Болезни Военный билет Призыв

Что такое криптология в информатике. Криптология: основные понятия. Криптология и криптография

Криптографические методы защиты информации

Проблема защиты информации путем ее преобразования, исключающего ее прочтение посторонним лицом, волновала человеческий ум с давних времен. История криптографии - ровесница истории человеческого языка. Более того, первоначально письменность сама по себе была криптографической системой, так как в древних обществах ею владели только избранные. Священные книги Древнего Египта, Древней Индии тому примеры.

Криптографическое закрытие является специфическим способом защиты информации, оно имеет многовековую историю развития и применения. В США в 1978 году утвержден и рекомендован для широкого применения национальный стандарт (DES) криптографического закрытия информации. Подобный стандарт в 1989 году (ГОСТ 28147-89) утвержден и у нас в стране. Интенсивно ведутся исследования с целью разработки высокостойких и гибких методов криптографического закрытия информации. Более того, сформировалось самостоятельное научное направление - криптология, изучающая и разрабатывающая научно-методологические основы, способы, методы и средства криптографического преобразования информации.

Можно выделить следующие три периода развития криптологии. Первый период - эра донаучной криптологии, являвшейся ремеслом - уделом узкого круга искусных умельцев. Началом второго периода можно считать 1949 год, когда появилась работа К. Шеннона «Теория связи в секретных системах», в которой проведено фундаментальное научное исследование шифров и важнейших вопросов их стойкости. Благодаря этому труду криптология оформилась как прикладная математическая дисциплина. И, наконец, начало третьему периоду было положено появлением в 1976 году работы У. Диффи, М. Хеллмана «Новые направления в криптографии», где показано, что секретная связь возможна без предварительной передачи секретного ключа. Так началось и продолжается до настоящего времени бурное развитие наряду с обычной классической криптографией и криптографии с открытым ключом.

Еще несколько веков назад само применение письменности можно было рассматривать как способ закрытия информации, так как владение письменностью было уделом немногих.

XX в. до н. э. При раскопках в Месопотамии был найден один из самых древних шифротекстов. Он был написан клинописью на глиняной табличке и содержал рецепт глазури для покрытия гончарных изделий, что, по-видимому, было коммерческой тайной. Известны древнеегипетские религиозные тексты и медицинские рецепты.

Середина IX в. до н. э. Именно в это время, как сообщает Плутарх, использовалось шифрующее устройство - скиталь, которое реализовывало так называемый шифр перестановки. При шифровании слова писались на узкую ленту, намотанную на цилиндр, вдоль образующей этого цилиндра (скиталя). После этого лента разматывалась, и на ней оставались переставленные буквы открытого текста. Неизвестным параметром-ключом в данном случае служил диаметр этого цилиндра. Известен и метод дешифрования такого шифротекста, предложенный Аристотелем, который наматывал ленту на конус, и то место, где появлялось читаемое слово или его часть, определяло неизвестный диаметр цилиндра.



56 г. н. э. Во время войны с галлами Ю. Цезарь использует другую разновидность шифра - шифр замены. Под алфавитом открытого текста писался тот же алфавит со сдвигом (у Цезаря на три позиции) по циклу. При шифровании буквы открытого текста у верхнего алфавита заменялись на буквы нижнего алфавита. Хотя этот шифр был известен до Ю. Цезаря, тем не менее, шифр был назван его именем.

Другим более сложным шифром замены является греческий шифр - «квадрат Полибия». Алфавит записывается в виде квадратной таблицы. При шифровании буквы открытого текста заменялись на пару чисел - номера столбца и строки этой буквы в таблице. При произвольном расписывании алфавита по таблице и шифровании такой таблицей короткого сообщения этот шифр является стойким даже по современным понятиям. Идея была реализована в более сложных шифрах, применявшихся во время Первой мировой войны.

Крах Римской империи в V в. н. э. сопровождался закатом искусства и наук, в том числе и криптографии. Церковь в те времена преследовала тайнопись, которую она считала чернокнижием и колдовством. Сокрытие мыслей за шифрами не позволяло церкви контролировать эти мысли.

Р. Бэкон (1214-1294) - францисканский монах и философ - описал семь систем секретного письма. Большинство шифров в те времена применялись для закрытия научных записей.

Вторая половина XVв. Леон Баттиста Альберта, архитектор и математик, работал в Ватикане, автор книги о шифрах, где описал шифр замены на основе двух концентрических кругов, по периферии которых были нанесены на одном круге - алфавит открытого текста, а на другом - алфавит шифротекста. Важно, что шифроалфавит был непоследовательным и мог быть смещен на любое количество шагов. Именно Альберта впервые применил для дешифрования свойство неравномерности встречаемости различных букв в языке. Он впервые также предложил для повышения стойкости применять повторное шифрование с помощью разных шифросистем.

