Болезни Военный билет Призыв

Что такое квант в физике. Значение слова «квант. Большая энциклопедия нефти и газа

Что такое Квант? Значение слова «Квант» в популярных словарях и энциклопедиях, примеры употребления термина в повседневной жизни.

Квант Действия –

то же, что Планка постоянная.

Квант М. – Толковый словарь Ефремовой

1. Наименьшее возможное количество энергии, которое может быть поглощено или отдано молекулярной, атомной или ядерной системой в отдельном акте изменения ее состояния.

Квант Предметного Действия – Психологический словарь

(англ. quantum of object action) - часть действия, имеющая структуру целостного действия, но отличающаяся своей динамикой. Напр., динамический паттерн медленного равномерного движения, которое выглядит как плавное и непрерывное и таким же представляется исполняющему его субъекту, состоит из ряда волн увеличения и падения скорости, следующих друг за другом от нач. до окончания всего двигательного акта. Последний представляет собой результат усреднения ряда таких волн (квантов), а его динамика также имеет форму волны, но с др. (меньшими) значениями скоростей разгона, стабилизации и торможения. Квантовая природа характерна не только для скоростных параметров движения, но и для его чувствительности к изменениям ситуации и состояний двигательного аппарата. В отличие от единицы анализа психики, являющейся только качественной категорией и определяющейся во многом в зависимости от субъективного контекста аналитической процедуры (хотя она и опирается на объективные данные), К. п. д. имеет как качественные, так и количественные свойства, присущие действию субъекта и скорее обнаруживаемые, чем конструируемые, в результате анализа. Качественные свойства кванта определяются содержанием того параметра (или элемента) действия, к которому он относится: при чтении квантом м. б. фиксационная пауза или даже отдельный дрейф глаза во время фиксации; при выполнении движения - скоростная волна и т. п. (квантовая природа др. предметных действий пока не исследована). Количественными мерами кванта являются время (длительность), амплитуда (для действий, имеющих внешнее выражение в моторике) и производные показатели (скорость, ускорение и т. п.). Длительность кванта существенно зависит от содержания действия, характера и степени его освоения субъектом, способов реализации. Т. о., в кванте отражается вся структура и динамика действия как целостной единицы. Для исследования К. п. д. применяются методы прерывания обратной связи, измерения психологической рефрактерности (Н. Д. Гордеева, В. П. Зинченко), фиксационного оптокинетического нистагма (Ю. Б. Гиппенрейтер, В. Я. Романов). (А. И. Назаров.)

Квант Предметного Действия – Психологическая энциклопедия

(англ. quantum of object action) - часть действия, имеющая структуру целостного действия, но отличающаяся своей динамикой. Напр., динамический паттерн медленного равномерного движения, которое выглядит как плавное и непрерывное и таким же представляется исполняющему его субъекту , состоит из ряда волн увеличения и падения скорости, следующих друг за другом от нач. до окончания всего двигательного акта. Последний представляет собой результат усреднения ряда таких волн (квантов), а его динамика также имеет форму волны, но с др. (меньшими) значениями скоростей разгона, стабилизации и торможения. Квантовая природа характерна не только для скоростных параметров движения, но и для его чувствительности к изменениям ситуации и состояний двигательного аппарата. В отличие от единицы анализа психики, являющейся только качественной категорией и определяющейся во многом в зависимости от субъективного контекста аналитической процедуры (хотя она и опирается на объективные данные), К. п. д. имеет как качественные, так и количественные свойства, присущие действию субъекта и скорее обнаруживаемые, чем конструируемые, в результате анализа. Качественные свойства кванта определяются содержанием того параметра (или элемента) действия, к которому он относится: при чтении квантом м. б. фиксационная пауза или даже отдельный дрейф глаза во время фиксации; при выполнении движения - скоростная волна и т. п. (квантовая природа др. предметных действий пока не исследована). Количественными мерами кванта являются время (длительность), амплитуда (для действий, имеющих внешнее выражение в моторике) и производные показатели (скорость, ускорение и т. п.). Длительность кванта существенно зависит от содержания действия, характера и степени его освоения субъектом, способов реализации. Т. о., в кванте отражается вся структура и динамика действия как целостной единицы. Для исследования К. п. д. применяются методы прерывания обратной связи, измерения психологической рефрактерности (Н. Д. Гордеева, В. П. Зинченко), фиксационного оптокинетического нистагма (Ю. Б. Гиппенрейтер, В. Я. Романов). (А. И. Назаров.)

Квант Света – Большой Энциклопедический Словарь

фотон оптического излучения.

Квантиль – Бизнес словарь

Квантиль – Социологический словарь

Показатель (мера) позиции внутри распределения.

Квантиль – Социологический словарь

Одна из характеристик распределения вероятностей (см.). Лит.: / /Математическая энциклопедия. Т. 2. М. 1979. Ю.Н. Толстова.

Квантиль – Экономический словарь

численная характеристика, применяемая в математической статистике.

