Болезни Военный билет Призыв

Числовые равенства и неравенства и их свойства. Числовые равенства, свойства числовых равенств

Пусть даны 2 числовых выражения А иВ . Соединив их знаком равенства, получим некоторое высказывание, называемое числовым равенством.

Равенство А =В считается истинным тогда и только тогда, когда оба выраженияА иВ имеют числовые значения, причем эти значения одинаковы.

Пример . 1) 16: 2 = 3 + 5 – истинное числовое равенство, т.к. левая и правая части этого неравенства имеют значение 8;

2) 3 ∙ 4 = 15 – 4 – ложное равенство, т.к. значение левой части равно 12, а правой 11;

3) 15: (10 – 10) = 15 – ложно, т.к. выражение в левой части не имеет значения.

Из данного выше определения вытекает, что если истинны равенства А =В иС =D , гдеА ,В ,С, D – числовые выражения, то при условии выполнимости соответствующих операций, истинны и равенства (А ) + (С ) = (В ) + (D ), (А ) – (С ) = (В ) – (D ), (А ) ∙ (С ) = (В ) ∙ (D ), (А ) : (С ) = (В ) : (D ), т.е. числовые равенства можно почленно складывать, вычитать, умножать, делить.

Отношение равенства числовых выражений обладает свойствами:

1) рефлексивности (А =А );

2) симметричности (А =В В =А );

3) транзитивности (А =В В =С А =С ), т.о. данное отношение является отношением эквивалентности и множество числовых выражений разбивается на классы эквивалентности, состоящие из выражений, имеющих одно и то же значение;

4) если к обеим частям истинного числового равенства прибавить одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А =В (А ) + (С ) = (В ) + (С ));

5) если обе части истинного числового равенства умножить на одно и то же числовое выражение, имеющее смысл, то полученное числовое равенство будет также истинным (А =В (А ) ∙ (С ) = (В ) ∙ (С ));

6) если обе части истинного числового равенства возвести в одну и ту же нечетную степень, то получим истинное числовое равенство (если п А =В (А ) п = (В ) п ;

7) если обе части истинного числового равенства, левая и правая части которого имеют неотрицательное значение, возвести в одну и ту же четную степень, то получим истинное числовое равенство (если п – четное натуральное число, значения числовых выраженийА иВ неотрицательны, тоА =В (А ) п = (В ) п . Если снять условие, что значения числовых выраженийА иВ неотрицательны, то вместо эквивалентности будем иметь лишь импликациюА =В (А ) п = (В ) п .

§ 3. Числовые неравенства и их свойства

Пусть А иВ – два числовых выражения. Соединив их знаком > или <, получим некоторое высказывание, называемое числовым неравенством. НеравенствоА <В считается истинным, еслиА иВ имеют числовые значения, причем числовое значение выраженияА меньше числового значения выраженияВ .

Пример . 2 + 5 < 3 ∙ 4 – истинное неравенство, т.к. левая часть имеет значение 7, правая имеет значение 12 и 7 < 12.

Неравенство А В является дизъюнкцией неравенстваА <В и равенстваА =В. Оно истинно тогда и только тогда, когда истинно хотя бы одно из данных элементарных высказываний.

Неравенство А <В <С является конъюнкцией неравенствА <В иВ <С. Оно истинно тогда и только тогда, когда истинны оба неравенства.

Выполнив указанные в числовых выражениях действия, мы получим в левой и правой части неравенства соответствующие числа. Пусть а , b ,с ,d – соответствующие значения числовых выраженийА ,B ,C ,D .

