечный V 2 =Sh 2 . Поэтому

где - изменение объема газа.
При расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня совпадают.
Если газ сжимается, то формула (13.3) для работы газа остается справедливой. Но теперь , и поэтому (рис.13.2 ).

Работа A , совершаемая внешними телами над газом, отличается от работы самого газа A ´ только знаком: , так как сила , действующая на газ, направлена против силы а перемещение поршня остается тем же самым. Поэтому работа внешних сил, действующих на газ, равна:

При сжатии газа, когда , работа внешней силы оказывается положительной. Так и должно быть: при сжатии газа направления силы и перемещения точки ее приложения совпадают.
Если давление не поддерживать постоянным, то при расширении газ теряет энергию и передает ее окружающим телам: поднимающемуся поршню, воздуху и т. д. Газ при этом охлаждается. При сжатии газа, наоборот, внешние тела передают ему энергию и газ нагревается.
Геометрическое истолкование работы. Работе газа для случая постоянного давления можно дать простое геометрическое истолкование.
Построим график зависимости давления газа от занимаемого им объема (рис.13.3 ). Здесь площадь прямоугольника abdc , ограниченная графиком p 1 =const, осью V и отрезками ab и cd , равными давлению газа, численно равна работе (13.3):

В общем случае давление газа не остается неизменным. Например, при изотермическом процессе оно убывает обратно пропорционально объему (рис.13.4 ). В этом случае для вычисления работы нужно разделить общее изменение объема на малые части и вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему численно равна площади фигуры, ограниченной графиком зависимости p от V , осью V и отрезками ab и cd , равными давлениям p 1 , p 2 в начальном и конечном состояниях газа.

???
1. Почему газы при сжатии нагреваются?
2. Положительную или отрицательную работу совершают внешние силы при изотермическом процессе, изображенном на рисунке 13.2?

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Тепловые явления можно описывать с помощью величин (макроскопических параметров), регистрируемых такими приборами, как манометр и термометр. Эти приборы не реагируют на воздействие отдельных молекул. Теория тепловых процессов, в которой не учитывается молекулярное строение тел, называется термодинамикой. Об этом уже упоминалось в главе 1. В этой главе термодинамику мы будем изучать.

§ 5.1. Работа в термодинамике

В главе 3 мы познакомились с различными процессами, при которых меняется состояние термодинамической системы. У нас речь шла преимущественно об изменении состояния идеального газа при изотермическом, изобарном и изохорном процессах.

Для дальнейшего рассмотрения термодинамических процессов нужно детально исследовать, в результате каких внешних воздействий может меняться состояние любой термодинамической системы. Имеется два существенно различных вида воздействий, которые приводят к изменению состояния системы, т. е. к изменению термодинамических параметров - давления р, объема V , температуры Т, характеризующих состояние. Первый из них - это совершение работы.

Работа в механике и термодинамике

В механике рассматривается движение макроскопических тел. Работа определяется как произведение модулей силы и перемещения и косинуса угла между направлениями силы и перемещения. Работа совершается при действии силы или нескольких сил на движущееся макроскопическое тело и равна изменению его кинетической энергии.

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела друг относительно друга. При совершении работы меняется объем тела, а его скорость остается равной нулю. Но скорости молекул тела, например газа, меняются. Поэтому меняется и температура тела.

Причина состоит в следующем: при упругих соударениях молекул с движущимся поршнем (для случая сжатия газа) их кинетическая энергия изменяется. Так, при движении навстречу молекулам поршень во время столкновений передает им часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги и сообщающему мячу скорость, значительно большую той, которой он обладал до удара*.

* Задача об изменении скорости шарика при упругом соударении его с движущейся стенкой подробно рассмотрена в § 6.12 «Механики» (задача 5).

И наоборот, если газ расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует футболист: чтобы уменьшить скорость летящего мяча или остановить его, нога футболиста движется от мяча, как бы уступая ему дорогу.

Итак, при совершении работы в термодинамике меняется состояние макроскопических тел: меняется их объем и температура.

