Болезни Военный билет Призыв

Что такое прямой параллелепипед. Что такое параллелепипед

Параллелепипедом называется призма, основаниями которой служат параллелограммы. При этом все грани будут параллелограммами .
Каждый параллелепипед можно рассматривать как призму тремя различными способами, так как за основания можно принять каждые две противоположные грани (на черт. 5 грани ABCD и A"B"C"D", или АВА"В" и CDC"D", или ВСВ"С" и ADA"D").
Рассматриваемое тело имеет двенадцать рёбер, по четыре равных и параллельных между собой.
Теорема 3 . Диагонали параллелепипеда пересекаются в одной точке, совпадающей с серединой каждой из них.
Параллелепипед ABCDA"B"C"D" (черт. 5) имеет четыре диагонали AC", BD", CA", DB". Мы должны доказать, что середины двух каких-либо из них, например АС и BD", совпадают. Это следует из того, что фигура ABC"D", имеющая равные и параллельные стороны АВ и C"D", есть параллелограмм.
Определение 7 . Прямым параллелепипедом называется параллелепипед, являющийся одновременно и прямой призмой, т. е. параллелепипед, боковые рёбра которого перпендикулярны к плоскости основания.
Определение 8 . Прямоугольным параллелепипедом называется прямой параллелепипед, основанием которого служит прямоугольник. При этом все его грани будут прямоугольниками.
Прямоугольный параллелепипед представляет собой прямую призму, какую бы из его граней мы ни приняли за основание, так как каждое его ребро перпендикулярно к рёбрам, выходящим с ним из одной вершины, и будет, следовательно, перпендикулярно и к плоскостям граней, определяемых этими рёбрами. В противоположность этому прямой, но не прямоугольный, параллелепипед можно рассматривать как прямую призму только одним способом.
Определение 9 . Длины трёх рёбер прямоугольного параллелепипеда, из которых никакие два не параллельны между собой (например трёх рёбер, выходящих из одной вершины), называются его измерениями. Два |прямоугольных параллелепипеда, имеющих соответственно равные изме- рения, очевидно, равны между собой.
Определение 10 .Кубом называется прямоугольный параллелепипед, все три измерения которого равны между собой, так что все его грани - квадраты. Два куба, рёбра которых равны между собой, равны.
Определение 11 . Наклонный параллелепипед, у которого все рёбра равны между собой и углы всех граней равны или пополнительны, называется ромбоэдром.
Все грани ромбоэдра - равные ромбы. (Форму ромбоэдра имеют некоторые кристаллы, имеющие большое значение, например кристаллы исландского шпата.) В ромбоэдре можно найти такую вершину (и даже две противололожные вершины), что все прилежащие к ней углы равны между собой.
Теорема 4 . Диагонали прямоугольного параллелепипеда равны между собой. Квадрат диагонали равен сумме квадратов трёх измерений.
В прямоугольном параллелепипеде ABCDA"B"C"D" (черт. 6) диагонали АС" и BD" равны, так как четырёхугольник ABC"D" - прямоугольник (прямая АВ перпендикулярна к плоскости ВСВ"С", в которой лежит ВС").
Кроме того, AC" 2 =BD" 2 = AB2+AD" 2 на основании теоремы о квадрате гипотенузы. Но на основании той же теоремы AD" 2 = AA" 2 + +A"D" 2 ; отсюда имеем:
АС" 2 = АВ 2 + АА" 2 +A"D" 2 =АВ 2 + AA" 2 + AD 2 .

На этом уроке все желающие смогут изучить тему «Прямоугольный параллелепипед». В начале урока мы повторим, что такое произвольный и прямой параллелепипеды, вспомним свойства их противоположных граней и диагоналей параллелепипеда. Затем рассмотрим, что такое прямоугольный параллелепипед, и обсудим его основные свойства.

Тема: Перпендикулярность прямых и плоскостей

Урок: Прямоугольный параллелепипед

Поверхность, составленная из двух равных параллелограммов АВСD и А 1 В 1 С 1 D 1 и четырех параллелограммов АВВ 1 А 1 , ВСС 1 В 1 , СDD 1 С 1 , DАА 1 D 1 , называется параллелепипедом (рис. 1).

