Болезни Военный билет Призыв

Черные дыры испаряются. Излучение хокинга

, чёрной дырой . В силу энерги и" href="http://ru.wikipedia.org/wiki/%D0%97%D0%B0%D0%BA%D0%BE%D0%BD_%D1%81%D0%BE%D1%85%D1%80%D0%B0%D0%BD%D0%B5%D0%BD%D0%B8%D1%8F_%D1%8D%D0%BD%D0%B5%D1%80%D0%B3%D0%B8%D0%B8">закона сохранения энерги и , этот процесс сопровождается уменьшением массы чёрной дыры, т. е. её «испарением». Предсказан теор етически Стивеном Хокингом в году. Работе Хокинга предшествовал его визит в Москву в 1973 году, где он встречался с советскими учеными Яковом Зельдовичем и Александром Старобинским. Они продемонстрировали Хокингу, что в соответствии с принципом неопределенности квантовой механики вращающиеся чёрные дыры должны порождать и излучать частицы.

Испарение чёрной дыры - чисто квантовый процесс. Дело в том, что понятие о чёрной дыре как объекте, который ничего не излучает, а может лишь поглощать материю, справедливо до тех пор, пока не учитываются квантовые эффекты. В квантовой же механике, благодаря туннелированию , появляется возможность преодолевать Потенциал ьный барьер" href="http://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D1%82%D0%B5%D0%BD%D1%86%D0%B8%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B1%D0%B0%D1%80%D1%8C%D0%B5%D1%80">потенциал ьные барьеры , непреодолимые для неквантовой системы.

В случае чёрной дыры ситуация выглядит следующим образом. В квантовой теор ии поля физический вакуум наполнен постоянно рождающимися и исчезающими флуктуациями различных полей (можно сказать и «виртуальными частицами »). В поле внешних сил динамика этих флуктуаций меняется, и если силы достаточно велики, прямо из вакуума могут рождаться пары частица-античастица . Такие процессы происходят и вблизи (но всё же снаружи) горизонта событий чёрной дыры. При этом возможен случай, когда полная энерги я античастицы оказывается отрицательной, а полная энерги я частицы - положительной. Падая в чёрную дыру, античастица уменьшает её полную энерги ю покоя , а значит и массу, в то время как частица оказывается способной улететь в бесконечность. Для удалённого наблюдателя это выглядит как излучение чёрной дыры.

Важным является не только факт излучения, но и то, что это излучение имеет тепловой спектр . Это значит, что излучению вблизи горизонта событий чёрной дыры можно сопоставить определённую температуру

где - постоянная Планка , c - скорость света в вакууме, k - постоянная Больцмана , G - гравитационная постоянная , и, наконец, M - масса чёрной дыры. Развивая теор ию, можно построить и полную термодинамику чёрных дыр .

Однако, такой подход к чёрной дыре оказывается в противоречии с квантовой механикой и приводит к проблеме исчезновения информации в чёрной дыре .

До сих пор эффект не подтверждён наблюдениями. Согласно ОТО , при образовании Вселенной должны были родиться первичные чёрные дыры, некоторые из которых (с начальной массой 10 12 кг) должны заканчивать испаряться в наше время . Так как интенсивность испарения растёт с уменьшением размера чёрной дыры, то последние стадии должны быть по сути взрывом чёрной дыры. Пока таких взрывов зарегистрировано не было.

Экспериментальное подтверждение

Исследователи из университета Милана (University of Milan) утверждают, что им удалось наблюдать эффект радиации Хокинга, создав антипод черной дыры - так называемую белую дыру. В отличие от белой дыры, «засасывающей» извне всю материю и излучение, белая дыра полностью останавливает свет, попадающий в нее, создавая, таким образом, границу, горизонт событий. В эксперименте роль белой дыры играл кристалл кварца, имеющий определенную структуру и помещенный в особые условия, внутри которого происходила полная остановка фотонов света. Освещая светом инфракрасного лазера вышеупомянутый кристалл, ученые обнаружили и подтвердили существование эффекта переизлучения, радиации Хокинга.

Физик Джефф Штейнхауэр (Jeff Steinhauer) из Израильского технологического института в Хайфе зафиксировал излучение, предсказанное Стивеном Хокингом еще в 1974 году. Ученый создал акустический аналог черной дыры и показал в экспериментах, что от нее исходит излучение, имеющее квантовую природу. Статья опубликована в журнале Nature Physics, кратко об исследовании сообщает BBC News.
...Зафиксировать это излучение на настоящей черной дыре пока не представляется возможным, поскольку оно слишком слабое. Поэтому Штейнхауэр использовал ее аналог - так называемую «глухую дыру». Для моделирования горизонта событий черной дыры он взял конденсат Бозе-Эйнштейна из охлажденных до близких к абсолютному нулю температур атомов рубидия.
Скорость распространения звука в нем очень мала - около 0,5 мм/сек. И если создать границу, с одной стороны от которой атомы движутся с дозвуковой скоростью, а с другой - ускоряются до сверхзвуковой скорости, то эта граница будет аналогична горизонту событий черной дыры. Кванты атомов - в данном случае фононы - в эксперименте захватывались областью со сверхзвуковой скоростью. Пары фононов были разорваны, один находился в одной области, а второй - в другой. Зафиксированные ученым корреля ции говорят о том, что частицы оказываются квантово запутанными.