Вычисление работы

Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис. 5.1). Проще всего вначале вычислить не работу силы , действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сам газ, действуя на поршень с силой . Согласно третьему закону Ньютона
.

Модуль силы, действующей со стороны газа на поршень, равен F " = pS , где р - давление газа, a S - площадь поверхности поршня. Пусть газ расширяется и поршень смещается в направлении силы на малое расстояние Δ h = h 2 h 1 Если перемещение мало, то давление газа можно считать постоянным.

Работа газа равна:

Эту работу можно выразить через изменение объема газа. Начальный объем V 1 = Sh 1 , а конечный V 2 = Sh 2 . Поэтому

где ΔV = V 2 - V 1 - изменение объема газа.

При расширении газ совершает положительную работу, так как направления силы и перемещения поршня совпадают.

Если газ сжимается, то формула (5.1.2) для работы газа остается справедливой. Но теперь V 2 < V 1 и поэтому А" < 0 (рис. 5.2).

Работа А, совершаемая внешними телами над газом, отличается от работы газа А" только знаком: А = -А", так как сила , действующая на газ, направлена против силы
, а перемещение остается тем же самым. Поэтому работа внешних сил, действующих на газ, равна:

(5.1.3)

Знак минус указывает, что при сжатии газа, когда ΔV = V 2 - V 1 < 0, работа внешней силы положительна. Понятно, почему в этом случае А > 0: при сжатии газа направления силы и перемещения совпадают. При расширении газа, наоборот, работа внешних тел отрицательна (А < 0), так как ΔV = V 2 V 1 > 0. Теперь направления силы и перемещения противоположны.

Выражения (5.1.2) и (5.1.3) справедливы не только при сжатии или расширении газа в цилиндре, но и при малом изменении объема любой системы. Если процесс изобарный (р = const), то эти формулы можно применять и для больших изменений объема.

Работа в механике и термодинамике. В механике работа определяется как произведение модулей силы и перемещения, умноженное на косинус угла между ними. Работа совершрется при действии силы на движущееся тело и равна изменению кинетической энергии тела.

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела друг относительно друга. В результате меняется объем

тела, а его скорость остается равной нулю. Следовательно, работа в термодинамике, определяемая так же, как и в механике, равна изменению не кинетической энергии тела, а его внутренней энергии.

Изменение внутренней энергии при совершении работы. Почему при сжатии или расширении меняется внутренняя энергия тела? Почему, в частности, нагревается воздух при накачивании велосипедной шины?

Причина изменения температуры в процессе сжатия газа состоит в следующем: при упругих соударениях молекул с движущимся поршнем их кинетическая энергия изменяется. При движении навстречу молекулам поршень передает им во время столкновений часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги и сообщающему мячу скорость, значительно большую той, которой он обладал до удара.

Если газ, напротив, расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует футболист, для того чтобы уменьшить скорость летящего мяча или остановить его; нога футболиста движется от мяча, как бы уступая ему дорогу.

При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Вычисление работы. Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис. 39). Проще всего вначале вычислить не работу силы действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сам газ, действуя на поршень с силой Согласно третьему закону Ньютона

Модуль силы, действующей со стороны газа на поршень, равен: где - давление газа, площадь поршня. Пусть газ расширяется и поршень смещается в направлении

силы малое расстояние Если перемещение мало, то давление газа можно считать постоянным.

Работа газа равна:

Эту работу можно выразить через изменение объема газа. Начальный объем а конечный Поэтому

где изменение объема газа.

При расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня совпадают. В процессе расширения газ передает энергию окружающим телам.

Если газ сжимается, то формула (4.3) для работы газа остается справедливой. Но теперь и поэтому (рис. 40).