Рис. 1 Параллелепипед

То есть: имеем два равных параллелограмма АВСD и А 1 В 1 С 1 D 1 (основания), они лежат в параллельных плоскостях так, что боковые ребра АА 1 , ВВ 1 , DD 1 , СС 1 параллельны. Таким образом, составленная из параллелограммов поверхность называется параллелепипедом .

Таким образом, поверхность параллелепипеда - это сумма всех параллелограммов, из которых составлен параллелепипед.

1. Противоположные грани параллелепипеда параллельны и равны.

(фигуры равны, то есть их можно совместить наложением)

Например:

АВСD = А 1 В 1 С 1 D 1 (равные параллелограммы по определению),

АА 1 В 1 В = DD 1 С 1 С (так как АА 1 В 1 В и DD 1 С 1 С - противоположные грани параллелепипеда),

АА 1 D 1 D = ВВ 1 С 1 С (так как АА 1 D 1 D и ВВ 1 С 1 С - противоположные грани параллелепипеда).

2. Диагонали параллелепипеда пересекаются в одной точке и делятся этой точкой пополам.

Диагонали параллелепипеда АС 1 , В 1 D, А 1 С, D 1 В пересекаются в одной точке О, и каждая диагональ делится этой точкой пополам (рис. 2).

Рис. 2 Диагонали параллелепипеда пересекаются и деляться точкой пересечения пополам.

3. Имеются три четверки равных и параллельных ребер параллелепипеда : 1 - АВ, А 1 В 1 , D 1 C 1 , DC, 2 - AD, A 1 D 1 , B 1 C 1 , BC, 3 - АА 1 , ВВ 1 , СС 1 , DD 1 .

Определение. Параллелепипед называется прямым, если его боковые ребра перпендикулярны основаниям.

Пусть боковое ребро АА 1 перпендикулярно основанию (рис. 3). Это означает, что прямая АА 1 перпендикулярна прямым АD и АВ, которые лежат в плоскости основания. А, значит, в боковых гранях лежат прямоугольники. А в основаниях лежат произвольные параллелограммы. Обозначим, ∠BAD = φ, угол φ может быть любым.

Рис. 3 Прямой параллелепипед

Итак, прямой параллелепипед - это параллелепипед, в котором боковые ребра перпендикулярны основаниям параллелепипеда.

Определение. Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию. Основания являются прямоугольниками.

Параллелепипед АВСDА 1 В 1 С 1 D 1 - прямоугольный (рис. 4), если:

1. АА 1 ⊥ АВСD (боковое ребро перпендикулярно плоскости основания, то есть параллелепипед прямой).

2. ∠ВАD = 90°, т. е. в основании лежит прямоугольник.

Рис. 4 Прямоугольный параллелепипед

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда. Но есть дополнительные свойства, которые выводятся из определения прямоугольного параллелепипеда.

Итак, прямоугольный параллелепипед - это параллелепипед, у которого боковые ребра перпендикулярны основанию. Основание прямоугольного параллелепипеда - прямоугольник .

1. В прямоугольном параллелепипеде все шесть граней прямоугольники.

АВСD и А 1 В 1 С 1 D 1 - прямоугольники по определению.

2. Боковые ребра перпендикулярны основанию . Значит, все боковые грани прямоугольного параллелепипеда - прямоугольники.

3. Все двугранные углы прямоугольного параллелепипеда прямые.

Рассмотрим, например, двугранный угол прямоугольного параллелепипеда с ребром АВ, т. е. двугранный угол между плоскостями АВВ 1 и АВС.

АВ - ребро, точка А 1 лежит в одной плоскости - в плоскости АВВ 1 , а точка D в другой - в плоскости А 1 В 1 С 1 D 1 . Тогда рассматриваемый двугранный угол можно еще обозначить следующим образом: ∠А 1 АВD.