Вторая редакция

Цитата из Википедии.
«Изучая поведение квантовых полей вблизи чёрной дыры, Хокинг предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга. Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица-античастица. Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры.

Как происходит испарение.
У границы черной дыры физический вакуум находится в условно напряженном состоянии, вследствие чего он квантовым образом поляризуется (так решил Хокинг). Из ТО ничего подобного не следует. ТО Эйнштейна, вообще, несовместима с квантовыми представлениями. А квантовая теория, в свою очередь, не может оперировать безразмерными материальными точками, которыми манипулирует ТО.

Здесь требуется пояснение. Содружество релятивистов и некоторой части квантовиков, решившее примирить две несовместимые теории, пришло к следующему соглашению. Физический вакуум – это неисчерпаемое хранилище энергии в неизвестной нам форме. Это хранилище они образно назвали бушующим океаном (естественно четырехмерным, чтобы никто не мучился, пытаясь его представить). Наша Вселенная – является всего лишь пеной на поверхности этого бушующего океана. В результате этого бушевания, в нашем измерении происходит спонтанное рождение пар частица-античастица. Но это излучение мы не можем обнаружить в силу его скоротечности, т.е. оно для нас виртуальное. Дело в том, что каждая пара, еще не возникнув, уже аннигилирует . Случайные сбои в процессе моментальной аннигиляции, называемые флуктуациями этого бушевания, мы и наблюдаем как реальное рождение пары, что в обычных условиях происходит чрезвычайно редко. А вот в зоне горизонта событий ЧД, это уже обычное событие.

Каждая пара частиц характеризуется скоростью и направлением разлета частиц. И то, и другое – случайные величины. Ну вот, добрались до сути фокуса Хокинга: на поверхности горизонта событий направление разлета рожденных частиц перестает быть случайным, т.е. становится поляризованным, а именно, ортогональным к поверхности ЧД.

Однако у Хокинга по поводу полной поляризации вакуума подробностей нет, это всего лишь наши догадки. Можно мыслить поляризованное испарение и как изотропное рождение пар, но тогда испарение будет возможно только для пар, случайно оказавшихся ортогональными к горизонту событий. В этом случае возникает проблема с определением допустимых отклонений, т.к. в идеальном представлении, вероятность абсолютного совпадения направлений стремится к нулю.

Если подходящая для испарения пара рождается на поверхности ЧД (а поверхность эта, у Хокинга, бесконечно тонкая, хотя у других авторов - пенообразная), то неизбежно одна из частиц этой пары оказывается внутри ЧД, а вторая снаружи. У частицы, которая снаружи, появляется шанс покинуть ЧД. Но, как говорится, не каждая птица сможет перелететь Днепр. Чтобы покинуть ЧД частица снаружи должна иметь скорость, практически равную скорости света. Экспериментально, спонтанное рождении пар таких частиц еще не обнаружено. Но сделаем Хокингу уступку, пусть невозможное в природе, для него, станет возможным.

Итак, пусть с поверхности ЧД происходит (стартует) корпускулярное излучение. Рассмотрим процесс излучения с учетом начальных условий. Выберем самый простейший вариант ЧД, т.е. ЧД Шварцшильда. Как известно, такая ЧД имеет всего один первичный параметр, а именно, массу Mчд. В общем случае ЧД может иметь еще заряд Q и момент инерции MчдR, где R=0! Вся масса ЧД по определению (в соответствии с постулатом ТО Эйнштейна) сосредоточена в центре ЧД в одной безразмерной точке, называемой точкой сингулярности. При этом масса ЧД вполне конкретна и конечна. Ещё один размер ЧД, уже конечный, определяется условной границей, называемой «горизонтом событий». Горизонт событий материально никак не обозначен, есть только косвенный признак: ни один объект Вселенной, включая фотоны и нейтрино, не может покинуть область ЧД, ограниченную горизонтом событий.

Вернемся к нашему анализу. В исходном состоянии имеем стационарную ЧД с массой Мчд. Затем на условной поверхности ЧД происходит рождение пары. Это происходит за счет неизбывной энергии вакуумного океана, т.е. не за счет ЧД. Однако в этом случае подпорка для теории ЧД не получается. Надо, чтобы рождение пары происходило за счет ЧД. Раз надо – пусть так и будет.

Для того, чтобы одна из частиц могла покинуть ЧД, энергия каждой частицы, а с нею и её масса, должна быть близка к бесконечности,
Мисп= Мч/(1-v^2/c^2)^0,5 при «v», стремящейся к «c». Здесь Mисп - стартовая масса-энергия спонтанно рожденной частицы с массой покоя Мч. Внутренняя частица поглощается ЧД, и масса ЧД увеличивается на величину Мисп.