Работа А, совершаемая внешними телами над газом, отличается от работы газа А только знаком: так как сила действующая на газ, направлена против снлы а перемещение остается тем же самым. Поэтому работа внешних сил, действующих на газ, равна:

Знак минус указывает, что при сжатии газа, когда работа внешней силы положительна. Понятно, почему в этом случае при сжатии газа направления силы и перемещения совпадают. Совершая над газом положительную работу, внешние тела передают ему энергию. При расширении газа, наоборот, работа внешних тел отрицательна так как Теперь направления силы и перемещения противоположны.

Выражения (4.3) и (4.4) справедливы не только при сжатии или расширении газа в цилиндре, но и при малом изменении объема любой системы. Если процесс изобарный то эти формулы можно применять и для больших изменений объема.

Геометрическое истолкование работы. Работе А газа для случая постоянного давления можно дать простое геометрическое истолкование.

Построим график зависимости давления газа от объема (рис. 41). Здесь площадь прямоугольника ограниченная графиком осью V и отрезками

равными давлению газа, численно равна работе (4.3).

В общем случае при произвольном изменении объема газа давление не остается неизменным Например, при изотермическом процессе оно убывает обратно пропорционально объему (рис. 42). В этом случае для вычисления работы нужно разделить общее изменение объема на малые части, вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему будет численно равна площади фигуры, ограниченной графиком зависимости от V, осью V и отрезками равными давлениям в начальном и конечном состояниях.

1. От каких физических величин зависит внутренняя энергия тела?

2. Приведите примеры превращения механической энергии во внутреннюю и обратно в технике и быту. 3. Чему равна внутренняя энергия идеального одноатомного газа? 4. Моль какого газа - водорода или гелия - имеет большую внутреннюю энергию при одинаковой температуре газов? 5. Почему газ при сжатии нагревается? 6. Чему равна работа, совершаемая внешними силами при сжатии и расширении тел?

Работа в механике и термодинамике. В механике работа определяется как произведение модулей силы и перемещения, умноженное на косинус угла между ними. Работа совершается при действии силы на движущееся тело и равна изменению кинетической энергии тела.

В термодинамике движение тела как целого не рассматривается и речь идет о перемещении частей макроскопического тела друг относительно друга. В результате меняется объем тела, а его скорость остается равной нулю. Следовательно, работа в термодинамике, определяемая так же, как и в механике, равна изменению не кинетической энергии тела, а его внутренней энергии.

Изменение внутренней энергии при совершении работы. Почему при сжатии или расширении меняется внутренняя энергия тела? Почему, в частности, нагревается воздух при накачивании велосипедной шины?

Причина изменения температуры в процессе сжатия газа состоит в следующем: при упругих соударениях молекул с движущимся поршнем их кинетическая энергия изменяется . При движении навстречу молекулам поршень передает им во время столкновений часть своей механической энергии, в результате чего газ нагревается. Поршень действует подобно футболисту, встречающему летящий мяч ударом ноги и сообщающему мячу скорость, значительно большую той, которой он обладал до удара.

Если газ, напротив, расширяется, то после столкновения с удаляющимся поршнем скорости молекул уменьшаются, в результате чего газ охлаждается. Так же действует футболист, для того чтобы уменьшить скорость летящего мяча или остановить его; нога футболиста движется от мяча, как бы уступая ему дорогу.

При сжатии или расширении меняется и средняя потенциальная энергия взаимодействия молекул, так как при этом меняется среднее расстояние между молекулами.

Вычисление работы. Вычислим работу в зависимости от изменения объема на примере газа в цилиндре под поршнем (рис. 39). Проще всего вначале вычислить не работу силы F, действующей на газ со стороны внешнего тела (поршня), а работу, которую совершает сам газ, действуя на поршень с силой F". Согласно третьему закону Ньютона F" = –F.

Модуль силы, действующей со стороны газа на поршень, равен: F" = pS, где p – давление газа, а S – площадь поршня. Пусть газ расширяется и поршень смещается в направлении силы F" на малое расстояние ∆h = h 2 – h 1 . Если перемещение мало, то давление газа можно считать постоянным.