Свойства числовых неравенств

1) если к обеим частям истинного числового неравенства прибавить одно и то же числовое выражение, имеющее смысл, то получим также истинное числовое неравенство (А <В (А ) + (С ) < (В ) + (С ));

2) если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и принимающее положительное значение, то полученное числовое неравенство будет также истинным (А <В (А ) ∙ (С ) < (В ) ∙ (С ));

3) если обе части истинного числового неравенства умножить на одно и то же числовое выражение, имеющее смысл и принимающее отрицательное значение, то, чтобы получить истинное числовое неравенство, необходимо знак неравенства поменять на противоположный (А <В (А ) ∙ (С ) > (В ) ∙ (С ));

4) неравенства одного знака можно почленно складывать (А <В ,С <D (А ) + (С ) < (В ) + (D ));

5) неравенства одного знака, имеющие положительные значения, можно почленно перемножать (если А <В ,С <D , причема , b ,с ,d > 0, то (А ) ∙ (С ) < (В ) ∙ (D ));

6) обе части истинного числового неравенства можно возвести в одну и ту же нечетную степень (если п – нечетное натуральное число, тоА <В (А ) п < (В ) п );

7) возводить в четную степень обе части неравенства можно лишь в том случае, если обе они имеют неотрицательные значения (если п – четное натуральное число иа , b ≥ 0, тоА <В (А ) п < (В ) п );

8) если а , b < 0,А <В  > .


Интерактивный список. Начните вводить искомое слово.

РАВЕНСТВО

РА́ВЕНСТВО, -а, ср.

1. Полное сходство, подобие (по величине, качеству, достоинству). Р. сил.

2. Положение людей в обществе, обеспечивающее их одинаковое отношение к закону, одинаковые политические и гражданские права, равноправие. Социальное р.

3. В математике: соотношение между величинами, показывающее, что одна величина равна другой. Знак равенства (=). Ставить знак равенства между кем-чем-н. (перен. : признавать равноценным, уравнивать).

| прил. равенственный , -ая, -ое (ко 2 знач. ; устар. ).

Что такое РАВЕНСТВО , РАВЕНСТВО это, значение слова РАВЕНСТВО , происхождение (этимология) РАВЕНСТВО , синонимы к РАВЕНСТВО , парадигма (формы слова) РАВЕНСТВО в других словарях

Парадигма, формы слова РАВЕНСТВО - Полная акцентуированная парадигма по А. А. Зализняку

Синонимы к РАВЕНСТВО - Словарь русских синонимов 4

РАВЕНСТВО синонимы

равенство

Синонимы:

альтернат, единство, муссават, общность, одинаковость, паритет, паритетность, подобие, равновеликость, равноправие, равноправность, совпадение, соответствие, сходство, тождество, уравнение, эквивалентность


В этой статье собрана информация, формирующая представление о равенстве в контексте математики. Здесь мы выясним, что такое равенство с математической точки зрения, и какие они бывают. Также поговорим о записи равенств и знаке равно. Наконец, перечислим основные свойства равенств и для наглядности приведем примеры.

Навигация по странице.

Что такое равенство?

Понятие равенства неразрывно связано со сравнением – сопоставлением свойств и признаков с целью выявлением схожих черт. А сравнение в свою очередь предполагает наличие двух предметов или объектов, один из которых сравнивается с другим. Если, конечно, не проводить сравнение предмета с самим собой, и то, это можно рассматривать как частный случай сравнения двух предметов: самого предмета и его «точной копии».

Из приведенных рассуждений понятно, что равенство не может существовать без наличия, по крайней мере, двух объектов, иначе нам просто нечего будет сравнивать. Понятно, что можно взять три, четыре и большее число объектов для сравнения. Но оно естественным образом сводится к сравнению всевозможных пар, составленных из этих объектов. Иными словами, оно сводится к сравнению двух объектов. Итак, равенство требует два объекта.

Суть понятия равенства в самом общем смысле наиболее отчетливо передается словом «одинаковые». Если взять два одинаковых объекта, то о них можно сказать, что они равные . В качестве примера приведем два равных квадрата и . Отличающиеся объекты, в свою очередь, называют неравными .

Понятие равенства может относиться как объектам в целом, так и к их отдельным свойствам и признакам. Объекты равны в целом, когда они равны по всем присущим им параметрам. В предыдущем примере мы говорили о равенстве объектов в целом – оба объекта квадраты, они одинакового размера, одинакового цвета, и вообще они полностью одинаковые. С другой стороны, объекты могут быть неравными в целом, но могут иметь некоторые равные характеристики. В качестве примера рассмотрим такие объекты и . Очевидно, они равны по форме –они оба являются кругами. А по цвету и по размеру – неравны, один из них синий, а другой – красный, один маленький, а другой - большой.

