Болезни Военный билет Призыв

Что спектральная плотность энергетической светимости. Законы излучения черного тела. Основные понятия и формулы

Энергетическая светимость тела R Т , численно равна энергии W , излучаемой телом во всем диапазоне длин волн (0 с единицы поверхности тела, в единицу времени, при температуре телаТ , т.е.

Испускательная способность тела rl ,Т численно равна энергии тела dWl , излучаемой телом c единицы поверхности тела, за единицу времени при температуре тела Т, в диапазоне длин волн от lдо l+dl, т.е.

Эту величину называют также спектральной плотностью энергетической светимости тела.

Энергетическая светимость связана с испускательной способностью формулой

Поглощательная способность тела al ,T - число, показывающее, какая доля энергии излучения, падающего на поверхность тела, поглощается им в диапазоне длин волн от l до l+dl, т.е.

Тело, для которого al ,T =1 во всем диапазоне длин волн, называется абсолютно черным телом (АЧТ).

Тело, для которого al ,T =const<1 во всем диапазоне длин волн называют серым.

где- спектральная плотность энергетической светимости, или лучеиспускательная способность тела .

Опыт показывает, что лучеиспускательная способность тела зависит от температуры тела (для каждой температуры максимум излучения лежит в своей области частот). Размерность .



Зная лучеиспускательную способность, можно вычислить энергетическую светимость:

называется поглощательной способностью тела . Она также сильно зависит от температуры.

По определению не может быть больше единицы. Для тела, полностью поглощающего излучения всех частот, . Такое тело называется абсолютно черным (это идеализация).

Тело, для которого и меньше единицы для всех частот , называется серым телом (это тоже идеализация).

Между испускательной и поглощательной способностью тела существует определенная связь. Мысленно проведем следующий эксперимент (рис. 1.1).

Рис. 1.1

Пусть внутри замкнутой оболочки находятся три тела. Тела находятся в вакууме, следовательно обмен энергией может происходить только за счет излучения. Опыт показывает, что такая система через некоторое время придет в состояние теплового равновесия (все тела и оболочка будут иметь одну и ту же температуру).

В таком состоянии тело, обладающее большей лучеиспускательной способностью, теряет в единицу времени и больше энергии, но, следовательно это тело должно обладать и большей поглощающей способностью:

Густав Кирхгоф в 1856 году сформулировал закон и предложил модель абсолютно черного тела .

Отношение лучеиспускательной к поглощательной способности не зависит от природы тела, оно является для всех тел одной и той же (универсальной ) функцией частоты и температуры.

, (1.2.3)

где – универсальная функция Кирхгофа.

Эта функция имеет универсальный, или абсолютный, характер.

Сами величины и, взятые отдельно, могут изменяться чрезвычайно сильно при переходе от одного тела к другому, но их отношение постоянно для всех тел (при данной частоте и температуре).

Для абсолютно черного тела, следовательно, для него, т.е. универсальная функция Кирхгофа есть не что иное, как лучеиспускательная способность абсолютно черного тела.

Абсолютно черных тел в природе не существует. Сажа или платиновая чернь имеют поглощающую способность, но только в ограниченном интервале частот. Однако полость с малым отверстием очень близка по своим свойствам к абсолютно черному телу. Луч, попавший внутрь, после многократных отражений обязательно поглощается, причём луч любой частоты (рис. 1.2).

Рис. 1.2

Лучеиспускательная способность такого устройства (полости) очень близка к f (ν,,T ). Таким образом, если стенки полости поддерживаются при температуре T , то из отверстия выходит излучение весьма близкое по спектральному составу к излучению абсолютно черного тела при той же температуре.

Разлагая это излучение в спектр, можно найти экспериментальный вид функции f (ν,,T )(рис. 1.3), при разных температурах Т 3 > Т 2 > Т 1 .

Рис. 1.3

Площадь, охватываемая кривой, дает энергетическую светимость абсолютно черного тела при соответствующей температуре.

Эти кривые одинаковы для всех тел.

Кривые похожи на функцию распределения молекул по скоростям. Но там площади, охватываемые кривыми, постоянны, а здесь с увеличением температуры площадь существенно увеличивается. Это говорит о том, что энергетическая совместимость сильно зависит от температуры. Максимум излучения (излучательной способности) с увеличением температурысмещается в сторону больших частот.

Законы теплового излучения

Любое нагретое тело излучает электромагнитные волны. Чем выше температура тела, тем более короткие волны оно испускает. Тело, находящееся в термодинамическом равновесии со своим излучением, называют абсолютно черным (АЧТ). Излучение абсолютно черного тела зависит только от его температуры. В 1900 году Макс Планк вывел формулу, по которой при заданной температуре абсолютно черного тела можно рассчитать величину интенсивности его излучения.

Австрийскими физиками Стефаном и Больцманом был установлен закон, выражающий количественное соотношение между полной излучательной способностью и температурой черного тела:

Этот закон носит название закон Стефана–Больцмана . Константа σ = 5,67∙10 –8 Вт/(м 2 ∙К 4) получила названиепостоянной Стефана–Больцмана .

Все планковские кривые имеют заметно выраженный максимум, приходящийся на длину волны

Этот закон получил название закон Вина . Так, для Солнца Т 0 = 5 800 К, и максимум приходится на длину волныλ max ≈ 500 нм, что соответствует зеленому цвету в оптическом диапазоне.