Квантиль Распределения – Социологический словарь

х-альфа, где 0 совокупность или выборку в пропорции q: 1 - q. Применяется в статистическом выводе, а также при построении процентильной группировки. О.В. Терещенко

Квантильный Ранг – Социологический словарь

Показатель (мера) дисперсии для порядковых переменных.

Квантитативное Стихосложение – Большой Энциклопедический Словарь

см. Стихосложение.

Квантитативный – Толковый словарь Ожегова

См. количественный

Квантитативный (количественный) Анализ Текста – Социологический словарь

Изучение текста в формализованном виде. Процесс изучения сводится к статистическому измерению содержания текстов/документов. К.А.Т. нацелен на исследование манифестируемого (актуализированного) значения содержания. Неотъемлемыми характеристиками такого подхода являются фрагментарность, систематичность, объективность, обобщенность. Важнейшим вариантом реализации К.А.Т. выступает методика контент-анализа. И.Ф. Ухванова-Шмыгова

Квантитативный Прил. – Толковый словарь Ефремовой

1. Количественный.

Квантификация – Социологический словарь

(от лат. quantum - сколько и facere - делать) - англ. quantification; нем. Quantifizierung. 1. Количественная оценка ч.-л. 2. Процедуры измерения и количественного выражения свойств и отношений соц. объектов. См. ИЗМЕРЕНИЕ.

Квантификация – Бизнес словарь

Квантификация – Большой Энциклопедический Словарь

(от лат. quantum - сколько и...фикация) - количественноевыражение, измерение качественных признаков (напр., оценка в баллахмастерства спортсменов).

Квантификация – Социологический словарь

Перевод на уровень количественного измерения.

Квантификация – Социологический словарь

(quantification) - преобразование наблюдений в цифровые данные для анализа и сравнения.

Квантификация – Экономический словарь

Количественные измерения фактов хозяйственной жизни, их запись и контроль выполнения в целях наиболее эффективного управления предприятием.

Квантификация – Экономический словарь

(от лат. quantum - сколько) - измерение качества в количественных, числовых величинах, например в баллах.

Квантификация – Экономический словарь

измерение качественных признаков в количественном выражении.

Квантификация – Экономический словарь

измерение качества в количественных, числовых величинах, например в баллах.

Квантификация – Юридический словарь

(от лат. quantum - сколько) - измерение качества в количественных, числовых величинах , например в баллах.

Квантификация Предиката – Философский словарь

(лат. quantum - сколько, англ. quantity - количество) - установление объема предиката суждения. В традиционной формальной логике суждения делятся на виды в зависимости от объема субъекта; при этом различаются два вида суждении: общие (напр., “Все квадраты - четырехугольники”) и частные (напр., “Нек-рые студенты - спортсмены”). Гамильтон предложил учитывать также объем предиката. Т. обр., кроме двух видов утвердительных суждений, в к-рых предикат взят не во всем объеме и к-рые Гамильтон называет обще-частным и частно-частным, выделяются еще два вида: обще-общее (напр., “Все равносторонние треугольники суть равноугольные треугольники”) и частно-общее (напр., “Нек-рые деревья-дубы”), в к-рых предикат берется во всем объеме. Такая К. п. позволила рассматривать суждение как уравнение. Операции К. п. в математической логике в нек-рой степени соответствует операция связывания кванторами переменных предикатов.

Квантифицирование, Квантификация – Философский словарь

(от лат. quantitas - количество и facere - делать) - сведение качеств к количествам, напр. звуков и цветов - к числу колебаний. Квалификация, введенная в физику Декартом, неизменно играла определенную роль в психологии, т. к. со всякой квантификацией было связано рационализирование конкретно наглядной полноты душевного, лишение ее пространственной определенности. Возникающие благодаря этому некачественные понятия не были адекватным выражением сущности психического. Математика, применяемая для квантификации, сама больше не является чисто квантифицирующей наукой. О квантификаторах см. Логистика.

Квантование Вторичное – Большой Энциклопедический Словарь

метод исследования квантовых систем многих илибесконечного числа частиц (либо квазичастиц); особенно важен в квантовойтеории поля, рассматривающей системы с изменяющимся числом частиц. Вметоде квантования вторичного состояние системы описывается с помощьючисел заполнения. Изменение состояния интерпретируется как процессырождения и уничтожения частиц.

Квантование Магнитного Потока – Большой Энциклопедический Словарь

макроскопическое квантовое явление,состоящее в том, что магнитный поток через кольцо из сверхпроводника стоком кратен величине Фо = h/2е? 2,067835.10-15 Вб, которая называетсяквантом магнитного потока (h - Планка постоянная, е - заряд электрона).

Квантование Сигнала – Большой Энциклопедический Словарь

преобразование сигнала в последовательностьимпульсов (квантование сигнала по времени) или в сигнал со ступенчатымизменением амплитуды (квантование сигнала по уровню), а также одновременнои по времени, и по уровню. Применяется, напр., при преобразованиинепрерывной величины в код в вычислительных устройствах, цифровыхизмерительных приборах и др.