Возьмем точку А на ребре АВ. АА 1 - перпендикуляр к ребру АВ в плоскости АВВ- 1 , AD перпендикуляр к ребру АВ в плоскости АВС. Значит, ∠А 1 АD - линейный угол данного двугранного угла. ∠А 1 АD = 90°, значит, двугранный угол при ребре АВ равен 90°.

∠(АВВ 1 , АВС) = ∠(АВ) = ∠А 1 АВD= ∠А 1 АD = 90°.

Аналогично доказывается, что любые двугранные углы прямоугольного параллелепипеда прямые.

Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

Примечание. Длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда, являются измерениями прямоугольного параллелепипеда. Их иногда называют длина, ширина, высота.

Дано: АВСDА 1 В 1 С 1 D 1 - прямоугольный параллелепипед (рис. 5).

Доказать: .

Рис. 5 Прямоугольный параллелепипед

Доказательство:

Прямая СС 1 перпендикулярна плоскости АВС, а значит, и прямой АС. Значит, треугольник СС 1 А - прямоугольный. По теореме Пифагора:

Рассмотрим прямоугольный треугольник АВС. По теореме Пифагора:

Но ВС и AD - противоположные стороны прямоугольника. Значит, ВС = AD. Тогда:

Так как , а , то. Поскольку СС 1 = АА 1 , то что и требовалось доказать.

Диагонали прямоугольного параллелепипеда равны.

Обозначим измерения параллелепипеда АВС как a, b, c (см. рис. 6), тогда АС 1 = СА 1 = В 1 D = DВ 1 =

Определение

Многогранником будем называть замкнутую поверхность, составленную из многоугольников и ограничивающую некоторую часть пространства.

Отрезки, являющиеся сторонами этих многоугольников, называются ребрами многогранника, а сами многоугольники – гранями . Вершины многоугольников называются вершинами многогранника.

Будем рассматривать только выпуклые многогранники (это такой многогранник, который находится по одну сторону от каждой плоскости, содержащей его грань).

Многоугольники, из которых составлен многогранник, образуют его поверхность. Часть пространства, которую ограничивает данный многогранник, называется его внутренностью.

Определение: призма

Рассмотрим два равных многоугольника \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , находящихся в параллельных плоскостях так, что отрезки \(A_1B_1, \ A_2B_2, ..., A_nB_n\) параллельны. Многогранник, образованный многоугольниками \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , а также параллелограммами \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) , называется (\(n\) -угольной) призмой .

Многоугольники \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) называются основаниями призмы, параллелограммы \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) – боковыми гранями, отрезки \(A_1B_1, \ A_2B_2, \ ..., A_nB_n\) – боковыми ребрами.
Таким образом, боковые ребра призмы параллельны и равны между собой.

Рассмотрим пример - призма \(A_1A_2A_3A_4A_5B_1B_2B_3B_4B_5\) , в основании которой лежит выпуклый пятиугольник.

Высота призмы – это перпендикуляр, опущенный из любой точки одного основания к плоскости другого основания.

Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной (рис. 1), в противном случае – прямой . У прямой призмы боковые ребра являются высотами, а боковые грани – равными прямоугольниками.

Если в основании прямой призмы лежит правильный многоугольник, то призма называется правильной .

Определение: понятие объема

Единица измерения объема – единичный куб (куб размерами \(1\times1\times1\) ед\(^3\) , где ед - некоторая единица измерения).

Можно сказать, что объем многогранника – это величина пространства, которую ограничивает этот многогранник. Иначе: это величина, числовое значение которой показывает, сколько раз единичный куб и его части вмещаются в данный многогранник.

Объем имеет те же свойства, что и площадь:

1. Объемы равных фигур равны.

2. Если многогранник составлен из нескольких непересекающихся многогранников, то его объем равен сумме объемов этих многогранников.

3. Объем – величина неотрицательная.

4. Объем измеряется в см\(^3\) (кубические сантиметры), м\(^3\) (кубические метры) и т.д.

Теорема

1. Площадь боковой поверхности призмы равна произведению периметра основания на высоту призмы.
Площадь боковой поверхности - сумма площадей боковых граней призмы.