С увеличением температуры максимум излучения абсолютно черного тела сдвигается в коротковолновую часть спектра. Более горячая звезда излучает большую часть энергии в ультрафиолетовом диапазоне, менее горячая – в инфракрасном.

Фотоэффект. Фотоны

Фотоэлектрический эффект был открыт в 1887 году немецким физиком Г. Герцем и в 1888–1890 годах экспериментально исследован А. Г. Столетовым. Наиболее полное исследование явления фотоэффекта было выполнено Ф. Ленардом в 1900 г. К этому времени уже был открыт электрон (1897 г., Дж. Томсон), и стало ясно, что фотоэффект (или точнее – внешний фотоэффект) состоит в вырывании электронов из вещества под действием падающего на него света.

Схема экспериментальной установки для исследования фотоэффекта изображена на рис. 5.2.1.

В экспериментах использовался стеклянный вакуумный баллон с двумя металлическими электродами, поверхность которых была тщательно очищена. К электродам прикладывалось некоторое напряжение U , полярность которого можно было изменять с помощью двойного ключа. Один из электродов (катод K) через кварцевое окошко освещался монохроматическим светом некоторой длины волны λ. При неизменном световом потоке снималась зависимость силы фототока I от приложенного напряжения. На рис. 5.2.2 изображены типичные кривые такой зависимости, полученные при двух значениях интенсивности светового потока, падающего на катод.

Кривые показывают, что при достаточно больших положительных напряжениях на аноде A фототок достигает насыщения, так как все электроны, вырванные светом из катода, достигают анода. Тщательные измерения показали, что ток насыщения I н прямо пропорционален интенсивности падающего света. Когда напряжение на аноде отрицательно, электрическое поле между катодом и анодом тормозит электроны. Анода могут достичь только те электроны, кинетическая энергия которых превышает |eU |. Если напряжение на аноде меньше, чем –U з, фототок прекращается. Измеряя U з, можно определить максимальную кинетическую энергию фотоэлектронов:

Многочисленными экспериментаторами были установлены следующие основные закономерности фотоэффекта:

  1. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с увеличением частоты света ν и не зависит от его интенсивности.
  2. Для каждого вещества существует так называемая красная граница фотоэффекта , т. е. наименьшая частота ν min , при которой еще возможен внешний фотоэффект.
  3. Число фотоэлектронов, вырываемых светом из катода за 1 с, прямо пропорционально интенсивности света.
  4. Фотоэффект практически безынерционен, фототок возникает мгновенно после начала освещения катода при условии, что частота света ν > ν min .

Все эти закономерности фотоэффекта в корне противоречили представлениям классической физики о взаимодействии света с веществом. Согласно волновым представлениям при взаимодействии с электромагнитной световой волной электрон должен был бы постепенно накапливать энергию, и потребовалось бы значительное время, зависящее от интенсивности света, чтобы электрон накопил достаточно энергии для того, чтобы вылететь из катода. Как показывают расчеты, это время должно было бы исчисляться минутами или часами. Однако, опыт показывает, что фотоэлектроны появляются немедленно после начала освещения катода. В этой модели также было невозможно понять существование красной границы фотоэффекта. Волновая теория света не могла объяснить независимость энергии фотоэлектронов от интенсивности светового потока и пропорциональность максимальной кинетической энергии частоте света.

Таким образом, электромагнитная теория света оказалась неспособной объяснить эти закономерности.

Выход был найден А. Эйнштейном в 1905 г. Теоретическое объяснение наблюдаемых закономерностей фотоэффекта было дано Эйнштейном на основе гипотезы М. Планка о том, что свет излучается и поглощается определенными порциями, причем энергия каждой такой порции определяется формулой E = h ν, где h – постоянная Планка. Эйнштейн сделал следующий шаг в развитии квантовых представлений. Он пришел к выводу, что свет имеет прерывистую (дискретную) структуру . Электромагнитная волна состоит из отдельных порций – квантов , впоследствии названных фотонами . При взаимодействии с веществом фотон целиком передает всю свою энергию h νодному электрону. Часть этой энергии электрон может рассеять при столкновениях с атомами вещества. Кроме того, часть энергии электрона затрачивается на преодоление потенциального барьера на границе металл–вакуум. Для этого электрон должен совершить работу выхода A , зависящую от свойств материала катода. Наибольшая кинетическая энергия, которую может иметь вылетевший из катода фотоэлектрон, определяется законом сохранения энергии:

Эту формулу принято называть уравнением Эйнштейна для фотоэффекта .

С помощью уравнения Эйнштейна можно объяснить все закономерности внешнего фотоэффекта. Из уравнения Эйнштейна следуют линейная зависимость максимальной кинетической энергии от частоты и независимость от интенсивности света, существование красной границы, безынерционность фотоэффекта. Общее число фотоэлектронов, покидающих за 1 с поверхность катода, должно быть пропорционально числу фотонов, падающих за то же время на поверхность. Из этого следует, что ток насыщения должен быть прямо пропорционален интенсивности светового потока.