Здесь возникает сразу два вопроса к Хокингу. Где же тут испарение (потеря массы дырой), и кто кого захватывает? Ведь, прибавочная масса Мисп может быть сколь угодно большой, а Мчд конечна, т.е. возможна ситуация Мисп > Мчд. Но это означает, что ЧД не может родить пару, энергия которой больше энергии дыры. Вопросы, естественно, риторические, поэтому продолжим.

Раз уж мы исследуем излучение ЧД, необходимо выяснить судьбу испаренной частицы. При достаточно большой начальной скорости, близкой к скорости света, эта частица отдалится от ЧД достаточно далеко, и остановится. После чего снова начнет падать на ЧД, т.к. её стартовая скорость все-таки была меньше скорости света. Во время остановки и разворота частицы, её можно «спасти» от ЧД и даже исследовать. Окажется, что это простой электрон или позитрон с энергией равной m;c^2 или 0.5 МэВ.
У испаренной частицы нет возможности самостоятельно покинуть ЧД, т.к. частиц, рождающихся с необходимыми для этого параметрами, не существует. Таким образом, испарение частиц Черной Дырой невозможно в принципе.
Однако последнее утверждение относится только к одинокой ЧД. Если же ЧД существует в реальном космосе, то мимо неё будет пролетать множество космических объектов, которые способны уносить продукты излучения ЧД. Но эти же объекты могут являться «пищей» для ЧД.
Здесь следует напомнить читателю, что ЧД это вовсе не всё пожирающее страшилище. Представьте себе, что Солнце вдруг превратилось в ЧД. Станет темно, не будет магнитных бурь и солнечного ветра. Но все планеты будут продолжать движение по прежним орбитам. Будут прилетать и кометы. При этом часть комет, которая должна бы рванее упасть на Солнце, может в этой ситуации продлить свое существование, если траектории комет не будут пересекать границу горизонта событий ЧД.
Существует другой возможный сценарий событий. Частица снаружи горизонта событий аннигилирует с другой наружной частицей. В угоду Хокингу, обяжем образовавшиеся два гамма-кванта тоже быть поляризованными. Один из гамма-квантов устремится прочь от ЧД, и в данном варианте у него это с гарантией получится, т.к. его начальная скорость точно равна скорости света, а место старта чуточку удалено от горизонта событий.
Получив полную свободу за пределами притяжения ЧД, вырвавшийся гамма-квант окажется весьма похудевшим. Степень похудения зависит от места точки аннигиляции. Излучение должно быть представлено полным спектром, т.е. от 0 до m;c^2, и не обнаружить его, просто, не возможно. В этой ситуации Хокинг нам уже не указ. Чтобы узнать, как же происходит похудение гамма-кванта в поле гравитации, придется обратиться к наследию Эйнштейна. Но там ответа нет. А самое огорчительное, что нет ответа и на вопрос, как происходит фазовый переход от фотона-частицы (гамма-кванта) к кванту худеющего радиоизлучения, длина волны которого непрерывно скачками возрастает вплоть до максимально возможной длины – длины световой секунды. Но это огорчение уже для квантовой теории.
Есть еще один вопрос, уже к неизвестным авторам квантовых фантазий о вакуумном океане. Речь о виртуальных парах частиц, которые в огромном количестве рождаются на поверхности вакуумного океана и моментально аннигилируют. Рождение и исчезновение частиц мы не успеваем заметить, по определению. Но как можно не заметить огромное количество не исчезающих гамма-квантов, являющихся результатом аннигиляции? Ответ у авторов ЧД ошеломляюще простой: излучения нет, т.к. его наличие противоречило бы закону сохранения энергии. Вот так - изучайте классику.
Таким образом, вся теория ЧД это сплошная профанация - но она старательно замаскирована математическими зарослями, вскормленными на гидропонике произвольных предположений.
Идея же с испарением ЧД является не прикрытой ложью, и её необходимо рассматривать как бесстыдное надувательство, авторы которого уверенны в своей безнаказанности под крылом правящего учения - Теории Относительности Эйнштейна.

Здесь был рассмотрен простейший случай с ЧД Шварцшильда. Если же ЧД (безразмерную точку) раскрутить, то у нее якобы появится момент инерции (отложите классику), и все станет ещё затейливее. Но писать об этом почему-то скучно.

Нижний Новгород, октябрь 2015г.

ИСТОЧНИКИ

1. Стивен Хокинг, «Теория всего. Происхождение и судьба Вселенной».
2. Стивен Хокинг, «Краткая история времени».
3. Злосчастьев К., (кафедра гравитации и теории поля, Институт Ядерных Исследований, Национальный Автономный Университет Мексики. Доктор философии в области физики), «О сингулярности, информации, энтропии, космологии и многомерной Единой теории взаимодействий в свете современной теории черных дыр».
4. Хуан Малдасена (Juan Maldacena), (Институт высших исследований, Школа естественных наук, Принстон, Нью-Джерси, США) «Черные дыры и структура пространства-времени».
5. Новиков И.Д., Фролов В.П., «Чёрные дыры во Вселенной».
6. Паули В. «Теория относительности». - 2-е изд. - М.: Наука, 1983.
7. Новиков И.Д. «Черные дыры и Вселенная». М., Молодая гвардия, 1985.
8. Чандрасекар С. «Математическая теория черных дыр». М., Мир, 1986.
9. Черепащук А.М. «Поиски черных дыр». – Успехи физических наук, 2003, т.173, № 4.