Квантовая Гипотеза – Психологический словарь

Гипотеза о том, что постепенное увеличение физической переменной приводит к дискретному усилению (квантовому) ощущений. Эта гипотеза была распространена и на неврологический уровень, где она называется, как и следовало ожидать, неврологической квантовой гипотезой.

Квантовая Гипотеза – Психологическая энциклопедия

Гипотеза о том, что постепенное увеличение физической переменной приводит к дискретному усилению (квантовому) ощущений. Эта гипотеза была распространена и на неврологический уровень , где она называется, как и следовало ожидать, неврологической квантовой гипотезой.

Квантовая Жидкость – Большой Энциклопедический Словарь

обычный жидкий гелий при низких температурах. в отличие от прочных тел остается жидкостью вплоть досамых близких к абсолютному нулю температур. Свойствами квантовой жидкостиобладают и другие объекты: электроны в металлах, протоны в атомных ядрах,экситоны (см. Бозе-жидкость и Ферми-жидкость).

Квантовая Механика – Большой Энциклопедический Словарь

(волновая механика) - теория, устанавливающая способописания и законы движения микрочастиц в заданных внешних полях; один изосновных разделов квантовой теории. впервые позволилаописать структуру атомов и понять их спектры, установить природухимической связи, объяснить периодическую систему элементов и т. д. Т. к.свойства макроскопических тел определяются движением и взаимодействиемобразующих их частиц, законы квантовой механики лежат в основе пониманиябольшинства макроскопических явлений. Так, квантовая механика позволилапонять многие свойства твердых тел, объяснить явления сверхпроводимости,ферромагнетизма, сверхтекучести и многое др.; квантовомеханические законылежат в основе ядерной энергетики, квантовой электроники и т. д. В отличиеот классической теории, все частицы выступают в квантовой механике какносители и корпускулярных, и волновых свойств, которые не исключают, адополняют друг друга. Волновая природа электронов, протонов и других""частиц"" подтверждена опытами по дифракции частиц. Корпускулярно-волновойдуализм материи потребовал нового подхода к описанию состояния физическихсистем и их изменения со временем. Состояние квантовой системы описываетсяволновой функцией, квадрат модуля которой определяет вероятность данногосостояния и, следовательно, вероятности для значений физических величин,его характеризующих; из квантовой механики вытекает, что не все физическиевеличины могут одновременно иметь точные значения (см. Неопределенностипринцип). Волновая функция подчиняется суперпозиции принципу, что иобъясняет, в частности, дифракцию частиц. Отличительная черта квантовойтеории - дискретность возможных значений для ряда физических величин:энергии электронов в атомах, момента количества движения и его проекции напроизвольное направление и т. д.; в классической теории все эти величинымогут изменяться лишь непрерывно. Фундаментальную роль в квантовоймеханике играет Планка постоянная. - один из основных масштабов природы,разграничивающий области явлений, которые можно описывать классическойфизикой (в этих случаях можно считать??0), от областей, для правильногоистолкования которых необходима квантовая теория. Нерелятивистская(относящаяся к малым скоростям движения частиц по сравнению со скоростьюсвета) квантовая механика - законченная, логически непротиворечиваятеория, полностью согласующаяся с опытом для того круга явлений ипроцессов, в которых не происходит рождения, уничтожения иливзаимопревращения частиц.