Как следует из уравнения Эйнштейна, тангенс угла наклона прямой, выражающей зависимость запирающего потенциала U з от частоты ν (рис. 5.2.3), равен отношению постоянной Планка h к заряду электрона e :

где c – скорость света, λ кр – длина волны, соответствующая красной границе фотоэффекта. У большинства металлов работа выхода A составляет несколько электрон-вольт (1 эВ = 1,602·10 –19 Дж). В квантовой физике электрон-вольт часто используется в качестве энергетической единицы измерения. Значение постоянной Планка, выраженное в электрон–вольтах в секунду, равно

Среди металлов наименьшей работой выхода обладают щелочные элементы. Например, у натрия A = 1,9 эВ, что соответствует красной границе фотоэффекта λ кр ≈ 680 нм. Поэтому соединения щелочных металлов используют для создания катодов в фотоэлементах , предназначенных для регистрации видимого света.

Итак, законы фотоэффекта свидетельствуют, что свет при испускании и поглощении ведет себя подобно потоку частиц, получивших название фотонов или световых квантов .

Энергия фотонов равна

следует, что фотон обладает импульсом

Таким образом, учение о свете, совершив виток длительностью в два столетия, вновь возвратилось к представлениям о световых частицах – корпускулах.

Но это не был механический возврат к корпускулярной теории Ньютона. В начале XX века стало ясно, что свет обладает двойственной природой. При распространении света проявляются его волновые свойства (интерференция, дифракция, поляризация), а при взаимодействии с веществом – корпускулярные (фотоэффект). Эта двойственная природа света получила название корпускулярно-волнового дуализма . Позже двойственная природа была открыта у электронов и других элементарных частиц. Классическая физика не может дать наглядной модели сочетания волновых и корпускулярных свойств у микрообъектов. Движением микрообъектов управляют не законы классической механики Ньютона, а законы квантовой механики. Теория излучения абсолютно черного тела, развитая М. Планком, и квантовая теория фотоэлектрического эффекта Эйнштейна лежат в основании этой современной науки.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ Закон Стефана Больцмана Связь энергетической светимости R e и спектральной плотности энергетической светимости абсолютно черного тела Энергетическая светимость серого тела Закон смещения Вина (1-ый закон) Зависимость максимальной спектральной плотности энергетической светимости черного тела от температуры (2-ой закон) Формула Планка


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 1. Максимум спектральной плотности энергетической светимости Солнца приходится на длину волны = 0,48 мкм. Считая, что Солнце излучает как черное тело, определить: 1) температуру его поверхности; 2) мощность, излучаемую его поверхностью. Согласно закону смещения Вина Мощность, излучаемая поверхностью Солнца Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 2. Определить количество теплоты, теряемое 50 см 2 с поверхности расплавленной платины за 1 мин, если поглощательная способность платины А Т = 0,8. Температура плавления платины равна 1770 °С. Количество теплоты, теряемое платиной равно энергии, излучаемой ее раскаленной поверхностью Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 3. Электрическая печь потребляет мощность Р = 500 Вт. Температура ее внутренней поверхности при открытом небольшом отверстии диаметром d = 5,0 см равна 700 °С. Какая часть потребляемой мощности рассеивается стенками? Полная мощность определяется суммой Мощность, выделяемая через отверстие Мощность рассеиваемая стенками Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 4 Вольфрамовая нить накаливается в вакууме током силой I = 1 А до температуры T 1 = 1000 К. При какой силе тока нить накалится до температуры Т 2 = 3000 К? Коэффициенты поглощения вольфрама и его удельные сопротивления, соответствующие температурам T 1, Т 2 равны: a 1 = 0,115 и a 2 = 0,334; 1 = 25, Ом м, 2 = 96, Ом м Мощность излучаемая равна мощности потребляемой от электрической цепи в установившемся режиме Электрическая мощность выделяемая в проводнике Согласно закону Стефана Больцмана,


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 5. В спектре Солнца максимум спектральной плотности энергетической светимости приходится на длину волны.0 = 0,47 мкм. Приняв, что Солнце излучает как абсолютно черное тело, найти интенсивность солнечной радиации (т. е. плотность потока излучения) вблизи Земли за пределами ее атмосферы. Сила света (интенсивность излучения) Световой поток Согласно законам Стефана Больцмана и Вина


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 6. Длина волны 0, на которую приходится максимум энергии в спектре излучения черного тела, равна 0,58 мкм. Определить максимальную спектральную плотность энергетической светимости (r,T) max, рассчитанную на интервал длин волн = 1 нм, вблизи 0. Максимальная спектральная плотность энергетической светимости пропорциональна пятой степени температуры и выражается 2-ым законом Вина Температуру Т выразим из закона смещения Вина значение С дано в единицах СИ, в которых единичный интервал длин волн =1 м. По условию же задачи требуется вычислить спектральную плотность энергетической светимости, рассчитанную на интервал длин волн 1 нм, поэтому выпишем значение С в единицах СИ и пересчитаем его на заданный интервал длин волн:


ТЕПЛОВОЕ ИЗЛУЧЕНИЕ 7. Исследование спектра излучения Солнца показывает, что максимум спектральной плотности энергетической светимости соответствует длине волны =500 нм. Принимая Солнце за черное тело, определить: 1) энергетическую светимость R e Солнца; 2) поток энергии Ф е, излучаемый Солнцем; 3) массу электромагнитных волн (всех длин), излучаемых Солнцем за 1 с. 1. Согласно законам Стефана Больцмана и Вина 2. Световой поток 3. Массу электромагнитных волн (всех длин), излучаемых Солнцем за время t=1 с, определим, применив закон пропорциональности массы и энергии Е=мс 2. Энергия электромагнитных волн, излучаемых за время t, равна произведению потока энергии Ф e ((мощности излучения) на время: E=Ф e t. Следовательно, Ф е =мс 2, откуда m=Ф е /с 2.