Из предыдущего примера для себя отметим, что нужно наперед знать, о равенстве чего именно мы говорим.

Все приведенные рассуждения применяются и к равенствам в математике, только здесь равенство относится к математическим объектам. То есть, изучая математику, мы будем говорить о равенстве чисел, равенстве значений выражений, равенстве каких-либо величин, например, длин, площадей, температур, производительностей труда и т.п.

Запись равенств, знак равно

Пришло время остановиться на правилах записи равенств. Для этого используется знак равно (его также называют знаком равенства), который имеет вид =, то есть, представляет собой две одинаковые черточки, расположенные горизонтально одна над другой. Знак равно = считается общепринятым.

При записи равенств записывают равные объекты и между ними ставят знак равно. Например, запись равных чисел 4 и 4 будет выглядеть следующим образом 4=4 , и ее можно прочитать как «четыре равно четырем». Еще пример: равенство площади S ABC треугольника ABC семи квадратным метрам запишется как S ABC =7 м 2 . По аналогии можно привести другие примеры записи равенств.

Стоит отметить, что в математике рассмотренные записи равенств часто используют как определение равенства.

Определение.

Записи, в которых используется знак равно, разделяющий два математических объекта (два числа, выражения и т.п.), называют равенствами .

Если письменно требуется обозначить неравенство двух объектов, то используется знак не равно ≠. Мы видим, что он представляет собой перечеркнутый знак равно. В качестве примера приведем запись 1+2≠7 . Ее можно прочитать так: «Сумма единицы и двойки не равна семи». Другой пример |AB|≠5 см. – длина отрезка AB не равна пяти сантиметрам.

Верные и неверные равенства

Записанные равенства могут отвечать смыслу понятия равенства, а могут и противоречить ему. В зависимости от этого равенства подразделяются на верные равенства и неверные равенства . Разберемся с этим на примерах.

Запишем равенство 5=5 . Числа 5 и 5 , вне всякого сомнения, равны, поэтому 5=5 – это верное равенство. А вот равенство 5=2 – неверное, так как числа 5 и 2 не равны.

Свойства равенств

Из того, как вводится понятие равенства, естественным образом вытекают характерные для него результаты – свойства равенств. Основными являются три свойства равенств :

  • Свойство рефлексивности, утверждающее, что объект равен самому себе.
  • Свойство симметричности, утверждающее, что если первый объект равен второму, то второй равен первому.
  • И, наконец, свойство транзитивности, утверждающее, что если первый объект равен второму, а второй – третьему, то первый равен третьему.

Запишем озвученные свойства на языке математики с помощью букв:

  • a=a ;
  • если a=b , то b=a ;
  • если a=b и b=c , то a=c .

Отдельно стоит отметить заслугу второго и третьего свойств равенств – свойств симметричности и транзитивности – в том, что они позволяют говорить о равенстве трех и большего числа объектов через их попарное равенство.

Двойные, тройные равенства и т.д.

Наряду с обычными записями равенств, примеры которых мы привели в предыдущих пунктах, используются так называемые двойные равенства , тройные равенства и так далее, представляющие собой как бы цепочки равенств. Например, запись 1+1+1=2+1=3 является двойным равенством, а |AB|=|BC|=|CD|=|DE|=|EF| - пример четверного равенства.

С помощью двойных, тройных и т.д. равенств удобно записывать равенство трех, четырех и т.д. объектов соответственно. Эти записи по своей сути обозначают равенство любых двух объектов, составляющих исходную цепочку равенств. К примеру, указанное выше двойное равенство 1+1+1=2+1=3 по сути означает равенство 1+1+1=2+1 , и 2+1=3 , и 1+1+1=3 , а в силу свойства симметричности равенств и 2+1=1+1+1 , и 3=2+1 , и 3=1+1+1 .

В виде таких цепочек равенств удобно оформлять пошаговое решение примеров и задач, при этом решение выглядит кратко и видны промежуточные этапы преобразования исходного выражения.

Список литературы.