Квантовая Механика – Философский словарь

Раздел современной физики, изучающий законы движения объектов микромира. Возникновение К. м., ее развитие и интерпретация связаны с именами Планка (открытие кванта действия), Бройля (идея о “волнах материи”). Бора (атомная модель, принцип соответствия, дополнительный способ описания, или принцип дополнительности), Гейзенберга (соотношение неопределенностей), Шредингера (волновое уравнение), Борна (статистическая интерпретация), П. Дирака (релятивистское уравнение). В научную разработку и истолкование физических и философских проблем К. м. существенный вклад внесли советские ученые Вавилов, В. А. Фок, И. Е. Тамм, Л. Д. Ландау, Д. И. Блохинцев и др. Специфические особенности К. м. как физической теории (корпускулярно-волновой дуализм, соотношение неопределенностей и др.) и связанных с ней методологических идей (соответствия принцип, дополнительности принцип и др.) обусловлены открытием “конечности взаимодействия”, означающей, что любые взаимодействия между объектами в микромире (в т. ч. между прибором и микрочастицей) не могут быть меньше значения кванта действия (h=6,62-10-27 эрг/сек.). При характеристике состояния квантовых объектов (микрочастиц) неправомерно пользоваться понятием механической причинности, предполагающим точное одновременное знание начальных условий (импульсов и координат). Это состояние характеризуется статистической, вероятностной формой причинной зависимости, выраженной в понятии волновой функции, к-рое потенциально, как бы в “снятом виде”, содержит взаимоисключающие и взаимодополняющие определения свойств микрообъектов, реализующихся в зависимости от конкретных экспериментальных условий. Включение в сферу познания квантовых явлений, необычных с т. зр. привычного, макроскопического опыта, возрастание значения измерительных процедур, экспериментальной техники, логико-математического аппарата неизбежно повлекли за собой усложнение роли субъекта, увеличение зависимости от его технической и методологической вооруженности особенностей вычленения (и в этом смысле “приготовления”), исследования того или иного объекта, фрагмента действительности. Это важно учитывать при анализе понятия “квантовый объект”. К. м. сделала более очевидным тот факт, что без активного вмешательства в систему взаимодействующих объектов исследователь не может адекватно познавать их. Хотя и в новых условиях сохраняется принципиальная основа взаимодействия человека и внешнего мира - первичность объекта и вторичность субъекта, но при этом происходит более тесное их связывание. Вокруг этих философских проблем К. м. развернулась острая полемика. Они стали, особенно в начальный период развития К. м., предметом различного рода антинаучных, в т. ч. позитивистских, спекуляций, в известной степени связанных с высказываниями нек-рых сторонников т. наз. копенгагенской интерпретации К. м. Ошибочное истолкование специфики микромира исключительно как следствия особенностей процесса познания и измерения приводило к преувеличению роли “наблюдателя”, к утверждениям о “неконтролируемом возмущении”, “крахе причинности”, “свободе воли” электрона и т. п. Отказ от подобных утверждений, эволюция взглядов ряда создателей К. м., как и в целом ситуация в совр. физике, свидетельствуют о том, что “материалистический основной дух физики” (Ленин) побеждает. В настоящее время К. м. не только позволила научно объяснить обширный круг явлений в области физики, химии, биологии, но и приобрела, наряду с фундаментальным, также и прикладное, инженерное значение. Это еще раз подтверждает безграничные возможности человеческого разума, вооруженного передовой методологией, в познании тайн микромира.

Квантовая Механика – Философский словарь

Теория, устанавливающая способ описания и законы движения микрочастиц; один из осн. разделов квантовой теории. Впервые позволила описать структуру атомов, понять их спектры, установить природу химической связи, объяснить периодическую систему элементов. В отличие от классической теории в квантовой механике все частицы выступают как носители и корпускулярных, и волновых свойств, которые не исключают, а дополняют друг друга. См. также Волновая механика.

Это либо свидетельство обширных успехов науки, либо символ ограниченности человеческой интуиции, которая вынуждена бороться со странностью субатомной сферы.

Для физика квантовая механика - одна из трех великих опор, на которых основано понимание природы (наряду с общей и специальной теориями относительности Эйнштейна). Для тех, кто всегда хотел хоть что-нибудь понять в фундаментальной модели устройства мира, объясняют ученые Брайан Кокс и Джефф Форшоу в своей книге «Квантовая вселенная ». Публикуем небольшой отрывок о сути кванта и истоках теории.

Теории Эйнштейна имеют дело с природой пространства и времени и силой притяжения. Квантовая механика занимается всем остальным, и можно сказать, что, как бы она ни взывала к чувствам, сбивала столку или завораживала, это всего лишь физическая теория, описывающая то, как природа ведет себя в действительности.

Но даже если мерить ее по этому весьма прагматичному критерию, она поражает своей точностью и объяснительной силой. Есть один эксперимент из области квантовой электродинамики, старейшей и лучше всего осмысленной из современных квантовых теорий.

В нем измеряется, как электрон ведет себя вблизи магнита. Физики-теоретики много лет упорно работали с ручкой и бумагой, а позже с компьютерами, чтобы предсказать, что именно покажут такие исследования. Практики придумывали и ставили эксперименты, чтобы выведать побольше подробностей у природы.

Оба лагеря независимо друг от друга выдавали результаты с точностью, подобной измерению расстояния между Манчестером и Нью-Йорком с погрешностью в несколько сантиметров. Примечательно, что цифры, получавшиеся у экспериментаторов, полностью соответствовали результатам вычислений теоретиков; измерения и вычисления полностью согласовывались.

Квантовая теория - возможно, наилучший пример, как бесконечно сложное для понимания большинства людей становится крайне полезным. Она сложна для понимания, поскольку описывает мир, в котором частица может реально находиться в нескольких местах одновременно и перемещается из одного места в другое, исследуя тем самым всю Вселенную. Она полезна, потому что понимание поведения малейших кирпичиков мироздания укрепляет понимание всего остального.

Она кладет предел нашему высокомерию, потому что мир намного сложнее и разнообразнее, чем казалось. Несмотря на всю эту сложность, мы обнаружили, что все состоит из множества мельчайших частиц, которые двигаются в соответствии с законами квантовой теории. Законы эти настолько просты, что их можно записать на обратной стороне конверта. А то, что для объяснения глубинной природы вещей не требуется целая библиотека, уже само по себе одна из величайших тайн мира.