Примеры решения задач. Пример 1. Максимум спектральной плотности энергетической светимости Солнца приходится на длину волны =0,48 мкм

Пример 1. Максимум спектральной плотности энергетической светимости Солнца приходится на длину волны =0,48 мкм. Считая, что Солнце излучает как черное тело, определить: 1) температуру его поверхности; 2) мощность, излучаемую его поверхностью.

Согласно закону смещения Вина, искомая температура поверхности Солнца:

где b= - постоянная Вина.

Мощность, излучаемая поверхностью Солнца:

где - энергетическая светимость черного тела (Солнца), - площадь поверхности Солнца, - радиус Солнца.

Согласно закону Стефана - Больцмана:

где = Вт/ - постоянная Стефана - Больцмана.

Подставим записанные выражения в формулу (2), найдем искомую мощность, излучаемую поверхностью Солнца:

Вычисляя, получим: Т=6,04 кК; Р= Вт.

Пример 2. Определить длину волны , массу и импульс фотона с энергией = 1 МэВ.

Энергия фотона связана с дли- ной волны света соотношением: ,

где h – постоянная Планка, с – скорость света в вакууме. Отсюда .

Подставив численные значения, получим: м.

Массу фотона определим, используя формулу Эйнштейна . Масса фотона = кг.

Импульс фотона = кг м/с.

Пример 3. Натриевый катод вакуумного фотоэлемента освещается монохроматическим светом с длиной волны =40 нм. Определить задерживающее напряжение, при котором фототок прекращается. "Красная граница" фотоэффекта для натрия =584 нм.

Электрическое поле, препят- ствующее движению электронов от катода к аноду, называют обратным. Напряжение, при котором фототок полностью прекращается, называется задерживающим напряжением. При таком задерживающем напряжении ни один из электронов, даже обладающий при вылете из катода максимальной скоростью , не может преодолеть задерживающего поля и достигнуть анода. При этом начальная кинетическая энергия фотоэлектронов () переходит в потенциальную ( , где е= Кл – элементарный заряд, а - наименьшее задерживающее напряжение). По закону сохранения энергии

Кинетическую энергию электронов найдем, используя уравнение Эйнштейна для внешнего фотоэффекта:

Отсюда (3)

Работа выхода электронов А в определяется красной границей фотоэффекта:

Подставив выражение (4) в уравнение (3), получим:

Тогда, из уравнения (1) .

Вычисляя, получим В.

Пример 4. Кинетическая энергия протона в четыре раза меньше его энергии покоя. Вычислить длину волны де Бройля для протона.

Длина волны де Бройля определяется по формуле: , (1)

где h – постоянная Планка, - импульс частицы.

По условию задачи кинетическая энергия протона сравнима по величине с его энергией покоя Е 0 . Следовательно, импульс и кинетическая энергия связаны между собой релятивистским соотношением:

где с – скорость света в вакууме.

Используя условие задачи, получим: . Подставив полученное выражение в формулу (1), найдем длину волны де Бройля:

Энергию покоя электрона найдем по формуле Эйнштейна , где m 0 - масса покоя электрона, с - скорость света в вакууме.

Подставив числовые значения, получим: м.

Пример 5. Электронный пучок ускоряется в электронно-лучевой трубке разностью потенциалов U=0,5 кВ. Принимая, что неопределенность импульса электрона равна 0,1 % от его числового значения, определить неопределенность координаты электрона. Является ли в данных условиях электрон квантовой или классической частицей?

В направлении движения пучка электронов (ось X) соотношение неопределенностей имеет вид:

где - неопределенность координаты электрона; - неопределенность его импульса; - постоянная Планка.

Пройдя ускоряющую разность потенциалов, электрон приобретает кинетическую энергию , равную работе сил электрического поля:

Расчет дает значение Е к =500 эВ, что много меньше энергии покоя электрона (Е 0 = 0,51 Мэв). Следовательно, в данных условиях электрон является нерелятивистской частицей, имеющей импульс, связанный с кинетической энергией формулой .

Согласно условию задачи, неопределенность импульса =0,001 = , т.е. << .

Это значит, что волновые свойства в данных условиях несущественны и электрон может рассматриваться как классическая частица. Из выражения (1) следует, что искомая неопределенность координаты электрона

Вычислив, получим 8,51 нм.

Пример 6. В результате перехода из одного стационарного состояния в другое атомом водорода был испущен квант с частотой . Найти, как изменились радиус орбиты и скорость движения электрона, используя теорию Бора.

Излучение с частотой соответствует длине волны = =102,6 нм (с – скорость света в вакууме), лежащей в ультрафиолетовой области. Следовательно, спектральная линия принадлежит серии Лаймана, возникающей при переходе электрона на первый энергетический уровень (n=1).

Используем обобщенную формулу Бальмера, чтобы определить номер энергетического уровня (k), с которого был совершен переход: .

Выразим из этой формулы k:

Подставляя имеющиеся данные, получим k=3. Следовательно, излучение произошло в результате перехода электрона с третьей орбиты на первую.

Значения радиусов орбит и скоростей движения электронов на этих орбитах найдем из следующих соображений.

На электрон, находящийся на стационарной орбите в атоме водорода, со стороны ядра действует сила Кулона

которая сообщает ему нормальное ускорение . Следовательно, согласно основному закону динамики:

Кроме того, согласно постулату Бора, момент импульса электрона на стационарной орбите должен быть кратен постоянной Планка, т.е.