2. Объем призмы равен произведению площади основания на высоту призмы: \

Определение: параллелепипед

Параллелепипед – это призма, в основании которой лежит параллелограмм.

Все грани параллелепипеда (их \(6\) : \(4\) боковые грани и \(2\) основания) представляют собой параллелограммы, причем противоположные грани (параллельные друг другу) представляют собой равные параллелограммы (рис. 2).


Диагональ параллелепипеда – это отрезок, соединяющий две вершины параллелепипеда, не лежащие в одной грани (их \(8\) : \(AC_1, \ A_1C, \ BD_1, \ B_1D\) и т.д.).

Прямоугольный параллелепипед - это прямой параллелепипед, в основании которого лежит прямоугольник.
Т.к. это прямой параллелепипед, то боковые грани представляют собой прямоугольники. Значит, вообще все грани прямоугольного параллелепипеда – прямоугольники.

Все диагонали прямоугольного параллелепипеда равны (это следует из равенства треугольников \(\triangle ACC_1=\triangle AA_1C=\triangle BDD_1=\triangle BB_1D\) и т.д.).

Замечание

Таким образом, параллелепипед обладает всеми свойствами призмы.

Теорема

Площадь боковой поверхности прямоугольного параллелепипеда равна \

Площадь полной поверхности прямоугольного параллелепипеда равна \

Теорема

Объем прямоугольного параллелепипеда равен произведению трех его ребер, выходящих из одной вершины (три измерения прямоугольного параллелепипеда): \


Доказательство

Т.к. у прямоугольного параллелепипеда боковые ребра перпендикулярны основанию, то они являются и его высотами, то есть \(h=AA_1=c\) Т.к. в основании лежит прямоугольник, то \(S_{\text{осн}}=AB\cdot AD=ab\) . Отсюда и следует данная формула.

Теорема

Диагональ \(d\) прямоугольного параллелепипеда ищется по формуле (где \(a,b,c\) - измерения параллелепипеда) \

Доказательство

Рассмотрим рис. 3. Т.к. в основании лежит прямоугольник, то \(\triangle ABD\) – прямоугольный, следовательно, по теореме Пифагора \(BD^2=AB^2+AD^2=a^2+b^2\) .

Т.к. все боковые ребра перпендикулярны основаниям, то \(BB_1\perp (ABC) \Rightarrow BB_1\) перпендикулярно любой прямой в этой плоскости, т.е. \(BB_1\perp BD\) . Значит, \(\triangle BB_1D\) – прямоугольный. Тогда по теореме Пифагора \(B_1D=BB_1^2+BD^2=a^2+b^2+c^2\) , чтд.

Определение: куб

Куб - это прямоугольный параллелепипед, все грани которого – равные квадраты.


Таким образом, три измерения равны между собой: \(a=b=c\) . Значит, верны следующие

Теоремы

1. Объем куба с ребром \(a\) равен \(V_{\text{куба}}=a^3\) .

2. Диагональ куба ищется по формуле \(d=a\sqrt3\) .

3. Площадь полной поверхности куба \(S_{\text{полн.пов-ти куба}}=6a^2\) .

Часто ученики возмущенно спрашивают: «Как мне в жизни это пригодится?». На любую тему каждого предмета. Не становится исключением и тема про объем параллелепипеда. И вот здесь как раз можно сказать: «Пригодится».

Как, например, узнать, поместится ли в почтовую коробку посылка? Конечно, можно методом проб и ошибок выбрать подходящую. А если такой возможности нет? Тогда на выручку придут вычисления. Зная вместимость коробки, можно рассчитать объем посылки (хотя бы приблизительно) и ответить на поставленный вопрос.

Параллелепипед и его виды

Если дословно перевести его название с древнегреческого, то получится, что это фигура, состоящая из параллельных плоскостей. Существуют такие равносильные определения параллелепипеда:

  • призма с основанием в виде параллелограмма;
  • многогранник, каждая грань которого - параллелограмм.