Представьте мир вокруг нас. Скажем, вы держите в руках книгу, сделанную из бумаги - перемолотой древесной массы. Деревья - это машины, способные получать атомы и молекулы, расщеплять их и реорганизовывать в колонии, состоящие из миллиардов отдельных частей. Они делают это благодаря молекуле, известной под названием и состоящей из ста с лишним атомов углерода, водорода и кислорода, которые имеют изогнутую особым образом форму и скреплены еще с некоторым количеством атомов магния и водорода.

Такое соединение частиц способно улавливать свет, пролетевший 150 000 000 км от нашей звезды - ядерного очага объемом в миллион таких планет, как Земля, - и переправлять эту энергию вглубь клеток, где с ее помощью создаются новые молекулы из двуокиси углерода и воды и выделяется дающий нам жизнь кислород.

Именно эти молекулярные цепи формируют суперструктуру, объединяющую и деревья, и бумагу в этой книге, и все живое. Вы способны читать книгу и понимать слова, потому что у вас есть глаза и они могут превращать рассеянный свет от страниц в электрические импульсы, интерпретируемые мозгом - самой сложной структурой Вселенной, о которой мы вообще знаем.

Мы обнаружили, что все вещи в мире - не более чем скопища атомов, а широчайшее многообразие атомов состоит всего из трех частиц - электронов, протонов и нейтронов.

Мы знаем также, что сами протоны и нейтроны состоят из более мелких сущностей, именуемых кварками , и на них уже все заканчивается - по крайней мере, так мы думаем сейчас. Основанием для всего этого служит квантовая теория.

Таким образом, картину Вселенной, в которой обитаем мы, современная физика рисует с исключительной простотой ; элегантные явления происходят где-то там, где их нельзя увидеть, порождая разнообразие макромира. Возможно, это самое выдающееся достижение современной науки - сведение невероятной сложности мира, включая и самих людей, к описанию поведения горстки мельчайших субатомных частиц и четырех сил, действующих между ними.

Лучшие описания трех из четырех этих сил - сильного и слабого ядерных взаимодействий, существующих внутри атомного ядра, и электромагнитного взаимодействия, которое склеивает атомы и молекулы, - предоставляет квантовая теория. Лишь сила тяжести - самая слабая, но, возможно, самая знакомая нам сила из всех - в настоящий момент не имеет удовлетворительного квантового описания.

Стоит признать, что квантовая теория имеет несколько странную репутацию, и ее именем прикрывается множество настоящей ахинеи. Коты могут быть одновременно живыми и мертвыми; частицы находятся в двух местах одновременно; Гейзенберг утверждает, что все неопределенно.

Все это действительно верно, но выводы, которые часто из этого следуют - раз в микромире происходит нечто странное, то мы окутаны дымкой тумана, - точно неверны. Экстрасенсорное восприятие, мистические исцеления, вибрирующие браслеты, которые защищают от радиации, и черт знает что еще регулярно прокрадывается в пантеон возможного под личиной слова « ».

Эту чепуху порождают неумение ясно мыслить, самообман, подлинное или притворное недопонимание либо какая-то особенно неудачная комбинация всего вышеперечисленного.

Квантовая теория точно описывает мир с помощью математических законов, на столько же конкретных, как и те, что использовали Ньютон или Галилей. Вот почему мы можем с невероятной точностью рассчитать магнитное поле электрона.

Квантовая теория предлагает такое описание природы, которое, как мы узнаем, имеет огромную предсказательную и объяснительную силу и распространяется на множество явлений - от кремниевых микросхем до звезд.

Как часто бывает, появление квантовой теории спровоцировали открытия природных явлений, которые нельзя было описать научными парадигмами того времени. Для квантовой теории таких открытий было много, притом разнообразного характера. Ряд необъяснимых результатов порождал ажиотаж и смятение и в итоге вызвал период экспериментальных и теоретических инноваций, который действительно заслуживает расхожего определения «золотой век ».

Имена главных героев навсегда укоренились в сознании любого студента-физика и чаще других упоминаются в университетских курсах и посей день: Резерфорд, Бор, Планк, Эйнштейн, Паули, Гейзенберг, Шредингер, Дирак. Возможно, в истории больше не случится периода, когда столько имен будут ассоциироваться с величием науки при движении к единой цели - созданию новой теории атомов и сил, управляющих физическим миром.

В 1924 году, оглядываясь на предшествующие десятилетия квантовой теории, Эрнест Резерфорд, физик новозеландского происхождения, открывший атомное ядро, писал:

«1896 год… ознаменовал начало того, что было довольно точно названо героическим веком физической науки. Никогда до этого в истории физики не наблюдалось такого периода лихорадочной активности, в течение которого одни фундаментально значимые открытия с бешеной скоростью сменяли другие. ».

Термин «квант» появился в физике в 1900 году благодаря работам Макса Планка. Он пытался теоретически описать излучение, испускаемое нагретыми телами, - так называемое «излучение абсолютно черного тела». Кстати, ученого наняла для этой цели компания, занимавшаяся электрическим освещением: так двери Вселенной порой открываются по самым прозаическим причинам.