где n = 1, 2, 3 …. – номер стационарной орбиты.

Из уравнения (2) скорость . Подставив это выражение в уравнение (1), получим

Отсюда радиус стационарной орбиты электрона в атоме водорода: .

Тогда скорость электрона на этой орбите:

Принимая, что до излучения кванта электрон имел характеристики r 3 , v 3 , а после излучения r 1 , v 1 несложно получить:

то есть, радиус орбиты уменьшился в 9 раз, скорость электрона увеличилась в 3 раза.



Пример 7. Электрон в одномерной прямоугольной "потенциальной яме" шириной =200 пм с бесконечно высокими "стенками" находится в возбужденном состоянии (n=2). Определить: 1) вероятность W обнаружения электрона в средней трети "ямы"; 2) точки указанного интервала, в которых плотность вероятности обнаружения электрона максимальна и минимальна.

1. Вероятность обнаружить частицу в интервале

Возбужденному состоянию (n=2) отвечает собственная волновая функция:

Подставим (2) в (1) и учтем, что и :

Выразив через косинус двойного угла с использованием тригонометрического равенства , получим выражение для искомой вероятности: = = = = = 0,195.

2. Плотность вероятности существования частицы в некоторой области пространства определяется квадратом модуля ее волновой функции . Используя выражение (2), получим:

Зависимость квадрата модуля волновой функции частицы от ее координаты, определяемая выражением (3), приведена на рисунке.

Очевидно, что минимальная плотность вероятности w=0 соответствует значениям x, при которых .

То есть, ,

где k = 0, 1, 2…

Максимального значения в пределах ямы плотность вероятности w достигает при условии: . Соответствующие значения .

Как видно из графика зависимости w= w(x), приведенного на рисунке, в интервал

Как видим, плотность вероятности обнаружить электрон на границах заданного интервала - одинакова. Следовательно, , .

Пример 8. Определить количество теплоты, необходимое для нагревания кристалла NaCl массой m=20г на от температуры Т 1 = 2К. Характеристическую температуру Дебая для NaCl принять равной 320К..

Количество теплоты, необходимое для нагревания тела массой m от температуры Т 1 до температуры Т 2 можно вычислить по формуле:

где С – молярная теплоемкость вещества, М – молярная масса.

Согласно теории Дебая, при температуре молярная теплоемкость кристаллических твердых тел определяется выражением:

Подставив выражение (2) в (1), и проинтегрировав, получим:

Подставив численные значения и произведя вычисления, найдем Q= 1,22 мДж.

Пример 9. Вычислить дефект массы, энергию связи и удельную энергию связи ядра .

Дефект массы ядра определим по формуле:

Для ядра : Z=5; А=11.

Вычисление дефекта массы выполним во внесистемных единицах – атомных еди- ницах массы (а.е.м.). Необходимые данные возьмем из таблицы (приложение 3):

1,00783 а.е.м., =1,00867 а.е.м., = 11,00931 а.е.м.

В результате расчета по формуле (1) получим: =0,08186 а.е.м.

Энергию связи ядра найдем также во внесистемных единицах (МэВ), воспользовавшись формулой:

Коэффициент пропорциональности = 931,4 МэВ/а.е.м., т.е.

После подстановки численных значений получим:

Удельная энергия связи, по определению, равна:

Определить порядковый номер и массовое число второго ядра, дать символическую запись ядерной реакции и определить ее энергетический эффект.

Тепловым излучением называют электромагнитные волны, испускаемые атомами, которые возбуждаются за счет энергии их теплового движения. Если излучение находится в равновесии с веществом, его называют равновесным тепловым излучением.

Все тела при температуре Т > 0 К испускают электромагнитные волны. Разреженные одноатомные газы дают линейчатые спектры излучения, многоатомные газы и жидкости - полосатые спектры, т.е.области с практически непрерымным набором длин волн. Твердые тела излучают сплошные спектры, состоящие из всевозможных длин волн. Человеческий глаз видит излучение в ограниченном диапазоне длин волн примерно от 400 до 700 нм. Чтобы человек смог увидеть излучение тела, температура тела должна быть не ниже 700 о С.

Тепловое излучение характеризуют следующими величинами:

W - энергия излучения (в Дж);

(Дж/(с.м 2) - энергетическая светимость (DS - площадь излучающей

поверхности). Энергетическая светимость R - по смыслу –

это энергия, излучаемая единичной площадью за единицу

времени по всем длинам волн l от 0 до .

Кроме этих характеристик, называемых интегральными, используют также спектральные характеристики , которые учитывают количество излучаемой энергии, приходящейся на единичный интервал длин волн или единичный интервал

поглощательная способность (коэффициент поглощения) - это отношение поглощенного светового потока к падающему потоку, взятых в малом интервале длин волн вблизи данной длины волны.

Спектральная плотность энергетической светимости численно равна Мощности излучения с единицы площади поверхности этого тела в интервале частот единичной ширины.



Тепловое излучение и его природа. Ультрафиолетовая катастрофа. Кривая распределения теплового излучения. Гипотеза Планка.