  • Моро М. И. . Математика. Учеб. для 1 кл. нач. шк. В 2 ч. Ч. 1. (Первое полугодие) / М. И. Моро, С. И. Волкова, С. В. Степанова.- 6-е изд. - М.: Просвещение, 2006. - 112 с.: ил.+Прил. (2 отд. л. ил.). - ISBN 5-09-014951-8.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.

После получения общих сведений о равенствах в математике переходим к более узким темам. Материал этой статьи даст представление о свойствах числовых равенств.

Yandex.RTB R-A-339285-1

Что такое числовое равенство

Первый раз мы сталкиваемся с числовыми равенствами еще в начальной школе, когда происходит знакомство с числами и понятием «столько же». Т.е. самые примитивные числовые равенства это: 2 = 2 , 5 = 5 и т.д. И на том уровне изучения мы называли их просто равенствами, без уточнения «числовые», и закладывали в них количественный или порядковый смысл (который несут натуральные числа). Например, равенство 2 = 2 будет соответствовать изображению, на котором – два цветка и на каждом сидит по две шмеля. Или, к примеру, две очереди, где вторыми по порядку стоят Вася и Ваня.

По мере появления знаний об арифметических действиях числовые равенства становятся сложнее: 5 + 7 = 12 ; 6 - 1 = 5 ; 2 · 1 = 2 ; 21: 7 = 3 и т.п. Затем начинают встречаться равенства, в записи которых участвуют числовые выражения разного рода. Например, (2 + 2) + 5 = 2 + (5 + 2) ; 4 · (4 − (1 + 2)) + 12: 4 − 1 = 4 · 1 + 3 − 1 и т.п. Дальше мы знакомимся с прочими видами чисел, и числовые равенства приобретают все более и более интересный и разнообразный вид.

Определение 1

Числовое равенство – это равенство, обе части которого состоят из чисел и/или числовых выражений.

Свойства числовых равенств

Сложно переоценить значимость свойств числовых равенств в математике: они являются опорой многому, определяют принцип работы с числовыми равенствами, методы решений, правила работы с формулами и многое другое.Очевидно, что существует необходимость детального изучения свойств числовых равенств.

Свойства числовых равенств абсолютно согласованы с тем, как определяются действия с числами, а также с определением равных чисел через разность: число a равно числу b только в тех случаях, когда разность a − b есть нуль. Далее в описании каждого свойства мы проследим эту связь.

Основные свойства числовых равенств

Изучать свойства числовых равенств начнем с трех базовых свойств, которые присущи всем равенствам. Перечислим основные свойства числовых равенств:

  • свойство рефлексивности: a = a ;
  • свойство симметричности: если a = b , то b = a ;
  • свойство транзитивности: если a = b и b = c , то a = c ,где a , b и c – произвольные числа.
Определение 2

Свойство рефлексивности обозначает факт равенства числа самому себе: к примеру, 6 = 6 , − 3 = − 3 , 4 3 7 = 4 3 7 и т.п.

Доказательство 1

Нетрудно продемонстрировать справедливость равенства a − a = 0 для любого числа a: разность a − a можно записать как сумму a + (− a) , а свойство сложения чисел дает нам возможность утверждать, что любому числу a соответствует единственное противоположное число − a , и сумма их есть нуль.

Определение 3

Согласно свойству симметричности числовых равенств: если число a равно числу b ,
то число b равно числу a . К примеру, 4 3 = 64 , тогда 64 = 4 3 .

Доказательство 2

Обосновать данное свойство можно через разность чисел. Условию a = b соответствует равенство a − b = 0 . Докажем, что b − a = 0 .

Запишем разность b − a в виде − (a − b) , опираясь на правило раскрытия скобок, перед которыми стоит знак минус. Новая запись выражения равна - 0 , а число, противоположное нулю, это нуль. Таким образом, b − a = 0 , следовательно: b = a .

Определение 4

Свойство транзитивности числовых равенств гласит, что два числа равны друг другу в случае их одновременного равенства третьему числу. К примеру, если 81 = 9 и 9 = 3 2 , то 81 = 3 2 .