Планк выяснил, что свойства излучения абсолютно черного тела можно объяснить, только если предположить, что свет испускается небольшими порциями энергии, которые он и назвал квантами. Само это слово означает «пакеты», или «дискретные». Изначально он считал, что это лишь математическая уловка, но вышедшая в 1905 году работа Альберта Эйнштейна о фотоэлектрическом эффекте поддержала квантовую гипотезу. Результаты были убедительными, потому что небольшие порции энергии могли быть синонимичны частицам.

Идея того, что свет состоит из потока маленьких пулек, имеет долгую и славную историю, начавшуюся с Исаака Ньютона и рождения современной физики. Однако в 1864 году шотландский физик Джеймс Кларк Максвелл, казалось, окончательно рассеял все существовавшие сомнения в ряде работ, которые Альберт Эйнштейн позднее охарактеризовал как «самые глубокие и плодотворные из всех, что знала физика со времен Ньютона».

Максвелл показал, что свет - это , распространяющаяся в , так что идея света как волны имела безукоризненное и, казалось бы, неоспоримое происхождение. Однако в серии экспериментов, которые Артур Комптон и его коллеги провели в Университете Вашингтона в Сент-Луисе, им удалось отделить световые кванты от электронов .

Те и другие вели себя скорее как бильярдные шары, что явно подтвердило: теоретические предположения Планка имели прочное основание в реальном мире. В 1926 году световые кванты получили название . Свидетельство было неопровержимым: свет ведет себя одновременно как волна и как частица. Это означало конец классической физики - и завершение периода становления квантовой теории .

Материалы по теме:

Раскройте свою истинную сущность и полностью доверяйте своей интуиции!

Раскройте свою истинную сущность и полностью доверяйте своей интуиции! Все Работники Света и те, кто стремится достичь Вознесения, должны следовать голосу своей интуиции. Следует знать, ...

Перестаньте искать себя и начните притворяться. Китайские философы научат вас хорошей жизни!

УЧИТЕ СВОИХ ДЕТЕЙ

УЧИТЕ СВОИХ ДЕТЕЙ Учите своих детей, что для того, чтобы быть счастливыми В жизни не надо иметь ничего дополнительно: Ни человека, ни места, ни какой-то вещи, Что настоящее...

Психотронное оружие и повсеместное облучение

Психотронное оружие и повсеместное облучение Наведение голосов в голове техническими методами стало широко известно еще с 1974 г., когда фирма Sharp запатентотовала устройство для передачи...

5G – умный рай или неконтролируемая опасность для человечества?

5G – умный рай или неконтролируемая опасность для человечества? Холодильник выбирает в интернет-магазине ингредиенты для запланированного ужина; чайник при приближении хозяина сам включается, а кондиционер...

Cтраница 1


Квантами полей являются цветные кварки. По своей структуре КХД напоминает квантовую электродинамику (КОД), но имеет существ, отличия. Аналогично тому, как в КЭД элсктрич, заряд вследствие калибровочной симметрии порождает эл.  

Поэтому должны существовать частицы - кванты полей, осуществляющих взаимодействия.  

В ее рамках элементарные частицы суть кванты полей, которые мы по экспериментальным или теоретическим причинам признаем за основные. Математический формализм теории включает выбор лагранжиана, инвариантного относительно калибровочных симметрии и перенормируемого, что обеспечивает, в принципе, вычисление основных величин: сечений, спектров, вероятностей распадов и пр. Всякое описание мира, предлагаемое физикой, является приближенным и феноменологическим. Однако со всяким проникновением на очередной уровень элементарности связываются надежды на углубление характера нашего знания, а не просто на увеличение его количества. Законы следующего уровня предстают в качестве более фундаментальных по отношению к предшествующим. В математизированной теории зачастую оказывается, что переход к теории нового уровня влечет полную смену основных математических структур, используемых в описании. Суть специальной теории относительности не в том, что она предлагает систематический способ вычисления малых релятивистских поправок к классическим законам движения, а в том, что она вводит группу Пуанкаре в качестве основной группы пространственно-временных симметрии физики. Главные принципы квантовой теории - описание состояний как векторов в бесконечномерном гильбертовом пространстве и представление измеримых наблюдаемых действующими в этом пространстве эрмитовыми операторами - вообще не имеют корней в предшествовавшей парадигме.  


Фундаментальные частицы взаимодействуют между собой путем обмена квантами фундаментальных полей. Последние имеют целочисленный спин и поэтому относятся к группе бозонов, которые получили свое название вследствие работ Бозе и Эйнштейна, посвященных таким частицам. Бозоны в отличие от фермионов могут конденсироваться в одном и том же состоянии. Гравитационное взаимодействие осуществляется посредством обмена гравитонами, которые пока экспериментально не обнаружены. Считается, что их масса покоя равна нулю, а спин равен двум. Сильные и слабые взаимодействия между частицами происходят на расстояниях порядка 10 - 15 м и меньше.  