Его виды выделяются в зависимости от того, какая фигура лежит в его основании и как направлены боковые ребра. В общем случае говорят о наклонном параллелепипеде , у которого основание и все грани — параллелограммы. Если у предыдущего вида боковые грани станут прямоугольниками, то его нужно будет называть уже прямым . А у прямоугольного и основание тоже имеет углы по 90º.

Причем последний в геометрии стараются изображать так, чтобы было заметно, что все ребра параллельны. Здесь, кстати, наблюдается основное отличие математиков от художников. Последним важно передать тело с соблюдением закона перспективы. И в этом случае параллельность ребер совсем незаметна.

О введенных обозначениях

В приведенных ниже формулах справедливы обозначения, указанные в таблице.

Формулы для наклонного параллелепипеда

Первая и вторая для площадей:

Третья для того, чтобы вычислить объем параллелепипеда:

Так как основание - параллелограмм, то для расчета его площади нужно будет воспользоваться соответствующими выражениями.

Формулы для прямоугольного параллелепипеда

Аналогично первому пункту - две формулы для площадей:

И еще одна для объема:

Первая задача

Условие. Дан прямоугольный параллелепипед, объем которого требуется найти. Известна диагональ — 18 см - и то, что она образует углы в 30 и 45 градусов с плоскостью боковой грани и боковым ребром соответственно.

Решение. Чтобы ответить на вопрос задачи, потребуется узнать все стороны в трех прямоугольных треугольниках. Они дадут необходимые значения ребер, по которым нужно сосчитать объем.

Сначала нужно выяснить, где находится угол в 30º. Для этого нужно провести диагональ боковой грани из той же вершины, откуда чертилась главная диагональ параллелограмма. Угол между ними и будет тем, что нужен.

Первый треугольник, который даст одно из значений сторон основания, будет следующим. В нем содержатся искомая сторона и две проведенные диагонали. Он прямоугольный. Теперь потребуется воспользоваться отношением противолежащего катета (стороны основания) и гипотенузы (диагонали). Оно равно синусу 30º. То есть неизвестная сторона основания будет определяться как диагональ, умноженная на синус 30º или ½. Пусть она будет обозначена буквой «а».

Вторым будет треугольник, содержащий известную диагональ и ребро, с которым она образует 45º. Он тоже прямоугольный, и можно опять воспользоваться отношением катета к гипотенузе. Другими словами, бокового ребра к диагонали. Оно равно косинусу 45º. То есть «с» вычисляется как произведение диагонали на косинус 45º.

с = 18 * 1/√2 = 9 √2 (см).

В этом же треугольнике требуется найти другой катет. Это необходимо для того, чтобы потом сосчитать третью неизвестную - «в». Пусть она будет обозначена буквой «х». Ее легко вычислить по теореме Пифагора:

х = √(18 2 - (9√2) 2) = 9√2 (см).

Теперь нужно рассмотреть еще один прямоугольный треугольник. Он содержит уже известные стороны «с», «х» и ту, что нужно сосчитать, «в»:

в = √((9√2) 2 - 9 2 = 9 (см).

Все три величины известны. Можно воспользоваться формулой для объема и сосчитать его:

V = 9 * 9 * 9√2 = 729√2 (см 3).

Ответ: объем параллелепипеда равен 729√2 см 3 .

Вторая задача

Условие. Требуется найти объем параллелепипеда. В нем известны стороны параллелограмма, который лежит в основании, 3 и 6 см, а также его острый угол — 45º. Боковое ребро имеет наклон к основанию в 30º и равно 4 см.

Решение. Для ответа на вопрос задачи нужно взять формулу, которая была записана для объема наклонного параллелепипеда. Но в ней неизвестны обе величины.

Площадь основания, то есть параллелограмма, будет определена по формуле, в которой нужно перемножить известные стороны и синус острого угла между ними.

S о = 3 * 6 sin 45º = 18 * (√2)/2 = 9 √2 (см 2).