Работа газа равна:

A" = F"∆h = pS(h 2 – h 1) = p(Sh 2 – Sh 1). (4.2)

Эту работу можно выразить через изменение объема газа. Начальный объем V 1 = Sh 1 , а конечный V 2 = Sh 2 . Поэтому

A" = p(V 2 – V 1) = p∆V, (4.3)

где ∆V = V 2 – V 1 - изменение объема газа.

При расширении газ совершает положительную работу, так как направление силы и направление перемещения поршня совпадают. В процессе расширения газ передает энергию окружающим телам.

Если газ сжимается, то формула (4.3) для работы газа остается справедливой. Но теперь V 2 1 и поэтому A"

Работа A, совершаемая внешними телами над газом, отличается от работы газа A" только знаком: A = –A", так как сила F, действующая на газ, направлена против силы F", а перемещение остается тем же самым. Поэтому работа внешних сил, действующих на газ, равна:

A = –A" = –p∆V (4.4)

Знак минус указывает, что при сжатии газа, когда ∆V = V 2 – V 1 0: при сжатии газа направления силы и перемещения совпадают. Совершая над газом положительную работу, внешние тела передают ему энергию. При расширении газа, наоборот, работа внешних тел отрицательна (A 2 – V 1 > 0. Теперь направления силы и перемещения противоположны.

Выражения (4.3) и (4.4) справедливы не только при сжатии или расширении газа в цилиндре, но и при малом изменении объема любой системы. Если процесс изобарный (p = const), то эти формулы можно применять и для больших изменений объема.

Геометрическое истолкование работы. Работе A" газа для случая постоянного давления можно дать простое геометрическое истолкование.

Построим график зависимости давления газа от объема (рис. 41) . Здесь площадь прямоугольника abcd, ограниченная графиком p 1 = const, осью V и отрезками ab и cd, равными давлению газа, численно равна работе (4.3).

В общем случае при произвольном изменении объема газа давление не остается неизменным. Например, при изотермическом процессе оно убывает обратно пропорционально объему (рис. 42). В этом случае для вычисления работы нужно разделить общее изменение объема на малые части, вычислить элементарные (малые) работы, а потом все их сложить. Работа газа по-прежнему будет численно равна площади фигуры, ограниченной графиком зависимости p от V, осью V и отрезками ab и cd, равными давлениям p1, p2 в начальном и конечном состояниях.

1. От каких физических величин зависит внутренняя энергия тела? 2. Приведите примеры превращения механической энергии во внутреннюю и обратно в темнике и быту. 3. Чему равна внутренняя энергия идеального одноатомного газа? 4. Моль какого газа – водорода или гелия – имеет большую внутреннюю энергию при одинаковой температуре газов? 5. Почему газ при сжатии нагревается? 6. Чему равна работа, совершаемая внешними силами при сжатии и расширении тел?

В термодинамике рассматривается перемещение частиц макроскопического тела относительно друг друга . При совершении работы меняется объем тела. Скорость самого тела остается равной нулю, но скорости

Рис. 1. A’ = p∆V

молекул тела меняются! Поэтому меняется и температура тела. Причина в том, что при столкновении с движущимся поршнем (сжатие газа) кинетическая энергия молекул изменяется — поршень отдает часть своей механической энергии. При столкновении с удаляющимся поршнем (расширение) скорости молекул уменьшаются, газ охлаждается. При совершении работы в термодинамике меняется состояние макроскопических тел: их объем и температура.

Газ, находящийся в сосуде под поршнем, действует на поршень с силой F’ = pS , где p - давление газа, S - площадь поршня. Если при этом поршень перемещается, то газ совершает работу. Предположим, что газ расширяется при постоянном давлении p. Тогда сила F’ , с которой газ действует на поршень, также постоянна. Пусть поршень переместился на расстояние ∆x (рис.1). Работа газа равна: A’ = F’ ∆x = pS∆x = p∆V . – работа газа при изобарном расширении. Если V 1 и V 2 - начальный и конечный объём газа, то для работы газа имеем: A’ = p(V2 − V1) . При расширении работа газа положительна. При сжатии — отрицательна. Таким образом: A’ = pΔV — работа газа. A= — pΔV — работа внешних сил.