Свойству транзитивности также отвечает определение равных чисел через разность и свойства действий с числами. Равенствам a = b и b = c соответствуют равенства a − b = 0 и b − c = 0 .

Доказательство 3

Докажем справедливость равенства a − c = 0 , из чего последует равенство чисел a и c . Посколькусложение числа с нулем не меняет само число, то a − c запишем в виде a + 0 − c . Вместо нуля подставим сумму противоположных чисел − b и b , тогда крайнее выражение станет таким: a + (− b + b) − c . Выполним группировку слагаемых: (a − b) + (b − c) . Разности в скобках равны нулю, тогда и сумма (a − b) + (b − c) есть нуль. Это доказывает, что, когда a − b = 0 и b − c = 0 , верно равенство a − c = 0 , откуда a = c .

Прочие важные свойства числовых равенств

Основные свойства числовых равенств, рассмотренные выше, являются базисом для ряда дополнительных свойств, довольно ценных в разрезе практики. Перечислим их:

Определение 5

Прибавив к (или убавив от) обеим частям числового равенства, являющегося верным, одно и то же число, получим верное числовое равенство. Запишем буквенно: если a = b , где a и b – некоторые числа, то a + c = b + c при любом c .

Доказательство 4

В качестве обоснования запишем разность (a + c) − (b + c) .
Это выражение легко преобразуется в вид (a − b) + (c − c) .
Из a = b по условию следует, что a − b = 0 и c − c = 0 , тогда (a − b) + (c − c) = 0 + 0 = 0 . Это доказывает, что (a + c) − (b + c) = 0 , следовательно, a + c = b + c ;

Определение 6

Если обе части верного числового равенства перемножить с любым числом или разделить на число, не равное нулю, тогда получим верное числовое равенство.
Запишем буквенно: когда a = b , то a · c = b · c при любом числе c . Если c ≠ 0 , тогда и a: c = b: c .

Доказательство 5

Равенство верно: a · c − b · c = (a − b) · c = 0 · c = 0 , и из него следует равенство произведений a · c и b · c . А деление на отличное от нуля число c возможно записать как умножение на обратное число 1 c ;

Определение 7

При a и b , отличных от нуля и равных между собой, обратные им числа также равны.
Запишем: когда a ≠ 0 , b ≠ 0 и a = b , то 1 a = 1 b . Крайнее равенство нетрудно доказать: с этой целью разделим обе части равенства a = b на число, равное произведению a · b и не равное нулю.

Укажем еще на пару свойств, которые позволяют осуществлять сложение и умножение соответствующих частей верных числовых равенств:

Определение 8

При почленном сложении верных числовых равенств получается верное равенство. Запись этого свойства такова: если a = b и c = d , то a + c = b + d для любых чисел a , b , c и d .

Доказательство 6

Обосновать это полезное свойство возможно, опираясь на указанные ранее свойства. Мы знаем, что к обеим частям верного равенства возможно прибавить любое число.
К равенству a = b прибавим число c , а к равенству c = d - число b , итогом станут верные числовые равенства: a + c = b + c и c + b = d + b . Крайнее запишем в виде: b + c = b + d . Из равенств a + c = b + c и b + c = b + d согласно свойству транзитивности следует равенство a + c = b + d . Что и нужно было доказать.

Необходимо уточнить, что почленно можно сложить не только два верных числовых равенства, но и три, и более;

Определение 7

Наконец, опишем такое свойство: почленное перемножение двух верных числовых равенств дает верное равенство. Запишем при помощи букв: если a = b и c = d , то a · c = b · d .

Доказательство 7

Доказательство этого свойства подобно доказательству предыдущего. Умножим обе части равенства на любое число, умножим a = b на c , а c = d на b , получим верные числовые равенства a · c = b · c и c · b = d · b . Крайнее запишем как b · c = b · d . Свойство транзитивности дает возможность из равенства a · c = b · c и b · c = b · d вывести равенство a · c = b · d , которое нам необходимо было доказать.

И вновь уточним, что данное свойство применимо для двух, трех и более числовых равенств.
Так, можно записать: если a = b , то a n = b n для любых чисел a и b , и любого натурального числа n .