Вторая неизвестная величина — это высота. Ее можно провести из любой из четырех вершин над основанием. Ее найти можно из прямоугольного треугольника, в котором высота является катетом, а боковое ребро — гипотенузой. При этом угол в 30º лежит напротив неизвестной высоты. Значит, можно воспользоваться отношением катета к гипотенузе.

н = 4 * sin 30º = 4 * 1/2 = 2.

Теперь все значения известны и можно вычислить объем:

V = 9 √2 * 2 = 18 √2 (см 3).

Ответ: объем равен 18 √2 см 3 .

Третья задача

Условие. Найти объем параллелепипеда, если известно, что он прямой. Стороны его основания образуют параллелограмм и равны 2 и 3 см. Острый угол между ними 60º. Меньшая диагональ параллелепипеда равна большей диагонали основания.

Решение. Для того чтобы узнать объем параллелепипеда, воспользуемся формулой с площадью основания и высотой. Обе величины неизвестны, но их несложно вычислить. Первая из них высота.

Поскольку меньшая диагональ параллелепипеда совпадает по размеру с большей основания, то их можно обозначить одной буквой d. Больший угол параллелограмма равен 120º, поскольку с острым он образует 180º. Пусть вторая диагональ основания будет обозначена буквой «х». Теперь для двух диагоналей основания можно записать теоремы косинусов :

d 2 = а 2 + в 2 - 2ав cos 120º,

х 2 = а 2 + в 2 - 2ав cos 60º.

Находить значения без квадратов не имеет смысла, так как потом они будут снова возведены во вторую степень. После подстановки данных получается:

d 2 = 2 2 + 3 2 - 2 * 2 * 3 cos 120º = 4 + 9 + 12 * ½ = 19,

х 2 = а 2 + в 2 - 2ав cos 60º = 4 + 9 - 12 * ½ = 7.

Теперь высота, она же боковое ребро параллелепипеда, окажется катетом в треугольнике. Гипотенузой будет известная диагональ тела, а вторым катетом — «х». Можно записать Теорему Пифагора:

н 2 = d 2 - х 2 = 19 - 7 = 12.

Отсюда: н = √12 = 2√3 (см).

Теперь вторая неизвестная величина — площадь основания. Ее можно сосчитать по формуле, упомянутой во второй задаче.

S о = 2 * 3 sin 60º = 6 * √3/2 = 3√3 (см 2).

Объединив все в формулу объема, получаем:

V = 3√3 * 2√3 = 18 (см 3).

Ответ: V = 18 см 3 .

Четвертая задача

Условие. Требуется узнать объем параллелепипеда, отвечающего таким условиям: основание — квадрат со стороной 5 см; боковые грани являются ромбами; одна из вершин, находящихся над основанием, равноудалена от всех вершин, лежащих в основании.

Решение. Сначала нужно разобраться с условием. С первым пунктом про квадрат вопросов нет. Второй, про ромбы, дает понять, что параллелепипед наклонный. Причем все его ребра равны 5 см, поскольку стороны у ромба одинаковые. А из третьего становится ясно, что три диагонали, проведенные из нее, равны. Это две, которые лежат на боковых гранях, а последняя внутри параллелепипеда. И эти диагонали равны ребру, то есть тоже имеют длину 5 см.

Для определения объема будет нужна формула, записанная для наклонного параллелепипеда. В ней опять нет известных величин. Однако площадь основания вычислить легко, потому что это квадрат.

S о = 5 2 = 25 (см 2).

Немного сложнее обстоит дело с высотой. Она будет таковой в трех фигурах: параллелепипеде, четырехугольной пирамиде и равнобедренном треугольнике. Последним обстоятельством и нужно воспользоваться.

Поскольку она высота, то является катетом в прямоугольном треугольнике. Гипотенузой в нем будет известное ребро, а второй катет равен половине диагонали квадрата (высота - она же и медиана). А диагональ основания найти просто:

d = √(2 * 5 2) = 5√2 (см).

Высоту нужно будет сосчитать как разность второй степени ребра и квадрата половины диагонали и не забыть потом извлечь квадратный корень :

н = √ (5 2 - (5/2 * √2) 2) = √(25 - 25/2) = √(25/2) = 2,5 √2 (см).

