Болезни Военный билет Призыв

Биологическое время и организм. Время биологическое и время субъективное: сравнительные характеристики

Можно ли замедлять и ускорять биологическое время ? Замедлять его биологи уже частично умеют. Достаточно охладить организм, и живые сбавят свой ход, а то и совсем остановятся, при повышении же восстанавливают обычный ритм. Ученые давно думают над тем, как на заданный срок останавливать биологические часы у космонавтов. В таком состоянии они могут достигнуть самых отдаленных планет, почти не старея за время пути. А вот ускорить биологическое время пока значительно сложнее.

Как же сконцентрировать биологическое время? Ученые-биологи определили, что своеобразным концентратором биологического времени служат особые вещества, называемые биогенными стимуляторами. Механизм биологических часов, по-видимому, один и тот же у всех организмов, исключая бактерии, которые вообще не "приобрели" часов. Но разве с одинаковой скоростью протекают жизненные процессы у одноклеточных и многоклеточных организмов? Ведь у одних жизнь длится день, у других – столетие.

Вот коловратка – микроскопическое, но многоклеточное существо. Некоторые ее виды живут всего одну неделю. За эту неделю коловратка успевает вырасти и состариться. Так как же идет биологическое время у этой коловратки, как у человека или в 3 тыс. раз быстрее?

Сама природа дала исследователю прибор, который позволяет следить за течением биологического времени в живом организме, не входя непосредственно в его жизнь и не нарушая взаимосвязи в его структуре. Прибор этот – процесс деления самой . Скорость ее деления косвенно говорит и об обмене веществ внутри ее, и о времени, в котором она живет. Деление клетки дает и еще более важную информацию – где находится механизм, управляющий ходом биологического времени в живом.

На первый взгляд кажется несколько странным, что слон, человек, мышь и другие млекопитающие, так сильно различающиеся по размерам и по продолжительности жизни, первые шаги на жизненном пути делают с одинаковой скоростью.

Если рассматривать первые шаги жизни в развитии от одной клетки и сравнивать мышь и слона, то оказывается, что слон живет 60 лет, мышь – 2–3 года. Эмбриональное развитие у мыши – 21 день, а у слона – 660, почти 2 года. Все начинается одновременно, но как по-разному заканчивается. Может быть, у клетки мыши биологическое время сразу же побежало быстрее, и она в несколько раз обогнала по развитию зародыш слона? Нет, это не так. И мышонок, и слоненок первые 7 дней развиваются с одинаковой скоростью. Но почему же в первую неделю у зародышей слона и мыши одинаково идут биологические часы?

Оказалось, что в этот период почти у всех зародышей млекопитающих биологические часы поставлены как бы на "собачку". Наследственные механизмы – гены, регулирующие скорость роста и обмена веществ, в это время не работают.

Сначала зародыш набирает клеточную массу, в которой затем придется строить различные органы. Как только начинается строительство органов, словно бы заводится пружина часов. Каждый завод делается теперь с осторожностью и не до конца. Вся работа биологических часов идет под контролем генетического аппарата, и чем сложнее становится организм по мере развития, тем с большей четкостью гены выдают информацию. Организм начинает довлеть над работой биологических часов, и действие различных гормонов еще более замедляет биологическое время. У эмбриона, биологические часы которого не сдерживаются так сильно генетическим аппаратом и гормональными влияниями, потому что у него еще не развилась эндокринная система.

А можно ли снять тормоз времени у взрослого организма и заставить его жить быстрее? Может быть, есть такие вещества, которые концентрируют время, а проще и вернее сказать, снимают тормоз времени? Вся опасность в этом случае сводится к нарушению биологических часов. Ускорение обмена веществ и деления клеток должно быть гармоничным и обязательно в пределах нормы. Обмен веществ в живых клетках проходит всегда с несколько меньшей скоростью, клетка обладает довольно большими резервами на случай опасности. Значит, если дать сигнал опасности, то клетка частично снимет свой временной тормоз и все процессы в ней пойдут с увеличенной скоростью. Для этого необходимо воздействовать непосредственно на те гены, которые регулируют скорости химических взаимодействий огромных биомолекул внутри клетки.

Как же подать клетке сигнал опасности? В процессе эволюции в клетках организма выработался механизм, воспринимающий продукты распада, которые получаются от страдающих по соседству клеток. Поскольку у живых существ молекулярные механизмы восприятия опасности однотипны, при наличии продуктов распада ускорят свой ход биологические часы, как животных, так и растений. Вот почему листья алоэ, выдержанные в темноте, или ткани животных, находящиеся несколько дней в при 4 0 C, содержат уже вещества, способные ускорить обмен веществ в клетках организма, в который они будут введены.