ТЕПЛОВОЕ ИЗЛУЧЕНИЕ (температурное излучение) - эл--магн. излучение, испускаемое веществом и возникающее за счёт его внутр. энергии (в отличие, напр., от люминесценции, к-рая возбуждается внеш. источниками энергии). Т. и. имеет сплошной спектр,положение максимума к-рого зависит от темп-ры вещества. С её повышением возрастает общая энергия испускаемого Т. и., а максимум перемещается в область малых длин волн. Т. и. испускает, напр., поверхность накалённого металла, земная атмосфера и т. д.

Т. и. возникает в условиях детального равновесия в веществе (см. Детального равновесия принцип)для всех безыз-лучат. процессов, т. е. для разл. типов столкновений частиц в газах и плазме, для обмена энергиями электронного и колебат. движений в твёрдых телах и т. д. Равновесное состояние вещества в каждой точке пространства - состояние локального термодинамич. равновесия (ЛТР) - при этом характеризуется значением темп-ры, от к-рой зависит Т. и. в данной точке.

В общем случае системы тел, для к-рой осуществляется лишь ЛТР и разл. точки к-рой имеют разл. темп-ры, Т. и. не находится в термодинамич. равновесии с веществом. Более горячие тела испускают больше, чем поглощают, а более холодные-соответственно наоборот. Происходит перенос излучения от более горячих тел к более холодным. Для поддержания стационарного состояния, при к-ром сохраняется распределение темп-ры в системе, необходимо восполнять потерю тепловой энергии излучающим более горячим телом и отводить её от более холодного тела.

При полном термодинамич. равновесии все части системы тел имеют одну темп-ру и энергия Т. и., испускаемого каждым телом, компенсируется энергией поглощаемого этим телом Т. и. других тел. В этом случае детальное равновесие имеет место и для излучат. переходов, Т. и. находится в термодинамич. равновесии с веществом и наз. излучением равновесным (равновесным является Т. и. абсолютно чёрного тела). Спектр равновесного излучения не зависит от природы вещества и определяется Планка законом излучения.

Для Т. и. нечёрных тел справедлив Кирхгофа закон излучения,связывающий их испускат. и поглощат. способности с испускат. способностью абсолютно чёрного тела.

При наличии ЛТР, применяя законы излучения Кирхгофа и Планка к испусканию и поглощению Т. и. в газах и плазме, можно изучать процессы переноса излучения. Такое рассмотрение широко используется в астрофизике, в частности в теории звёздных атмосфер.

Ультрафиоле́товая катастро́фа - физический термин, описывающий парадокс классической физики, состоящий в том, что полная мощность теплового излучения любого нагретого тела должна быть бесконечной. Название парадокс получил из-за того, что спектральная плотность энергии излучения должна была неограниченно расти по мере сокращения длины волны.

По сути этот парадокс показал если не внутреннюю противоречивость классической физики, то во всяком случае крайне резкое (абсурдное) расхождение с элементарными наблюдениями и экспериментом.

Так как это не согласуется с экспериментальным наблюдением, в конце XIX века возникали трудности в описании фотометрических характеристик тел.

Проблема была решена при помощи квантовой теории излучения Макса Планка в 1900 году.

Гипо́теза Пла́нка - гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию , пропорциональной частоте ν излучения:

где h или - коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением - формулу Планка.

Позднее гипотеза Планка была подтверждена экспериментально.

Спектральная плотность энергетической светимости (яркости) - это функция, показывающая распределение энергетической светимости (яркости) по спектру излучения.
Имея ввиду, что:
Энергетическая светимость - это поверхностная плотность потока энергии, излучаемой поверхностью
Энергетическая яркость - это величина потока, излучаемого единицей площади в единицу телесного угла в данном направлении

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Абсолютно черное тело

Абсолютно черное тело - это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение

Для абсолютно черного тела

Серое тело

Серое тело - это такое тело, коэффициент поглощения которого не зависит от частоты, а зависит только от температуры

Для серого тела

Закон кирхгофа для теплового излучения

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Температурная зависимость спектральной плотности энергетической светимости абсолютно черного тела

зависимости спектральной плотности энергии излучения L (Т) черного тела от температуры Т в микроволновом диапазоне излучения, устанавливается для диапазона температур от 6300 до 100000 К.

Закон смещения Вина даёт зависимость длины волны, на которой поток излучения энергии чёрного тела достигает своего максимума, от температуры чёрного тела.

B=2,90* м*К

Закон Стефана-Больцмана

Формула рэлея-джинса

формула планка

постоянная планка

Фотоэффе́кт - это испускание электронов веществом под действием света (и, вообще говоря, любого электромагнитного излучения). В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.

Законы фотоэффекта :

Формулировка 1-го закона фотоэффекта : количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл .

Согласно 2-му закону фотоэффекта , максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности .

3-ий закон фотоэффекта : для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ 0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит .

Фото́н - элементарная частица, квант электромагнитного излучения (в узком смысле -света). Это безмассовая частица, способная существовать только двигаясь со скоростью света. Электрический заряд фотона также равен нулю.

Уравнение Эйнштейна для внешнего фотоэффекта

Фотоэлемент - электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.

энергия масса и импульс фотона

Давление света - это давление, которое производят электромагнитные световые волны, падающие на поверхность какого-либо тела.

Давление р, оказываемое волной на поверхность металла можно было рассчитать, как отношение равнодействующей сил Лоренца, действующих на свободные электроны в поверхностном слое металла, к площади поверхности металла:

Квантовая теория света объясняетдавление света как результат передачи фотонами своего импульса атомам или молекулам вещества.