Создаваемые в этом случае поля являются векторными полями, а отвечающие им частицы - кванты полей - обладают спином 1 и должны быть безмассовыми.  

Другими словами, и при наличии полей материи рассеиваются только кванты этих полей и трехмерно поперечные кванты полей Янга - Миллса.  

В последние годы на роль фундаментальной длины претендует или может претендовать характеристическая длина барионных масс (10 - 14 см), если, конечно, кванты полей, сильно взаимодействующих с барионами, и в особенности я, К и другие мезоны, не окажутся составными частицами.  

Свойства полевых функций, отвечающих другим частицам, также отражают спиновые, зарядовые и прочие дискретные характеристики соответствующих частиц. После квантования кванты полей обычно отождествляются с частицами.  

Пионы или я-мезоны являются квантами ядерных полей. Основную роль в этом обмене играют я-мезоны.  

Кванты полей, удовлетворяющих соотношениям (10Б), подчиняются статистике Бозе - Эйнштейна. Соответствующие частицы называются бозонами. Кванты полей, удовлетворяющих (10Ф), подчиняются статистике Ферми - Дирака, а соответствующие частицы называются фермионами.  

Необходимо различать передачу взаимодействия посредством поля в макромире и микромире. В макромире применяется полевая, или квазирелятивистская, модель материи и взаимодействия: в систему входят тела и непрерывное поле, передающее взаимодействие между телами. В микромире применяется квантово-релятивистская модель: в систему входят только микрочастицы, в том числе кванты полей. В квазирелятивистском случае число материальных точек в системе и их масса сохраняются; в квантово-релятивистском - число частиц и их масса может изменяться в результате взаимодействия.  

Число полей, из к-рых строится модель, может не совпадать с числом сортом частиц прокваптованной системы, аналогично ситуации с квазичаетицами в статис-тич. С одной стороны, могут появляться связанные состояния, с другой - частиц, соответствующих исходным полям, может не быть. Такая ситуация имеет место в совр. Кванты полей, из которых: строится модель - кварки - не наблюдаются, а наблюдаемые адроны являются связанными состояниями кварков.  

Но обнаружение гравитационных волн, несомненно, повлечет за собой открытие квантов полей тяготения - гравитонов.  

Некоторые люди думают, что квант — это лишь некая единица мельчайших размеров, никоим образом не относящаяся к реальной жизни. Однако дела обстоят далеко не так. Он не является только уделом занятия ученых. Квантовая теория важна для всех людей, так как помогает расширить свое сознание, значительно раздвигая границы миропонимания и заглядывая в самую его глубину. В ней изучается как микромир, так и обычный окружающий нас мир, на который чудесным образом удается посмотреть совершенно по-иному.

Понятие

Квант — это не есть нечто незначительное, касаемое лишь микромира. Он помогает описать окружающую реальность, исходя из собственных состояний.

Далеко не только материя и физические поля являются основой нашего мира. Они — лишь частица огромной квантовой реальности. Поэтому в будущем еще предстоит осмыслить всю глубину и широту этого простого, казалось бы, объяснения.

Квант — это неделимая фундаментальная единица энергии (quantum в переводе с латинского означает «сколько», «количество»), которая поглощается или отдается физической величиной.

Вокруг идеи развилось целое направление, получившее название квантовой физики. О ней говорят как о науке будущего.

Квантовая и классическая физика

Для большинства сначала новое направление покажется абсурдным и нелогичным. Но после углубленного изучения понятия приобретают глобальный смысл. Квантовая физика с легкостью может объяснить то, что классической не под силу.

В последней считается, что природа неизменна вне зависимости от способов ее описания. Но в квантовой физике это не так. В ее основе лежат не являющиеся основой а принцип суперпозиции. Согласно ему, квант — это частица, которая может находиться одновременно и в одном, и в другом состоянии, а также в их сумме. Поэтому невозможно рассчитать точно, где он будет находиться в какой-то момент времени. Возможно лишь вычисление вероятности.

В ней строится не физического тела, как обычно, а распределение вероятностей, изменяющихся во времени.

В классической физике также присутствует вероятность, но только в том случае, если исследователь не знает свойств объекта. В квантовой науке присутствует в любом случае всегда.

В классической механике используются любые значения скорости и энергии. В новой — только такие, которым соответствует собственное состояние. Это так называемые квантованные, определенные значения.

Гипотеза Макса Планка

Тело, которое нагрето, отдает и поглощает свет определенными порциями, а не непрерывно. Квант энергии — это и есть те минимальные частицы, о которых идет речь.

Каждая порция прямо пропорциональна частоте излучения. Коэффициент пропорциональности был назван в честь его открывателя постоянной Планка (хотя к нему некоторое отношение имел и Эйнштейн). Она равна 6,6265*10(-34) Дж/с.