V = 25 * 2,5 √2 = 62,5 √2 (см 3).

Ответ: 62,5 √2 (см 3).

Различается несколько типов параллелепипедов:

· Прямоугольный параллелепипед - это параллелепипед, у которого все грани - прямоугольники ;

· Прямой параллелепипед - это параллелепипед, у которого 4 боковые грани - параллелограммы;

· Наклонный параллелепипед - это параллелепипед, боковые грани которого не перпендикулярны основаниям.

Основные элементы

Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро - смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок, соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.

Свойства

· Параллелепипед симметричен относительно середины его диагонали.

· Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

· Противолежащие грани параллелепипеда параллельны и равны.

· Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений

Основные формулы

Прямой параллелепипед

· Площадь боковой поверхности S б =Р о *h, где Р о - периметр основания, h - высота

· Площадь полной поверхности S п =S б +2S о, где S о - площадь основания

· Объём V=S о *h

Прямоугольный параллелепипед

· Площадь боковой поверхности S б =2c(a+b), где a, b - стороны основания, c - боковое ребро прямоугольного параллелепипеда

· Площадь полной поверхности S п =2(ab+bc+ac)

· Объём V=abc, где a, b, c - измерения прямоугольного параллелепипеда.

· Площадь боковой поверхности S=6*h 2 , где h – высота ребра куба

34. Тетраэдр - правильный многогранник, имеет 4 грани, которые являются правильными треугольниками. Вершин у тетраэдра 4 , к каждой вершине сходится 3 ребра, а всего ребер 6 . Также тетраэдр является пирамидой.

Треугольники, из которых состоит тетраэдр, называются гранями (АОС, ОСВ, ACB, AOB) , их стороны --- ребрами (AO, OC, OB) , а вершины ---вершинами (A, B, C, O) тетраэдра. Два ребра тетраэдра, не имеющие общих вершин, называются противоположными ... Иногда выделяют одну одну из граней тетраэдра и называют ее основанием , а три другие --- боковыми гранями .

Тетраэдр называется правильным , если все его грани - равносторонние треугольники. При этом правильный тетраэдр и правильная треугольная пирамида – это не одно и то же.

У правильного тетраэдра все двугранные углы при рёбрах и все трёхгранные углы при вершинах равны.


35. Правильная призма

Призмой называется многогранник, у которого две грани (основания) лежат в параллельных плоскостях, а все ребра вне этих граней параллельны между собой. Грани, отличные от оснований, называются боковыми гранями, а их ребра называются боковыми ребрами. Все боковые ребра равны между собой как параллельные отрезки, ограниченные двумя параллельными плоскостями. Все боковые грани призмы являются параллелограммами. Соответствующие стороны оснований призмы равны и параллельны. Прямой называется призма, у которой боковое ребро перпендикулярно плоскости основания, другие призмы называются наклонными. В основании правильной призмы лежит правильный многоугольник. У такой призмы все грани – равные прямоугольники.

Поверхность призмы состоит из двух оснований и боковой поверхности. Высотой призмы называется отрезок, являющийся общим перпендикуляром плоскостей, в которых лежат основания призмы. Высота призмы есть расстояние H между плоскостями оснований.

Площадью боковой поверхности S б призмы называется сумма площадей ее боковых граней. Площадью полной поверхности S п призмы называется сумма площадей всех ее граней. S п = S б + 2S ,где S – площадь основания призмы, S б – площадь боковой поверхности.

36. Многогранник, у которого одна грань, называемая основанием , – многоугольник,
а другие грани – треугольники с общей вершиной, называется пирамидой .

Грани, отличные от основания, называются боковыми.
Общая вершина боковых граней называется вершиной пирамиды.
Ребра, соединяющие вершину пирамиды с вершинами основания, называются боковыми.
Высотой пирамиды называется перпендикуляр, проведенный из вершины пирамиды на ее основание.

Пирамида называется правильной, если ее основание – правильный многоугольник, а высота проходит через центр основания.