Человек в самом начале эмбрионального развития живет в ускоренном биологическом времени. По мере его развития биологическое время замедляется. После рождения оно еще продолжает идти несколько скорее, чем у взрослого человека. К старости же людям кажется, что время "стоит на месте". Уж не включается ли здесь в работу на полную мощь тормоз времени – гены времени?

- 108.00 Кб

Биологическое время. Биологический возраст

по курсу Концепции современного естествознания

Введение 3

Заключение 16

Введение

Ответа нет.

С понятием временной организации тесно связана проблема специфичности течения времени в живых системах, или, как ее называют, проблема биологического времени. Этой проблемы касались многие ученые.

Огромную роль в этом вопросе сыграл В. И. Вернадский, который создал понятие биологического пространства-времени и тем самым поднял учение о биосфере на теоретический уровень.

Исследование проблемы биологического времени имеет большое значение. Во-первых, она связана с понятием «биологических ритмов». Все живое на нашей планете несет отпечаток ритмического рисунка событий, характерного для нашей Земли. В сложной системе биоритмов, от коротких - на молекулярном уровне - с периодом в несколько секунд, до глобальных, связанным с годовыми изменениями солнечной активности живет и человек.

Во-вторых, все это имеет отношение к биологическому возрасту человека как к показателю уровня развития, изменения или износа структуры, его функциональной системы, организма в целом или сообщества организмов (биоценоза), выраженный в единицах времени путем соотнесения значений, определяющих эти процессы биологических маркеров старения с эталонными среднестатистическими зависимостями изменений этих биомаркеров от календарного возраста.

Поскольку все организмы и сообщества организмов представляют скоррелированные системы, все изменения, происходящие в них, в конце концов ведут к их распаду - смерти, как и у всех физических систем. Но процесс распада организмов и сообществ организмов, или их старение, неравномерен. Поэтому при одном и том же астрономическом или календарном возрасте различных организмов, людей, сообществ степень постарения отдельных органов, элементов и систем будет различна.

И, в-третьих, актуальность данного реферата можно обосновать тем, что изучение этих волнующих вопросов, и попытки проникнуть в неизведанное могут принести реальные плоды. Человеческая жизнь может качественно измениться, биологические способности индивидов могут увеличиться и, наконец, кто знает, возможно, мы подойдем к разгадке сущности Вселенной и обретем новые знания.

Цель данного реферата – рассмотреть формулировку понятия «биологического времени», суть биоритмологического подхода к феномену времени. А также выяснить, что является биологическим возрастом индивида. Определить критерии биологического возраста и рассмотреть особенности биологического возраста мужчин и женщин.

Глава 1. Биологическое время.

§1. Формулировка понятия и введение термина.

С понятием временной организации тесно связана проблема специфичности течения времени в живых системах, или, как ее называют, проблема биологического времени.

Большинство авторов подчеркивает, что время едино во Вселенной, какого-либо особого (например, биологического времени) нет, правомерно говорить лишь о субъективной оценке времени. Однако существует и противоположная позиция, имеющая немалое число сторонников. Проблема биологического времени была поставлена более 100 лет назад К.Бэром, основоположником эмбриологии. Научно обоснованная идея о биологическом времени принадлежит В.И. Вернадскому. В 1929-1931 гг.

В. И. Вернадский создает понятие биологического пространства-времени и тем самым поднимает учение о биосфере на теоретический уровень. Толчком для давно назревавшего намерения Вернадского напрямую и открыто заговорить о проблеме времени в современной науке, послужила только что вышедшая книга уже хорошо знакомого ему по литературе английского астронома Артура Эддингтона, горячего сторонника и даже пропагандиста теории относительности. 13 августа он пишет Б.Л. Личкову: “На днях получил книгу Eddington’a The nature o f the physical World – очень много заставляет думать. Он дает картину Мира, где нет законов всемирного тяготения в их обычном представлении. Довольно много было мне нового в некоторых следствиях. Попытка построить Мир, где действие законов причинности – ограниченное. Эддингтон делает из этого философские и религиозные выводы… Мне, однако, кажется, что получающаяся картина Мира не может быть верна, так как Эддингтон принимает резкое отличие времени и пространства, по существу, упуская явления симметрии».

В сентябре в Праге Вернадский начинает вплотную работать над проблемой времени. О направлении его мысли и о намерениях дают представление и другие чрезвычайно важные и красноречивые свидетельства. 9 сентября 1929 г. он пишет своему заместителю по БИОГЕЛу А.П. Виноградову. «Я здесь много обдумывал вопросы живого вещества и пробую набросать кое-какие мысли. Хочу сделать доклад о диссимметрии живого вещества в биологическом времени – не знаю, в Обществе естествоиспытателей (как прежние два доклада), или на годовом заседании нашей Лаборатории (кстати, нам надо справиться, когда она официально утверждена)? Пока мне очень трудно справиться с этой задачей, но я надеюсь эти немногие недели, что мне осталось здесь, ее двинуть. Очень интересно затронуть оба вопроса совместно: и диссимметрия, открытая Пастером, и так мало проникшая в сознание натуралистов, и биологическое время, о котором я много думаю – уже несколько лет – имеют много общего и сейчас приобретают огромный интерес в связи с новым направлением физических