Такова была гипотеза, озвученная Максом Планком в 1900 году, на основе которой удалось вычислить закон распределения энергии в спектре, который хорошо соответствовал экспериментальным данным. Таким образом, квантовая гипотеза подтверждалась. Она стала настоящей революцией. Множество физиков подхватило эту гипотезу, и так стала развиваться квантовая наука.

и квантовая реальность

Далеко не одним только научным деятелям-теоретикам было интересно новое направление. Многие мистические явления стало возможно объяснить научно. Хотя некоторые называют это «псевдонаукой».

Тем не менее, люди, интересовавшиеся ею, могли расширить границы своего восприятия и увидеть или почувствовать запредельное.

Например, стало очевидным, что квант света — это передача энергии Вселенной в сознание через пространственно-временной континиум. Ведь он является излучением энергии-частоты, которую называют также огненными символами ДНК или световыми кодами. Они поступают на планету через поток энергетической частоты. На теле человека — через систему чакр.

Сознание и материя — это энергия-частота. Все чувства, мысли и эмоции генерируют импульсы электричества, которые формируют световое тело. В основном на Земле имеются очень низкочастотные вибрации. Но те люди, которые научились получать из Вселенной энергию, входящую в квант излучения, это духовно развивающиеся индивиды, которые формируют свое световое тело на высоких частотах. Они могут не только освободиться от негативных вибраций, господствующих на планете, но и очищать пространство вокруг себя, помогая таким образом другим людям перейти на новый уровень развития.

Квантовая теория поля
Quantum field theory

Квантовая теория поля (КТП) – теория релятивистских квантовых явлений, описывающая элементарные частицы, их взаимодействия и взаимопревращения на основе фундаментального и универсального понятия квантованного физического поля. КТП – наиболее фундаментальная физическая теория. Квантовая механика является частным случаем КТП при скоростях, много меньших скорости света. Классическая теория поля следует из КТП, если постоянную Планка устремить к нулю.
В основе КТП лежит представление о том, что все элементарные частицы являются квантами соответствующих полей. Понятие квантового поля возникло в результате развития представлений о классическом поле и частицах и синтеза этих представлений в рамках квантовой теории. С одной стороны квантовые принципы привели к пересмотру классических взглядов на поле как на непрерывно распределённый в пространстве объект. Возникло представление о квантах поля. С другой стороны частице в квантовой механике ставится в соответствие волновая функция ψ(x,t), имеющая смысл амплитуды волны, причем квадрат модуля этой амплитуды, т.е. величина | ψ| 2 даёт вероятность обнаружить частицу в той точке пространства-времени, которая имеет координаты x, t. В результате с каждой материальной частицей оказалось связано новое поле – поле амплитуд вероятности. Таким образом, на смену полям и частицам – принципиально разным объектам в классической физике – пришли единые физические объекты – квантовые поля в 4-х мерном пространстве-времени, по одному для каждого сорта частиц. Элементарное взаимодействие при этом рассматривается как взаимодействие полей в одной точке или мгновенное превращение в этой точке одних частиц в другие. Квантовое поле оказалось наиболее фундаментальной и универсальной формой материи, лежащей в основе всех её проявлений.

На основе такого подхода рассеяние двух электронов, испытавших электромагнитное взаимодействие, можно описать следующим образом (см. рисунок). Вначале были два свободных (невзаимодействующих) кванта электронного поля (два электрона), которые двигались навстречу друг другу. В точке 1 один из электронов испустил квант электромагнитного поля (фотон). В точке 2 этот квант электромагнитного поля был поглощён другим электроном. После этого электроны удалялись, не взаимодействуя. В принципе аппарат КТП позволяет рассчитывать вероятности переходов от исходной совокупности частиц к заданной совокупности конечных частиц под влиянием взаимодействия между ними.
В КТП наиболее фундаментальными (элементарными) полями в настоящее время являются поля, связанные с бесструктурными фундаментальными частицами со спином 1/2, - кварками и лептонами, и поля, связанные с квантами-переносчиками четырёх фундаментальных взаимодействий, т.е. фотоном, промежуточными бозонами, глюонами (имеющими спин 1) и гравитоном (спин 2), которые называют фундаментальными (или калибровочными) бозонами. Несмотря на то, что фундаментальные взаимодействия и соответствующие им калибровочные поля имеют некие общие свойства, в КТП эти взаимодействия представлены в рамках отдельных полевых теорий: квантовой электродинамики (КЭД), электрослабой теории или модели (ЭСМ), квантовой хромодинамики (КХД), а квантовой теории гравитационного поля пока не существует. Так КЭД – это квантовая теория электромагнитного поля и электронно-позитронного полей и их взаимодействий, а также электромагнитных взаимодействий других заряженных лептонов. КХД – квантовая теория глюонных и кварковых полей и их взаимодействий, обусловленных наличием у них цветовых зарядов.
Центральной проблемой КТП является проблема создания единой теории, объединяющей все квантовые поля.