Известен факт, когда король Франции Франциск I в 1546 году издал указ, запрещающий подданным использование шифров. Хотя шифры того времени были исключительно простыми, они считались нераскрываемыми.

Иоганн Тритемий (1462-1516) - монах-бенедиктинец, живший в Германии. Написал один из первых учебников по криптографии. Предложил оригинальный шифр многозначной замены под названием «Ave Maria». Каждая буква открытого текста имела не одну замену, а несколько, по выбору шифровальщика. Причем буквы заменялись буквами или словами так, что получался некоторый псевдооткрытый текст, тем самым скрывался сам факт передачи секретного сообщения. Разновидность шифра многозначной замены применяется до сих пор, например в архиваторе ARJ.

Джироламо Кардано (1506-1576) - итальянский математик, механик, врач - изобрел систему шифрования, так называемую решетку Кардано, на основе которой, например, был создан один из наиболее стойких военно-морских шифров Великобритании во время Второй мировой войны. В куске картона с размеченной решеткой определенным образом прорезались отверстия, нумерованные в произвольном порядке. Чтобы получить шифротекст, нужно положить этот кусок картона на бумагу и начинать вписывать в отверстия буквы в выбранном порядке. После снятия картона промежутки бессмысленного набора букв дописывались до псевдосмысловых фраз, так можно было скрыть факт передачи секретного сообщения. Скрытие легко достигается, если эти промежутки большие и если слова языка имеют небольшую длину, как, например, в английском языке. «Решетка Кардано» - это пример шифра перестановки.

XVI в. Шифры замены получили развитие в работах итальянца Джованни Батиста Порты (математик) и француза Блеза де Вижинера (дипломат).

Система Вижинера в том или ином виде используется до насто­ящего времени, поэтому ниже она будет рассмотрена достаточно детально.

XVII в. Кардинал Ришелье (министр при короле Франции Людо­вике XIII) создал первую в мире ифрслужбу.

Лорд Френсис Бэкон (1562-1626) был первым, кто обозначил буквы 5-значным двоичным кодом: А = 00001, В = 00010, ... и т. д. Правда, Бэкон никак не обрабатывал этот код, поэтому такое закрытие было совсем нестойким. Просто интересно, что через три века этот принцип был положен в основу электрической и электронной связи. Тут уместно вспомнить коды Морзе, Бодо, международный телеграфный код № 2 (МККТТ-2), код ASCII, также представляющие собой простую замену.

В XVII же веке были изобретены так называемые словарные шифры. При шифровании буквы открытого текста обозначались двумя числами - номером строки и номером буквы в строке на определенной странице какой-нибудь выбранной распространенной книги. Эта система является довольно стойкой, но неудобной. К тому же книга может попасть в руки противника.

К. Гаусс (1777-1855) - великий математик тоже не обошел своим вниманием криптологию. Он создал шифр, который ошибочно считал нераскрываемым. При его создании использовался интересный прием - рандомизация (random - случайный) открытого текста. Открытый текст можно преобразовать в другой текст, содержащий символы большего алфавита, путем замены часто встречающихся букв случайными символами из соответствующих определенных им групп. В получающемся тексте все символы большого алфавита встречаются с примерно одинаковой частотой. Зашифрованный таким образом текст противостоит методам раскрытия на основе анализа частот появления отдельных символов. После расшифрования законный получатель легко снимает рандомизацию. Такие шифры называют «шифрами с многократной подстановкой» или «равночастотными шифрами».

Как известно, до недавнего времени криптографические средства использовались преимущественно (если не всецело) для сохранения государственной тайны, поэтому сами средства разрабатывались специальными органами, причем использовались криптосистемы очень высокой стойкости, что, естественно, сопряжено было с большими затратами. Однако, поскольку сфера защиты информации в настоящее время резко расширяется, становится весьма целесообразным системный анализ криптографических средств с учетом возможности и целесообразности их широкого применения для сохранения различных видов секретов и в различных условиях. Кроме того, в последние годы интенсивно разрабатываются новые способы криптографического преобразования данных, которые могут найти более широкое по сравнению с традиционным применение.

Криптографические методы защиты информации могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несанкционированного доступа к информации имеет многовековую историю. В настоящее время разработано большое количество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации.

Почему проблема использования криптографических методов в информационных системах (ИС) стала в настоящий момент особо актуальна?