Курсовая работа

по дисциплине

«Квантовая теория и статистическая физика»

Черные дыры. Эффект Хоккинга.

Испарение чёрных дыр.

Введение.

Среди великого разнообразия небесных тел особое место занимает класс объектов, называемых черными дырами (ЧД). Их поле тяготения столь велико, что никакая частица, включая частицу (квант) света, не может вырваться изнутри такого объекта и уйти на бесконечность. Поэтому его поверхность действует как своего рода клапан, пропускающий вещество лишь в одну сторону – внутрь ЧД (отсюда и это название: вещество валится в ЧД как в дыру, а свет из нее выйти не в состоянии). Это уникальное свойство черных дыр прямо ведет к уникальному факту – внешнему наблюдателю оно представляется как горячее тело, служащее источником теплового излучения. Это и другие тепловые свойства черных дыр описываются специальной теорией – термодинамикой черных дыр.

Черные дыры.

Еще в 1795 г. великий французский математик Пьер-Симон Лаплас теоретическим путем пришел к выводу, что свет не может уйти от тела, если оно достаточно массивно или достаточно сильно сжато. Даже из ньютоновской теории следует, что если скорость убегания для какого-либо объекта превышает величину скорости света, то этот объект для внешнего наблюдателя будет казаться абсолютно черным. Но на протяжении почти двухсот лет никому не приходило в голову, что в природе могут действительно существовать черные дыры. Однако к середине 1960-х годов астрофизикам удалось рассчитать подробно структуру звезд и ход их эволюции. Теперь, зная больше, астрономы отчетливо понимают, что не может существовать устойчивых мертвых звезд, масса которых превышала бы три солнечные массы. Поскольку во Вселенной звезды, обладающие намного большими массами, - широко распространенное явление, астрофизики стали всерьез обсуждать возможность существования черных дыр, рассеянных повсюду во Вселенной.

Черная дыра - это один из трех возможных вариантов конечной стадии эволюции звезд. Однако в отличие от белых карликов и нейтронных звезд черная дыра - это пустое место. Это то, что остается после катастрофического гравитационного коллапса массивной звезды, когда она умирает. При коллапсе - катастрофическом сжатии звезды - напряженность силы тяготения над ее поверхностью становится настолько чудовищно большой, что окружающее звезду пространство-время свертывается, и звезда исчезает из Вселенной; остается только исключительно сильно искривленная область пространства-времени.

Небесные тела со свойствами черных дыр рассматривались в рамках механики Ньютона еще в XVIII веке как объекты, вторая космическая скорость которых, превышает скорость света c. Здесь G – постоянная тяготения, M – масса объекта, R – его радиус. Приведенному условию удовлетворяет объект, масса которого сконцентрирована в очень малом объеме с радиусом

(1)

где – гравитационный радиус тела, – масса Солнца. Сферу радиуса называют горизонтом событий: именно ею ограничено поле зрения внешнего наблюдателя, лишенного информации о ее внутренней части. Условие (1) оказалось справедливым и в рамках общей теории относительности.

Для подавляющей части небесных тел условие (1) нарушено. Так, для Солнца (радиус 7· км) и Земли (масса 6· г, радиус 6· км) величина составляет соответственно всего 3 км и ~1 см. Еще контрастнее соответствующие цифры для земных объектов. Поэтому черная дыра возникает лишь при крайне необычных условиях сверхвысокой плотности вещества. Такие условия имеются прежде всего на конечном этапе эволюции звезд с массой, превышающей примерно 3; неудержимое гравитационное сжатие такой звезды – коллапс – ведет в конечном счете к выполнению условия (1) и к образованию черной дыры звездной массы. Массы таких объектов лежат в диапазоне от 3 до 100 . Более тяжелые массивные и сверхмассивные черные дыры с массами до возникают в результате коллапса больших масс газа в центрах шаровых скоплений, в ядрах галактик и в квазарах. Легкие черные дыры с массами до 3 могли бы образоваться в результате нарастания флуктуаций плотности сверхсжатого вещества ранней Вселенной (первичные ЧД).

Абсолютно твердых доказательств существования черных дыр в космосе пока нет. Однако большинство ученых сходится во мнении, что рентгеновские источники в некоторых двойных системах представляют собой звездные черные дыры, а активность многих (если не всех) ядер галактик и квазаров – результат существования массивных и сверхмассивных черных дыр в центрах этих объектов.