Завершим данную статью, собрав для наглядности все рассмотренные свойства:

Если a = b , то b = a .

Если a = b и b = c , то a = c .

Если a = b , то a + c = b + c .

Если a = b , то a · c = b · c .

Если a = b и с ≠ 0 , то a: c = b: c .

Если a = b , a = b , a ≠ 0 и b ≠ 0 , то 1 a = 1 b .

Если a = b и c = d , то a · c = b · d.

Если a = b , то a n = b n .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1) качественное понятие, используемое в экономической науке в смысле "равенство доходов", "имущественное равенство", "равенство возможностей", чтобы подчеркнуть наличие равенства и неравенства в положении отдельных социальных групп; 2) математическое тождество, уравнение.

Отличное определение

Неполное определение ↓

РАВЕНСТВО

один из принципов права. Понятие Р. - определенная абстракция, т.е. результат сознательного (мыслительного) абстрагирования от тех различий, которые присущи уравниваемым объектам. Правовое Р. не столь абстрактно. Основанием (и критерием) правового уравнения различных людей является свобода индивидов в общественных отношениях, признаваемая и утверждаемая в форме их правоспособности и правосубъектности. В этом специфика правового Р. и права вообще. Р. имеет рациональный смысл, логически и практически возможно в социальном мире именно и только правовое (формально-правовое, формальное) Р. История права - это история прогрессирующей эволюции содержания, объема, масштаба и меры формального (правового) Р. при сохранении самого этого принципа как принципа любой системы права, права вообще. Таким образом, принцип формального Р. представляет собой постоянно присущий праву принцип с исторически изменяющимся содержанием. В целом историческая эволюция содержания, объема, сферы действия принципа формального Р. не опровергает, а, наоборот, подкрепляет значение данного принципа в качестве отличительной особенности права в его соотношении с иными видами социальной регуляции (моральной, религиозной и т.д.). Исходные фактические различия между людьми, рассмотренные и урегулированные с точки зрения правового принципа Р. (равной меры), предстают в итоге в виде неравенства в уже приобретенных правах (по их структуре, содержанию и объему прав различных субъектов права). Право как форма отношений по принципу Р. не уничтожает (и не может уничтожить) исходных различий между разными субъектами права, оно лишь формализует и упорядочивает эти различия по единому основанию, трансформирует неопределенные фактические различия в формально- определенные права свободных, независимых друг от друга, равных личностей. В этом, по существу, состоит специфика, смысл и ценность правовой формы опосредования, регуляции и упорядочения общественных отношений. Правовое Р. и правовое неравенство однопорядко- вые правовые определения. Принцип правового Р. различных субъектов предполагает, что приобретаемые ими реальные субъективные права будут неравны. Благодаря праву хаос различий преобразуется в правовой порядок равенств и неравенств, согласованных по единому основанию и общей норме. Признание различных индивидов формально равными означает признание их равной правоспособности, возможности приобрести те или иные права на соответствующие блага, конкретные объекты и т.д. Формальное право - это лишь способность, абстрактная возможность приобрести, в согласии с общим масштабом и равной мерой правовой регуляции, свое, индивидуально-определенное право на данный объект. Различие в приобретенных правах у разных лиц является необходимым результатом именно соблюдения, а не нарушения принципа формального (правового) Р. этих лиц, не нарушает и не отменяет принципа формального (правового) Р. Для всех, чьи отношения опосредуются правовой формой, право выступает как всеобщая форма, как общезначимый и равный для всех этих лиц (различных по своему фактическому, физическому, умственному, имущественному положению и т.д.) одинаковый масштаб и мера. Само Р. состоит в том, что поведение и положение субъектов данного общего круга отношений и явлений подпадают под действие единого для всех закона, единой (общей, равной) меры. Лит.: Нерсесянц В.С. Право и закон. Из истории правовых учений. М, 1983; Его же. Право - математика свободы. М, 1996; Его же. Ценность права как триединства свободы, равенства и справедливости / / Проблемы ценностного подхода в праве: традиции и обновление. М., 1996. В.С. Нерсесянц