С одной стороны, расширилось использование компьютерных сетей, в частности глобальной сети Интернет, по которым передаются большие объемы информации государственного, военного, коммерческого и частного характера, не допускающего возможность доступа к ней посторонних лиц.

С другой стороны, появление новых мощных компьютеров, технологий сетевых и нейронных вычислений сделало возможным дискредитацию криптографических систем, еще недавно считавшихся практически не раскрываемыми.

Проблемой защиты информации путем ее преобразования занимается криптология (kryptos - тайный, logos - наука).

Криптология – это наука, изучающая и разрабатывающая научно-методологические основы, способы, методы и средства криптографического преобразования информации.

Криптология разделяется на два направления - криптографию и криптоанализ. Цели этих направлений прямо противоположны.

Криптография занимается поиском и исследованием математических методов преобразования информации.

Криптоанализ - исследование возможности расшифровывания информации без знания ключей.

Современная криптография включает в себя четыре крупных раздела:

1. Симметричные криптосистемы.

2. Криптосистемы с открытым ключом.

3. Системы электронной подписи.

4. Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Криптографические методы защиты информации в автоматизированных системах могут применяться как для защиты информа­ции, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несанкционированного доступа к информации имеет многовековую историю. В настоящее время разработано большое количество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации.

"Каждый, кто думает, что изобрел

непробиваемую схему шифрования,-

или невероятно редкий гений

или просто наивен и неопытен…"

Ф.Циммерман

Криптология - это область знаний, изучающая науку о шифрах (криптографию) и методы раскрытия этих шифров (криптоанализ). Очень часто под криптологией понимают лишь криптографию. Это не совсем правильно. Криптография изучает и применяет такие методы преобразования информации, которые не позволили бы злоумышленнику извлечь ее из перехваченных незаконным путем сообщений. Криптоанализ же, наоборот, рассматривает процесс получения информации из шифрованных сообщений. Криптография и криптоанализ - это две ветви одной науки, преследующие прямо противоположные цели. Однако эти две дисциплины связаны друг с другом, и не бывает хороших криптографов, не владеющих методами криптоанализа.

Потребность шифровать и передавать шифрованные сообщения возникла очень давно. Первые упоминания об использовании шифров греками относятся к V-VI веку до н.э. После, на протяжении более чем двухтысячелетней истории, криптография была искусством засекречивания важной в основном государственной информации, и поэтому обслуживала практически исключительно нужды военных и дипломатов. При этом сами приемы шифрования и дешифрования держались в секрете.

Криптология послужила толчком к развитию всей современной вычислительной техники: первые ЭВМ Colossus и ENIAC были созданы специально для криптоанализа шифров военного времени. Теория информации была создана Шенноном в результате работ в области криптологии. Известный криптолог Рональд Райвест сказал, что криптология была "повивальной бабкой" всей computer science.

Компьютерная революция начиная с середины ХХ века потребовала гражданской криптографии для защиты огромного количества персональной, коммерческой, финансовой и технологической информации. Криптография начинает оформляться в новую математическую теорию и становится объектом интенсивного математического изучения.

В течение столетий основной задачей, стоявшей перед криптологией, была задача обеспечения конфиденциальности, то есть обеспечение секретности информации при передаче по незащищенным каналам. Способность шифра противостоять всевозможным атакам на него называют стойкостью шифра. Это понятие является центральным в криптографии. До недавнего времени стойкость шифра оценивалась по числу усилий потраченных при неудачных попытках его раскрытия. С середины ХХ века начались поиски объективных критериев надежности криптосистем, и криптология перешла из древнего искусства в современную точную науку. В последние десятилетия уходящего века обоснование надежности систем исходит из теории сложности вычислений. И хотя качественно понять, что такое стойкость шифра легко, но получение строгих доказуемых оценок стойкости для каждого конкретного шифра - задача нерешенная.

Новое дыхание криптология получила в 1976 году, когда была предложена концепция открытого шифрования: шифрование стало доступно любому желающему, дешифрование - только законному пользователю. Важность этого открытия трудно переоценить: развитие идей открытого шифрования привело к разработке систем электронной цифровой подписи, открытого распределения ключей, методов проверки подлинности.

Успехи, достигнутые при разработке схем цифровой подписи и открытого распределения ключей, позволили решать задачи взаимодействия удаленных абонентов. Так возникло новое направление - криптографические протоколы - распределенные алгоритмы решения криптозадач. Вот несколько проблем, решаемых с помощью протоколов: подписание контракта недоверяющими друг другу абонентами, идентификация абонентов и аутентификация, разделение секрета между несколькими пользователями. Развитие и осмысление различных протоколов привело к появлению новой математической модели - доказательства с нулевым разглашением. Его первым практическим применением стали smart-карты.