Предшественник черной дыры (массивная звезда, газ, флуктуация плотности) обладает множеством наблюдаемых параметров, относящихся как к его глобальным свойствам, так и к характеристикам его внутреннего строения. Информация о подавляющей части таких параметров теряется внешним наблюдателем в процессе образования черной дыры, которая не выпускает из себя никаких сигналов, характеризующих состав и структуру вещества, распределение электрических токов и пр. Этот факт образно описывают словами: черная дыра не имеет волос. Фактически наблюдатель может измерить лишь такие глобальные характеристики черной дыры, как ее масса M , вращательный момент m и полный электрический заряд Q .

Эффект Хокинга

Нарисованная картина черной дыры носит классический, неквантовый характер. Квантовая механика вносит в нее некоторые коррективы: при сохранении горизонта событий черная дыра перестает быть "черной", становясь источником излучения. Природа этого излучения та же, что и у электронно-позитронных пар, рождаемых сильным электрическим полем, которое увеличивает энергию виртуальных (короткоживущих) пар в вакууме, превращая их в реальные (долгоживущие). Аналогичным образом рождает пары (в том числе и пары фотонов) и сильное поле тяготения черной дыры, действующее на частицы любого сорта. Одна из компонент пары становится реальной частицей снаружи (и вблизи) горизонта событий и, имея положительную энергию, может уйти в бесконечность; другая частица появляется внутри (и вблизи) горизонта и падает с отрицательной энергией внутрь черной дыры (см. рис. 1). В итоге черная дыра становится источником непрерывного потока частиц, уходящего в бесконечность. При формировании такого излучения никакая частица не пересекает горизонта событий, который тем самым по-прежнему обладает свойствами клапана.

Рис. 1. Рождение пар частиц в гравитационном поле черной дыры. а – горизонт событий, область черной дыры заштрихована

В 1974-1975 годах английский теоретик С. Хокинг проводил вычисления характеристик излучения черных дыр, руководствуясь нарисованной выше физической картиной. Он обнаружил, что свойства такого излучения в точности такие же, как у излучения горячего черного тела радиуса нагретого до температуры (в кельвинах)

T ≈ 0,5· (/M). (2)

В описанном явлении, которое называют эффектом Хокинга, температура обратно пропорциональна массе. В процессе излучения масса черной дыры уменьшается, а ее температура растет, что усиливает излучение и тем самым ускоряет убыль массы. Поэтому со временем черная дыра "разгорается", ее температура быстро растет и за конечное время (в секундах)

t ≈ (3)

Черная дыра прекращает существование, исчерпав всю свою массу.

Существенно, что последние мгновения перед исчезновением черной дыры будут протекать в режиме мощного взрыва с выделением энергии порядка эрг за время около 0,1 с. Такие взрывы можно было бы наблюдать и на большом расстоянии от Земли. Это не относится к звездным и тем более к массивным и сверхмассивным черным дырам: уже при массе, равной солнечной, температура составляет ничтожные доли градуса, а время жизни ЧД намного больше времени существования Вселенной (см. формулы (2), (3)). Поэтому взрываться в нашу эпоху способны лишь первичные черные дыры с массой около 1015 г (масса средней горы). К сожалению, такие взрывы до сих пор не наблюдались.

Как не впечатляющи следствия эффекта Хокинга, с точки зрения теории наибольший интерес представляет природа теплового характера черных дыр – имеем ли мы здесь дело с чисто случайным сходством или же по каким-то причинам черная дыра действительно представляет собой горячее тело.

Заключение

Существование черных дыр, предсказанных в их современном понимании общей теорией относительности, с большой долей вероятности уже подтверждено наблюдениями. Если эта вероятность превратится в полную уверенность, то роль черных дыр как источников активности ядер галактик и квазаров позволит считать их важнейшим элементом мироздания. Не исключено, что еще не открытые первичные черные дыры, если они действительно существуют, имеют куда большую значимость для космофизики, чем это кажется сегодня.

Однако уже сейчас можно говорить и о совсем иной, общефизической, роли черных дыр, обогативших наши общие представления о неорганическом мире. Появление черных дыр как продукта теоретической мысли подняло на новый уровень наше понимание теплоты. С XVIII - XIX века – времени победы кинетической теории над теорией теплорода – наука знала единственный механизм появления тепла – хаотизацию движения частиц, обладающих запасом кинетической энергии. Такой механизм проявляется при трении двух кусков дерева, с помощью чего наши предки добывали огонь, и при химических и ядерных реакциях. С наиболее общей, информационной точки зрения появление тепла во всех таких случаях отвечает утрате микроскопической информации о состоянии частиц горячего тела.

Физика черных дыр указала новый механизм возникновения тепла, когда информация о внутреннем состоянии черной дыры "отсекается" от наблюдателя мощными силами тяготения (а сам этот объект может быть уподоблен "черному ящику" – так в кибернетике называют устройство с неизвестной внутренней структурой). Этот новый механизм действует по схеме:

черная дыра → черный ящик → черное тело

А также имеет дело с хаосом, которому отвечает равновероятность (с точки зрения внешнего наблюдателя) различных микросостояний внутренней части черной дыры с заданными значениями массы, момента и заряда.