В изобарном процессе площадь под графиком в координатах p,V численно равна работе (рис. 2). Внешняя работа над системой равна работе системы, но с противоположным знаком А = — А’ .

В изохорном процессе объем не меняется, следовательно, в изохорном процессе работа не совершается! A=0

Любое тело (газ, жидкость или твердое) обладает энергией, даже если тело не имеет скорости и находится на Земле. Эта энергия называется внутренней , обусловлена она хаотическим (тепловым) движением и взаимодействием частиц, из которых состоит тело. Внутренняя энергия состоит из кинетической и потенциальной энергии частиц поступательного и колебательного движений микрочастиц системы. Внутренняя энергия одноатомного идеального газа определяется по формуле: Внутренняя энергия тела может изменяться только в результате его взаимодействия с другими телами. Существует два способа изменения внутренней энергии : теплопередача и совершение механической работы (например, нагревание при трении или при сжатии, охлаждение при расширении).
Теплопередача - это изменение внутренней энергии без совершения работы: энергия передается от более нагретых тел к менее нагретым телам. Теплопередача бывает трех видов: теплопроводность (непосредственный обмен энергией между хаотически движущимися частицами взаимодействующих тел или частей одного и того же тела); конвекция (перенос энергии потоками жидкости или газа) и излучение (перенос энергии электромагнитными волнами). Мерой переданной энергии при теплопередаче является количество теплоты (Q ).
Эти способы количественно объединены в закон сохранения энергии , который для тепловых процессов читается так: изменение внутренней энергии замкнутой системы равно сумме количества теплоты, переданной системе, и работы внешних сил, совершенной над системой. , где ΔU - изменение внутренней энергии, Q - количество теплоты, переданное системе, А - работа внешних сил. Если система сама совершает работу, то ее условно обозначают А’ . Тогда закон сохранения энергии для тепловых процессов, который называется первым законом термодинамики , можно записать так: (количество теплоты, переданное системе, идет на совершение системой работы и изменение ее внутренней энергии) .
Рассмотрим применение первого закона термодинамики к изопроцессам, происходящим с идеальным газом.

В изотермическом процессе температура постоянная, следовательно, внутренняя энергия не меняется. Тогда уравнение I закона термодинамики примет вид: Q = А’ , т. е. количество теплоты, переданное системе, идет на совершение работы при изотермическом расширении, именно поэтому температура не изменяется.

В изобарном процессе газ расширяется и количество теплоты, переданное газу, идет на увеличение его внутренней энергии и на совершение им работы: Q = ΔU +А’

При изохорном процессе газ не меняет своего объема, следовательно, работа им не совершается, т. е. А = 0 . Уравнение I закона имеет вид Q = ΔU (переданное количество теплоты идет на увеличение внутренней энергии газа).

Адиабатным называют процесс , протекающий без теплообмена с окружающими телами. Пример теплоизолированного сосуда - термос. При адиабатном процессе Q = 0 , следовательно, газ при расширении совершает работу за счет уменьшения его внутренней энергии, следовательно, газ охлаждается, А’= — Δ U . Если заставить газ совершить достаточно большую работу, то охладить его можно очень сильно. Именно на этом основаны методы сжижения газов. И наоборот, в процессе адиабатного сжатия будет А’ < 0 , поэтому ∆U > 0 : газ нагревается. Адиабатное нагревание воздуха используется в дизельных двигателях для воспламенения топлива

Практически все реальные процессы происходят с теплообменом: адиабатические процессы — это редкое исключение.

Наглядные примеры адиабатных процессов:

  1. В закрытом пробкой с продетым шлангом насоса сосуде находится капельки воды. После нагнетания в сосуд определенно количества воздуха, пробка быстро вылетает и в сосуде наблюдается туман (рис.).
  2. В закрытом подвижным поршнем цилиндре находится небольшое количество топлива. После быстрого нажатия на поршень топливо воспламеняется.