С каждым днем потребность в защите информации все возрастает, что связано с бурным развитием вычислительной техники и средств связи. Во многих областях одной из основных становится проблема обеспечения целостности информации, то есть защита от попыток уничтожения или изменения защищаемой информации. Типичный пример прикладной области, где целостность иногда важнее секретности, - автоматизированные системы банковских расчетов.

В последнее время в связи с развитием электронной торговли и оказанием дистанционных платных услуг возникла еще одна криптографическая задача - обеспечение неотслеживаемости, то есть невозможности определения личности клиента, если он этого не желает. Решение этих задач связано с разработкой электронного денежного оборота: электронных денег, электронных бумажников и т.д. Сегодня криптология переживает бум. Но не смотря на это, криптоалгоритмы остаются тайной за семью печатями для большинства рядовых потребителей. На естественный вопрос пользователя - дает ли данное криптографическое средство надежную защиту - очень часто нельзя дать ни отрицательного, ни положительного ответа.

Хотя внутренне криптология весьма сложна, многие ее теоретические достижения сейчас широко используются в нашей насыщенной информационными технологиями жизни: smart-картах, электронной почте, системах банковских платежей, электронной торговле через Internet, системах документооборота, базах данных, системах электронного голосования и многих других. Соотношение между внутренней сложностью криптологии и ее практической применимости поистине уникально.

Для профессионального понимания криптоалгоритмов, умения оценивать их сильные и слабые стороны, а тем более строить их самому, необходима, конечно же, серьезная подготовка университетского уровня - как математическая, так и физическая. Связано это с тем, что современная криптология как наука основывается на понятиях, фактах и самых последних достижениях фундаментальных наук: математики, теории информации, теории сложности вычислений, алгоритмики, электроники, физики и др. Для построения хорошей криптосистемы недостаточно объединить несколько хитроумных схем. Необходимо понимать, как все это будет взаимодействовать, какие последствия это может иметь, что может предпринять противник. Специалист в области криптологии одновременно и криптограф, и криптоаналитик.

В ближайшее время важность и значение криптологии будет только возрастать, так как неизбежен переход нашего постиндустриального общества к информационному. Уже сегодня люди, владеющие методами защиты информации, широко востребованы. В будущем же спрос на специалистов высокой квалификации, которые свободно ориентируются в области обеспечения безопасности и которые могут вести самостоятельные исследования, будет неуклонно увеличиваться.

Криптология - интересная и сложная наука, но ей можно и нужно учиться!

Тайные зашифрованные сообщения с целью защиты содержания текста возникли еще в глубокой древности на заре цивилизации. Имеются свидетельства, что способы тайного письма были известны уже древним цивилизациям Индии, Египта и Месопотамии.

В наше время методами шифрования и дешифрования занимается наука криптология (от др.-греч. κρυπτoς - скрытый и λoγος - слово). Криптология состоит из двух частей - криптографии и криптоанализа. Криптография занимается разработкой методов шифрования данных, в то время как криптоанализ занимается оценкой сильных и слабых сторон методов шифрования, а также разработкой методов, позволяющих взламывать криптосистемы.

Слово «криптология» (англ. cryptology) встречается в английском языке с XVII века, и изначально означало «скрытность в речи»; в современном значении было введено американским учёным Уильямом Фридманом и популяризовано писателем Дэвидом Каном.

Историю криптографии, насчитывающую около 4 тысяч лет, в зависимости от используемых методов шифрования можно разделить на несколько периодов.

Первый период (приблизительно с III тысячелетия до н. э.) характеризуется господством моноалфавитных шифров (основной принцип - замена алфавита исходного текста другим алфавитом через замену букв другими буквами или символами).

Второй период (с IX века на Ближнем Востоке (Ал-Кинди) и с XV века в Европе (Леон Баттиста Альберти) - до начала XX века) ознаменовался введением в обиход полиалфавитных шифров.

Третий период (с начала и до середины XX века) характеризуется внедрением электромеханических устройств в работу шифровальщиков. При этом продолжалось использование полиалфавитных шифров.

Четвёртый период (с середины до 70-х годов XX века) - период перехода к математической криптографии. В работе Шеннона появляются строгие математические определения количества информации, передачи данных, энтропии, функций шифрования. Обязательным этапом создания шифра считается изучение его уязвимости к различным известным атакам - линейному и дифференциальному криптоанализу. Однако до 1975 года криптография оставалась «классической» (криптографией с секретным ключом).