Эффект Комптона (Комптон-эффект) - явление изменения длины волны электромагнитного излучения вследствие упругого рассеивания его электронами

Комптоновская длина волны

Гипотеза де Бройля заключается в том, что французский физик Луи де Бройль выдвинул идею приписать волновые свойства электрону. Проводя аналогию между квантом, де Бройль предположил, что движение электрона или какой-либо другой частицы, обладающей массой покоя, связано с волновым процессом.

Гипотеза де Бройля устанавливает, что движущейся частице, обладающей энергией E и импульсом p, соответствует волновой процесс, частота которого равна:

а длина волны:

где p - импульс движущейся частицы.

Опыт Дэвиссона-Джермера - физический эксперимент по дифракции электронов, проведённый в 1927 г. американскими учёными Клинтоном Дэвиссоном и Лестером Джермером.

Проводилось исследование отражения электронов от монокристалла никеля. Установка включала в себя монокристалл никеля, сошлифованный под углом и установленный на держателе. На плоскость шлифа направлялся перпендикулярно пучок монохроматических электронов. Скорость электронов определялась напряжением на электронной пушке:

Под углом к падающему пучку электронов устанавливался цилиндр Фарадея, соединённый с чувствительным гальванометром. По показаниям гальванометра определялась интенсивность отражённого от кристалла электронного пучка. Вся установка находилась в вакууме.

В опытах измерялась интенсивность рассеянного кристаллом электронного пучка в зависимости от угла рассеяния от азимутального угла , от скорости электронов в пучке.

Опыты показали, что имеется ярко выраженная селективность (выборочность) рассеяния электронов. При различных значениях углов и скоростей, в отражённых лучах наблюдаются максимумы и минимумы интенсивности. Условие максимума:

Здесь - межплоскостное расстояние.

Таким образом наблюдалась дифракция электронов на кристаллической решётке монокристала. Опыт явился блестящим подтверждением существования у микрочастиц волновых свойств.

Волнова́я фу́нкция , или пси-функция - комплекснозначная функция, используемая в квантовой механике для описания чистого состояния системы. Является коэффициентом разложения вектора состояния по базису (обычно координатному):

где - координатный базисный вектор, а - волновая функция в координатном представлении.

Физический смысл волновой функции заключается в том, что согласно копенгагенской интерпретации квантовой механики плотность вероятностинахождения частицы в данной точке пространства в данный момент времени считается равной квадрату абсолютного значения волновой функции этого состояния в координатном представлении.

Принцип неопределённости Гейзенбе́рга (или Га́йзенберга ) в квантовой механике - фундаментальное неравенство (соотношение неопределённостей), устанавливающее предел точности одновременного определения пары характеризующих квантовую систему физических наблюдаемых (см. физическая величина), описываемых некоммутирующими операторами (например, координаты и импульса, тока и напряжения, электрического и магнитного поля). Соотношение неопределенностей [* 1] задаёт нижний предел для произведения среднеквадратичных отклонений пары квантовых наблюдаемых. Принцип неопределённости, открытый Вернером Гейзенбергом в 1927 г., является одним из краеугольных камней квантовой механики.

Определение Если имеется несколько (много) идентичных копий системы в данном состоянии, то измеренные значения координаты и импульса будут подчиняться определённому распределению вероятности - это фундаментальный постулат квантовой механики. Измеряя величину среднеквадратического отклонения координаты и среднеквадратического отклонения импульса, мы найдем что:

Уравнение шредингера

Потенциа́льная я́ма – область пространства, где присутствует локальный минимум потенциальной энергии частицы.

Тунне́льный эффект , туннели́рование - преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект - явление исключительно квантовой природы, невозможное и даже полностью противоречащее классической механике. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.

Гармонический осциллятор в квантовой механике представляет собой квантовый аналог простого гармонического осциллятора, при этом рассматривают не силы, действующие на частицу, а гамильтониан, то есть полную энергию гармонического осциллятора, причём потенциальная энергия предполагается квадратично зависящей от координат. Учёт следующих слагаемых в разложении потенциальной энергии по координате ведёт к понятию ангармонического осциллятора.

Изучение строения атомов показало, что атомы состоят из положительно заряженного ядра, в котором сосредоточена почти вся масс. ч атома, и движущихся вокруг ядра отрицательно заряженных электронов.

Планетарная модель атома Бора-Резерфорда . В 1911 году Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

Спектры излучения атомов обычно получаются при высокой температуре источника света (плазма, дуга или искра), при которой происходит испарение вещества, расщепление его молекул на отдельные атомы и возбуждение атомов к свечению. Атомный анализ может быть как эмиссионным - исследование спектров излучения, так и абсорбционным - исследование спектров поглощения.
Спектр излучения атома представляет собой набор спектральных линий. Спектральная линия появляется в результате монохроматического светового излучения при переходе электрона с одного допускаемого постулатом Бора электронного подуровня на другой подуровень разных уровней. Это излучение характеризуется длиной волны К, частотой v или волновым числом со.
Спектр излучения атома представляет собой набор спектральных линий. Спектральная линия появляется в результате монохроматического светового излучения при переходе электрона с одного допускаемого постулатом Бора электронного подуровня на другой подуровень разных уровней.