Экология познания. Наука и техника: Что случится, когда чёрная дыра потеряет достаточное количество энергии из-за излучения Хокинга, и плотности её энергии уже не будет хватать для того, чтобы поддерживать сингулярность с горизонтом событий? Иначе говоря, что произойдёт, когда чёрная дыра перестанет быть чёрной дырой из-за излучения Хокинга?

Сложно представить, учитывая разнообразие форм, принимаемых материей во Вселенной, что миллионы лет в ней существовали только нейтральные атомы водорода и гелия. Возможно, примерно так же сложно представить, что когда-нибудь, через квадриллионы лет, погаснут все звёзды. Будут существовать только останки ныне такой живой Вселенной, включая и самые впечатляющие её объекты: чёрные дыры. Но и они не вечны. Наш читатель хочет узнать, как именно это произойдёт:

Что случится, когда чёрная дыра потеряет достаточное количество энергии из-за излучения Хокинга, и плотности её энергии уже не будет хватать для того, чтобы поддерживать сингулярность с горизонтом событий? Иначе говоря, что произойдёт, когда чёрная дыра перестанет быть чёрной дырой из-за излучения Хокинга?

Чтобы ответить на этот вопрос, важно понять, что на самом деле представляет собой чёрная дыра.


Анатомия очень массивной звезды в течение её жизни, достигающая кульминации в виде сверхновой типа IIa в момент, когда в ядре заканчивается ядерное горючее

Чёрные дыры в основном формируются после коллапса ядра массивной звезды, истратившей всё ядерное топливо, и переставшей синтезировать из него более тяжёлые элементы. С замедлением и прекращением синтеза ядро испытывает сильное падение давления излучения, которое только и удерживало звезду от гравитационного коллапса. В то время, как внешние слои часто испытывают выходящую из-под контроля реакцию синтеза, и взрывают исходную звезду до сверхновой, ядро сначала сжимается до нейтронной звезды, но если его масса оказывается слишком большой, то даже нейтроны сжимаются и переходят в плотное состояние, из которого возникает чёрная дыра. ЧД также может возникнуть, когда нейтронная звезда в процессе аккреции заберёт достаточно массы у звезды-компаньона, и перейдёт рубеж, необходимый для превращения в ЧД.


Когда нейтронная звезда набирает достаточно материи, она может схлопнуться в чёрную дыру. Когда ЧД набирает материю, у неё растёт аккреционный диск и масса, поскольку материя падает за горизонт событий

С точки зрения гравитации всё, что нужно, чтобы стать ЧД - это собрать достаточно массы в достаточно малом объёме, так, чтобы свет не смог убежать из определённого участка. У каждой массы, включая планету Земля, есть своя скорость убегания: скорость, которой требуется достичь, чтобы убежать от гравитационного притяжения на определённом расстоянии (к примеру, на расстоянии от центра Земли до её поверхности) от центра масс. Но если набрать достаточно массы для того, чтобы скорость, которую вам нужно было бы набрать на определённом расстоянии от центра масс, равнялась бы световой - тогда уже ничто не сможет убежать от неё, поскольку ничто не может обогнать свет.


Масса чёрной дыры - единственный фактор, определяющий радиус горизонта событий для невращающейся изолированной ЧД

Это расстояние от центра масс, на котором скорость убегания равняется скорости света - назовём его R - определяет размер горизонта событий чёрной дыры. Но то, что при таких условиях внутри находится материя, приводит к менее известным последствиям: вся она должна схлопнуться до сингулярности. Можно представить, будто существует такое состояние материи, которое позволяет ей оставаться стабильной и иметь конечный объём внутри горизонта событий - но это физически невозможно.

Чтобы оказывать воздействие, направленное наружу, находящаяся внутри частица должна отправить частицу, переносящую взаимодействие, в сторону от центра масс к горизонту событий. Но эта переносящая взаимодействие частица также ограничена скоростью света, и, неважно, в каком месте внутри горизонта событий вы находитесь, все мировые линии заканчиваются в его центре. Для более медленных и массивных частиц всё ещё хуже. Как только появляется ЧД с горизонтом событий, вся материя внутри неё сжимается в сингулярность.


Внешнее пространство-время шварцшильдовской ЧД, известное, как параболоид Флэмма, легко подсчитать. Но внутри горизонта событий все геодезические линии ведут к центральной сингулярности.

И, поскольку ничто не может убежать, можно было бы решить, что ЧД вечна. И если бы не квантовая физика, это было бы именно так. Но в квантовой физике существует ненулевое количество энергии, присущее самому пространству: квантовый вакуум. В искривлённом пространстве квантовый вакуум приобретает немного иные свойства, чем в плоском, и нет регионов, где кривизна была бы выше, чем в окрестностях сингулярности чёрной дыры. Если сопоставить два этих закона природы - квантовую физику и пространство-время из ОТО вокруг ЧД - мы получим такое явление, как излучение Хокинга.