Пятый, современный период развития криптографии (с конца 1970-х годов по настоящее время) отличается зарождением криптографии с открытым ключом. Её появление знаменуется не только новыми техническими возможностями, но и сравнительно широким распространением криптографии для использования частными лицами. Правовое регулирование использования криптографии частными лицами в разных странах сильно различается - от разрешения до полного запрета.

Современная криптография образует отдельное научное направление на стыке математики и информатики - работы в этой области публикуются в научных журналах, организуются регулярные конференции. Практическое применение криптографии стало неотъемлемой частью жизни современного общества - её используют в таких отраслях, как электронная коммерция, электронный документооборот (включая цифровые подписи), телекоммуникации и других.

Криптология разделяется на два направления - криптографию и криптоанализ . Цели этих направлений прямо противоположны. Криптография занимается поиском и исследованием математических методов преобразования информации.

Сфера интересов криптоанализа - исследование возможности расшифровывания информации без знания ключей.

Современная криптография включает в себя четыре крупных раздела:

  • 1. Симметричные криптосистемы.
  • 2. Криптосистемы с открытым ключом.
  • 3. Системы электронной подписи.
  • 4. Управление ключами.

Основные направления использования криптографических методов - передача конфиденциальной информации по каналам связи (например, электронная почта), установление подлинности передаваемых сообщений, хранение информации (документов, баз данных) на носителях в зашифрованном виде.

Криптографические методы защиты информации в автоматизированных системах могут применяться как для защиты информации, обрабатываемой в ЭВМ или хранящейся в различного типа ЗУ, так и для закрытия информации, передаваемой между различными элементами системы по линиям связи. Криптографическое преобразование как метод предупреждения несанкционированного доступа к информации имеет многовековую историю. В настоящее время разработано большое количество различных методов шифрования, созданы теоретические и практические основы их применения. Подавляющие число этих методов может быть успешно использовано и для закрытия информации.

Итак, криптография дает возможность преобразовать информацию таким образом, что ее прочтение (восстановление) возможно только при знании ключа.

В качестве информации, подлежащей шифрованию и дешифрованию, рассматриваются тексты , построенные на некотором алфавите . Под этими терминами понимается следующее.

Алфавит - конечное множество используемых для кодирования информации знаков.

Текст - упорядоченный набор из элементов алфавита.

В качестве примеров алфавитов, используемых в современных ИС можно привести следующие:

  • - алфавит Z33 - 32 буквы русского алфавита и пробел;
  • - алфавит Z256 - символы, входящие в стандартные коды ASCII и КОИ-8;
  • - бинарный алфавит - Z2 = {0,1};
  • - восьмеричный алфавит или шестнадцатеричный алфавит;

Шифрование - преобразовательный процесс: исходный текст , который носит также название открытого текста , заменяется шифрованным текстом .

Дешифрование - обратный шифрованию процесс. На основе ключа шифрованный текст преобразуется в исходный.

Ключ - информация, необходимая для беспрепятственного шифрования и дешифрования текстов.

Криптографическая система представляет собой семейство T преобразований открытого текста. Члены этого семейства индексируются, или обозначаются символом k ; параметр k является ключом . Пространство ключей K - это набор возможных значений ключа. Обычно ключ представляет собой последовательный ряд букв алфавита.

Криптосистемы разделяются на симметричные и с открытым ключом .

В симметричных криптосистемах и для шифрования, и для дешифрования используется один и тот же ключ .

В системах с открытым ключом используются два ключа - открытый и закрытый , которые математически связаны друг с другом. Информация шифруется с помощью открытого ключа, который доступен всем желающим, а расшифровывается с помощью закрытого ключа, известного только получателю сообщения.

Термины распределение ключей и управление ключами относятся к процессам системы обработки информации, содержанием которых является составление и распределение ключей между пользователями.

Электронной (цифровой) подписью называется присоединяемое к тексту его криптографическое преобразование, которое позволяет при получении текста другим пользователем проверить авторство и подлинность сообщения.

Криптостойкостью называется характеристика шифра, определяющая его стойкость к дешифрованию без знания ключа(т.е. криптоанализу). Имеется несколько показателей криптостойкости, среди которых:

  • -количество всех возможных ключей;
  • -среднее время, необходимое для криптоанализа.

Преобразование Tk определяется соответствующим алгоритмом и значением параметра k . Эффективность шифрования с целью защиты информации зависит от сохранения тайны ключа и криптостойкости шифра.

Процесс криптографического закрытия данных может осуществляться как программно, так и аппаратно. Аппаратная реализация отличается существенно большей стоимостью, однако ей присущи и преимущества: высокая производительность, простота, защищенность и т.д. Программная реализация более практична, допускает известную гибкость в использовании.