Бо́ровская моде́ль а́тома (Моде́ль Бо́ра) - полуклассическая модель атома, предложенная Нильсом Бором в 1913 г. За основу он взял планетарную модель атома, выдвинутую Резерфордом. Однако, с точки зрения классической электродинамики, электрон в модели Резерфорда, двигаясь вокруг ядра, должен был бы излучать непрерывно, и очень быстро, потеряв энергию, упасть на ядро. Чтобы преодолеть эту проблему Бор ввел допущение, суть которого заключается в том, что электроны в атоме могут двигаться только по определенным (стационарным) орбитам, находясь на которых они не излучают, а излучение или поглощение происходит только в момент перехода с одной орбиты на другую. Причем стационарными являются лишь те орбиты, при движении по которым момент количества движения электрона равен целому числу постоянных Планка : .

Используя это допущение и законы классической механики, а именно равенство силы притяжения электрона со стороны ядра и центробежной силы, действующей на вращающийся электрон, он получил следующие значения для радиуса стационарной орбиты и энергии находящегося на этой орбите электрона:

Здесь - масса электрона, Z - количество протонов в ядре, - диэлектрическая постоянная, e - заряд электрона.

Именно такое выражение для энергии можно получить, применяя уравнение Шрёдингера, решая задачу о движении электрона в центральном кулоновском поле.

Радиус первой орбиты в атоме водорода R 0 =5,2917720859(36)·10 −11 м , ныне называется боровским радиусом, либо атомной единицей длины и широко используется в современной физике. Энергия первой орбиты эВ представляет собойэнергию ионизации атома водорода.

Постулаты Бора

§ Атом может находиться только в особенных стационарных, или квантовых, состояниях, каждому из которых отвечает определенная энергия. В стационарном состоянии атом не излучает электромагнитных волн.

§ Электрон в атоме, не теряя энергии, двигается по определённым дискретным круговым орбитам, для которых момент импульса квантуется: , где - натуральные числа, а - постоянная Планка. Пребывание электрона на орбите определяет энергию этих стационарных состояний.

§ При переходе электрона с орбиты (энергетический уровень) на орбиту излучается или поглощается квант энергии , где - энергетические уровни, между которыми осуществляется переход. При переходе с верхнего уровня на нижний энергия излучается, при переходе с нижнего на верхний - поглощается.

Используя данные постулаты и законы классической механики, Бор предложил модель атома, ныне именуемую Боровской моделью атома . В дальнейшем Зоммерфельд расширил теорию Бора на случай эллиптических орбит. Её называют моделью Бора-Зоммерфельда.

Опыты франка и герца

опыт показал, что электроны передают свою энергию атомам ртути порциями , причем 4,86 эВ – наименьшая возможная порция, которая может быть поглощена атомом ртути в основном энергетическом состоянии

Формула бальмера

Для описания длин волн λ четырех видимых линий спектра водорода И. Бальмер предложил формулу

где n = 3, 4, 5, 6; b = 3645,6 Å.

В настоящее время для серии Бальмера используют частный случай формулы Ридберга:

где λ - длина волны,

R ≈ 1,0974·10 7 м −1 - постоянная Ридберга,

n - главное квантовое число исходного уровня - натуральное число, большее или равное 3.

Водородоподобный атом - атом, содержащий в электронной оболочке один и только один электрон.

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10 −2 до 10 3 Å (от 10 −12 до 10 −7 м)

Рентге́новская тру́бка - электровакуумный прибор, предназначенный для генерации рентгеновского излучения.

Тормозное излучение - электромагнитное излучение, испускаемое заряженной частицей при её рассеянии (торможении) в электрическом поле. Иногда в понятие «тормозное излучение» включают также излучение релятивистских заряженных частиц, движущихся в макроскопических магнитных полях (в ускорителях, в космическом пространстве), и называют его магнитотормозным; однако более употребительным в этом случае является термин «синхротронное излучение».

ХАРАКТЕРИСТИЧЕСКОЕ ИЗЛУЧЕНИЕ - рентг. излучение линейчатого спектра. Характерно для атомов каждого элемента.

Химическая связь - явление взаимодействия атомов, обусловленное перекрыванием электронных облаков связывающихся частиц, которое сопровождается уменьшением полной энергии системы.

молекуляр­ный спектр - спектр излучения (по­глощения), возникающий при квантовых переходах между уровнями энергии моле­кул

Энергетический уровень - собственные значения энергии квантовых систем, то есть систем, состоящих из микрочастиц (электронов, протонов и других элементарных частиц) и подчиняющихся законам квантовой механики.

Квантовое число n главное . Оно определяет энергию электрона в атоме водорода и одноэлектронных системах (He + , Li 2+ и т. д.). В этом случае энергия электрона

где n принимает значения от 1 до ∞. Чем меньше n , тем больше энергия взаимодействия электрона с ядром. При n = 1 атом водорода находится в основном состоянии, при n > 1 – в возбужденном.

Правилами отбора в спектроскопии называют ограничения и запрет на переходы между уровнями квантомеханической системы с поглощением или излучением фотона, наложенные законами сохранения и симметрией.

Многоэлектронными атомами называются атомы с двумя и более электронами.

Эффе́кт Зе́емана - расщепление линий атомных спектров в магнитном поле.

Обнаружен в 1896 г. Зееманом для эмиссионных линий натрия.

Суть явления электронного парамагнитного резонанса заключается в резонансном поглощении электромагнитного излучения неспаренными электронами. Электрон имеет спин и ассоциированный с ним магнитный момент.