Если вы проведёте вычисления согласно квантовой теории поля в искривлённом пространстве, то получите удивительный ответ: из пространства, окружающего горизонт событий чёрной дыры испускается тепловое излучение чёрного тела. И чем меньше горизонт событий, тем сильнее кривизна пространства рядом с ним, и тем выше скорость излучения Хокинга. Если бы наше Солнце было чёрной дырой, его температура излучения Хокинга равнялась бы 62 нК. Если взять ЧД в центре нашей Галактики, масса которой в 4 000 000 раз больше, то тем температура будет уже 15 фК, всего 0,000025% от первой.


Композитное изображение из рентгеновского и инфракрасного диапазона, на котором видна ЧД в центре нашей Галактики: Стрелец A*. Её масса в 4 млн раз превышает солнечную, и она окружена горячим газом, испускающим рентгеновские лучи. А ещё она испускает излучение Хокинга (которое мы не в силах обнаружить), но при гораздо меньшей температуре.

Это значит, что мелкие ЧД испаряются быстрее, а крупные живут дольше. Расчёты говорят, что ЧД солнечной массы будет существовать 10 67 лет до того, как испарится, ну а ЧД в центре нашей галактики будет жить ещё в 10 20 раз больше перед испарением. Но самое безумное во всём этом - то, что до самой последней доли самой последней секунды у ЧД будет сохраняться горизонт событий, вплоть до момента, когда её масса станет нулевой.


Излучение Хокинга неизбежно следует из предсказаний квантовой физики в искривлённом пространстве-времени, окружающем горизонт событий ЧД

Но последняя секунда жизни ЧД будет охарактеризована особенным, и очень крупным выбросом энергии. Одна секунда ей останется, когда её масса упадёт до 228 тонн. Размер горизонта событий в этот момент будет составлять 340 им, то есть 3,4 × 10 -22: это длина волны фотона с энергией, превышающей всё, что удавалось пока получать на Большом адронном коллайдере. Но в эту последнюю секунду будет выпущено 2.05 × 10 22 Дж энергии, что эквивалентно 5 млн мегатонн ТНТ. Будто миллион ядерных бомб взрываются одновременно в небольшом участке пространства - такова последняя стадия излучения чёрной дыры.


В процессе того, как чёрная дыра усыхает в массе и радиусе, её излучение Хокинга становится всё больше по температуре и мощности

А что же останется? Только исходящее излучение. Там, где до этого в пространстве существовала сингулярность, в которой масса, а также, возможно, заряд и угловой момент существовали в бесконечно малом объёме, теперь ничего нет. Пространство восстановлено до предыдущего, несингулярного состояния, после промежутка, казавшегося бесконечностью: такого времени достаточно, чтобы во Вселенной произошло всё то, что произошло в ней с самого начала, триллионы триллионов раз. Когда это впервые случится, во Вселенной уже не будет никаких звёзд или источников света, и не будет никого, кто мог бы присутствовать при этом потрясающем взрыве. Но никакого «предела» для этого не существует. ЧД должна испариться полностью. А после этого, насколько нам известно, не останется ничего, кроме исходящего излучения.


На кажущемся вечным фоне постоянной тьмы появится единственная вспышка света: испарение последней чёрной дыры во Вселенной

Иначе говоря, если бы вам удалось наблюдать испарение последней ЧД во Вселенной, вы бы видели пустое пространство, в котором нет никаких признаков активности уже 10 100 лет, или более. И внезапно появится невероятная вспышка излучения определённого спектра и мощности, убегающего от одной точки в пространстве со скоростью в 300 000 км/с. И это будет последний раз в наблюдаемой Вселенной, когда какое-то событие омоет её излучением. Перед испарением последней ЧД, говоря поэтическим языком, Вселенная в последний раз скажет: «Да будет свет!». опубликовано

Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта .

Излучение Хокинга - процесс излучения различных элементарных частиц , который был теоретически описан британским ученым Стивеном Хокингом в 1974-м году.

Задолго до публикаций работ Стивена Хокинга, возможность излучения частиц черными дырами высказывалась советским физиком-теоретиком Владимиром Грибовым в дискуссии с другим ученым - Яковом Зельдовичем.

Занимаясь исследованием поведения элементарных частиц вблизи черной дыры, в 1973-м году тридцатилетний Стивен Хокинг посетил Москву. В столице ему удалось принять участие в научном обсуждении с двумя выдающимися советскими учеными Алексеем Старобинским и Яковом Зельдовичем. Работая некоторое время над идеей Грибова, они пришли к выводу, что черные дыры могут излучать благодаря туннельному эффекту. Последний означает существование вероятности того, что частица может преодолеть любой барьер, с точки зрения квантовой физики. Заинтересовавшись данной темой, Хокинг подробно изучил вопрос и в 1974-м году опубликовал свою работу, впоследствии которой его именем было названо упомянутое излучение.

Стивен Хокинг несколько иначе описал процесс излучения частиц черной дырой. Первопричиной такого излучения являются так называемые «виртуальные частицы».