Апофемой боковой грани правильной пирамиды называется высота этой грани, проведенная из вершины пирамиды.

Плоскость, параллельная основанию пирамиды, отсекает ее на подобную пирамиду и усеченную пирамиду.

Свойства правильных пирамид

  • Боковые ребра правильной пирамиды - равны.
  • Боковые грани правильной пирамиды - равные друг другу равнобедренные треугольники.

Если все боковые ребра равны, то

·высота проектируется в центр описанной окружности;

·боковые ребра образуют с плоскостью основания равные углы.

Если боковые грани наклонены к плоскости основания под одним углом, то

·высота проектируется в центр вписанной окружности;

·высоты боковых граней равны;

·площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани

37. Функцию y=f(x), где x принадлежит множеству натуральных чисел, называют функцией натурального аргумента или числовой последовательностью. Обозначают ее y=f(n), или (y n)

Последовательности можно задавать различными способами, словесно, так задается последовательность простых чисел:

2, 3, 5, 7, 11 и т.д

Считают, что последовательность задана аналитически, если указана формула ее n-го члена:

1, 4, 9, 16, …, n 2 , …

2) y n = C. Такую последовательность называют постоянной или стационарной. Например:

2, 2, 2, 2, …, 2, …

3) y n =2 n . Например,

2, 2 2 , 2 3 , 2 4 , …, 2 n , …

Последовательность называют ограниченной сверху, если все ее члены не больше некоторого числа. Иными словами, последовательность можно назвать ограниченной, если есть такое число М, что выполняется неравенство y n меньше или равно M. Число М называют верхней границей последовательности. Например последовательность: -1, -4, -9, -16, …, - n 2 ; ограничена сверху.

Аналогично, последовательность можно назвать ограниченной снизу, если все ее члены больше некоторого числа. Если последовательность ограничена и сверху и снизу она называется ограниченной.

Последовательность называют возрастающей, если каждый ее последующий член больше предыдущего.

Последовательность называют убывающей, если каждый ее последующий член меньше предыдущего. Возрастающие и убывающие последовательности определяют одним термином – монотонные последовательности.

Рассмотрим две последовательности:

1) y n: 1, 3, 5, 7, 9, …, 2n-1, …

2) x n: 1, ½, 1/3, 1/ 4, …, 1/n, …

Если мы изобразим члены этой последовательности на числовой прямой, то заметим что, во втором случае члены последовательности сгущаются вокруг одной точки, а в первом случае такого нет. В подобных случаях говорят, что последовательность y n расходится, а последовательность x n сходится.

Число b называют пределом последовательности y n , если в любой заранее выбранной окрестности точки b, содержатся все члены последовательности, начиная с некоторого номера.

В данном случае мы можем написать:

Если частное прогрессии по модулю меньше единицы, то предел этой последовательности, при х, стремящимся к бесконечности равен нулю.

Если последовательность сходится, то только к одному пределу

Если последовательность сходится, то она ограничена.

Теорема Вейерштрасса: Если последовательность монотонно сходится, то она ограничена.

Предел стационарной последовательности равен любому члену последовательности.

Свойства:

1) Предел суммы равен сумме пределов

2) Предел произведения равен произведению пределов

3) Предел частного равен частному пределов

4) Постоянный множитель можно вынести за знак предела

Вопрос 38
сумма бесконечной геометрической прогрессии

Геометрическая прогрессия - последовательность чисел b 1 , b 2 , b 3 ,.. (членов прогрессии), в которой каждое последующее число, начиная со второго, получается из предыдущего умножением его на определённое число q (знаменатель прогрессии), где b 1 ≠0 , q≠0.

Сумма бесконечной геометрической прогрессии – это предельное число, к которому сходится последовательность прогрессии.

Говоря иначе, какой бы длинной не была геометрическая прогрессия, сумма ее членов не больше какого-то определенного числа и практически равна этому числу. Оно и называется суммой геометрической прогрессии.

Не любая геометрическая прогрессия имеет такую предельную сумму. Она может быть только у такой прогрессии, знаменатель которой – дробное число меньше 1.