В процессе описания взаимодействий между частицами ученые пришли к мысли о том, что взаимодействия между ними происходят посредством обмена некими квантами («порции» какой-либо физической величины). Например, электромагнитное взаимодействие в атоме между электроном и протоном протекает при помощи обмена фотонами (переносчиками электромагнитного взаимодействия).

Однако тогда возникает следующая проблема. Если, рассмотреть этот электрон как свободную частицу, то он никоим образом не может просто излучить или поглотить фотон, согласно принципу сохранения энергии. То есть он не может просто потерять или приобрести какое-то количество энергии. Тогда ученые и создали так называемые «виртуальные частицы». Последние отличаются от реальных тем, что рождаются и исчезают так быстро, что зарегистрировать их невозможно. Все, что виртуальные частицы успевают сделать за короткий промежуток своей жизни – это передать импульс другим частицам, при этом, не передавая энергию.

Таким образом, даже пустое пространство, в силу неких физических флуктуаций (случайных отклонений от нормы) просто кишит этими виртуальными частицами, которые постоянно рождаются и уничтожаются.

Излучение Хокинга

В отличие от советских физиков, описание излучения Стивеном Хокингом основывается на абстрактных, виртуальных частицах, которые являются неотъемлемой частью квантовой теории поля. Британский физик-теоретик рассматривает спонтанное возникновение этих виртуальных частиц на черной дыры. В таком случае мощное гравитационное поле черной дыры способно «растащить» виртуальные частицы еще до момента их уничтожения, тем самым превратив их в реальные. Подобные процессы экспериментально наблюдаются на синхрофазотронах, где ученым удается растаскивать эти частицы, при этом затрачивая некоторое количество энергии.

С точки зрения физики, возникновение реальных частиц, имеющих массу, спин, энергию и прочие характеристики, в пустом пространстве «из ничего» противоречит закону сохранения энергии, а значит просто невозможно. Поэтому для «превращения» виртуальных частиц в реальные потребуется энергия, не меньше, чем суммарная масса этих двух частиц, согласно известному закону . Такой запас энергии затрачивает и черная дыра на то, чтобы растащить виртуальные частицы на горизонте событий.

В результате процесса растаскивания одна из частиц, находящаяся ближе к горизонту событий или даже под ним, «превращается» в реальную, и направляется в сторону черной дыры. Другая же, в обратном направлении отправляется в свободное плаванье по космическому пространству. Проведя математические подсчеты, можно убедиться в том, что даже, несмотря на полученную энергию (массу) от частицы, упавшей на поверхность черный дыры, энергия, потраченная черной дырой на процесс растаскивания - отрицательная. То есть, в конечном счете, в результате описанного процесса, черная дыра лишь утратила некоторый запас энергии, который, причем, в точности равен энергии (массе), которой обладает улетевшая «наружу» частица.

Таким образом, согласно описанной теории, черная дыра хоть и не излучает никаких частиц, но способствует такому процессу и теряет эквивалентную энергию. Следуя уже упомянутому закону Эйнштейна об эквивалентности массы и энергии, становится ясно, что черной дыре неоткуда брать энергию, кроме как из собственной массы.

Подводя итог всего вышеописанного, можно сказать, что черная дыра излучает частицу и при этом теряет некоторую массу. Последний процесс был назван как «испарение черной дыры». Исходя из теории об излучении Хокинга, можно догадаться, что спустя некоторое время, хотя и очень длительное (триллионы лет), черные дыры просто .

Интересные факты

  • Многие люди опасаются, что на Большом Адронном Коллайдере (БАК) могут образоваться черные дыры, и, вероятно, привнести угрозу в жизнь землян. Рождение черных дыр на БАК возможно только в случае существования дополнительных измерений пространства-времени и наличия мощного гравитационного взаимодействия на малых расстояниях. Однако сформированная таким образом микроскопическая черная дыра мгновенно испарится за счет излучения Хокинга.
  • На основе излучения Хокинга может работать сингулярный реактор или коллапсарный реактор – гипотетическое устройство, порождающее микроскопические черные дыры. Энергия излучения, образованного в результате их испарения, и будет основным источником энергии реактора.

Хотя Большой Адронный Коллайдер и выглядит грозно, из-за излучения Хокинга бояться его нечего

  • Опубликовав свою работу по излучению черных дыр, Стивен Хокинг поспорил с другим известным ученым – Кипом Торном. Предметом спора стала природа объекта, претендующего на звание черной дыры, под названием . Несмотря на то, что работа Хокинга основывалась на предположении о существовании черных дыр, он утверждал, что Лебедь Х-1 не является черной дырой. Примечательно, что в качестве ставок выступали подписки на журналы. Ставка Торна представлялась в виде 4-хгодовой подписки на сатирический журнал «Private eye», тогда как ставка Хокинга – годовая подписка на эротический журнал «Пентхауз». Логику своего утверждения в споре, Стивен аргументировал следующим: «даже если я окажусь не прав, утверждая о существовании черных дыр, то хоть выиграю подписку на журнал»