дисциплин. Не знаю, удастся ли мне все ясно сформулировать – но я хочу рассмотреть эти вопросы [в связи] с новой физикой. Для биологического времени важно определить единицу этого времени, равную минимальному промежутку между двумя поколениями – между делениями клеток или делениями бактерий (Cyanophyceae?). В последнем случае мы имеем дело не со средой нашего тяготения, а средой молекулярных сил. И здесь, должно быть, есть скачок? Скачок, имеющий биологическое значение. В первом случае д[олжны] б[ыть] часы, а во втором 15-20 минут? Надо будет заказать кому-нибудь свести весь эспериментальный материал, имеющийся в этой области, и мы эту сводку можем напечатать в наших трудах». (Одновременно с созданием БИОГЕЛ было получено право издавать непериодически ее труды).

Слова Вернадского чрезвычайно важны для темы данного реферата: скорее всего, здесь, именно 9 сентября 1929 г., Вернадский впервые озвучивает свой новый термин биологическое время. Пока еще не в научной статье, но в частном письме. Затем Вернадский начинает с очень широкого, предельного охвата: «Время физика несомненно, не есть отвлеченное время математика или философа, и оно в разных явлениях проявляется в столь различных формах, что мы вынуждены это отмечать в нашем эмпирическом знании. Мы говорим об историческом, геологическом, космическом и т.п. временах. Удобно отличать биологическое время, в пределах которого проявляются жизненные явления.

Это биологическое время отвечает полутора – двум миллиардам, на протяжении которых нам известно на Земле существование биологических процессов, начиная с археозоя. Очень возможно, что эти годы связаны только с существованием нашей планеты, а не с действительностью жизни в Космосе. Мы сейчас ясно подходим к заключению, что длительность существования космических тел предельна, т.е. и здесь мы имеем дело с необратимым процессом. Насколько предельна жизнь в ее проявлениях в Космосе, мы не знаем, так как наши знания о жизни в Космосе ничтожны. Возможно, что миллиарды лет отвечают земному планетному времени и составляют лишь малую часть биологического времени».

Вернадский утверждает: «На основе новой физики явление должно изучаться в комплексе пространство-время. Пространство жизни имеет особое, единственное в природе симметрическое состояние. Время, ему отвечающее, имеет не только полярный характер векторов, но особый, ему свойственный параметр, особую, связанную с жизнью единицу измерения».

Вернадский был единственным ученым в 1929 году, который своим понятием биологического времени перевернул все представления на 180 градусов: не жизнь как ничтожная, не принимаемая во внимание подробность на ничтожной крупице в космосе – планете Земля, существует на фоне великой Вселенной, но вся материальная Вселенная разворачивается на фоне времени жизни.

Следует сказать о приоритете во введении понятия биологическое время. Понятие бытует в сегодняшней науке.

В мировой литературе приоритет в употреблении понятия биологическое время связывается с именем французского гистолога Леконта дю Нуи. Во время работы врачом в госпитале во время первой мировой войны он заинтересовался скоростью заживления ран и стал исследовать эту проблему. В том числе и с точки зрения времени, которое он разделил на внешнее и внутреннее, назвав последнее физиологическим или биологическим.

В последующем довольно бурном развитии работ, связанных с использованием термина и понятия биологического времени, особенно в 60-70 гг., он приобрел совершенно другое направление, уже содержавшееся в работах Леконта дю Нуи и Г. Бакмана. Это направление стало называться биоритмология.

§2. Биоритмологический подход к феномену времени.

Любые изменения в живых системах обнаруживаются только при сравнении состояний системы как минимум в двух временных точках, разделенных большим или меньшим интервалом. Однако их характер может быть различным. О фазовых изменениях в системе говорят когда, в системе последовательно сменяются стадии какого-либо биологического процесса. Примером может служить смена стадий онтогенеза, то есть индивидуального развития организма. Изменения такого типа свойственны морфофизиологическим показателям организма после воздействия на него каким-либо фактором. Эти изменения характеризуют как нормальное течение процессов в организме, так и реакцию на воздействия.
Имеется особый класс периодических изменений деятельности и поведения живых систем – биологические ритмы. Учение о биологических ритмах (в узком смысле) получило наименование биоритмологии, т.к. сегодня признается, что биологический ритм – один из наиболее важных инструментов исследования роли фактора времени в деятельности живых систем и их временной организации.

В сложной системе биоритмов, от коротких - на молекулярном уровне - с периодом в несколько секунд, до глобальных, связанным с годовыми изменениями солнечной активности живет и человек. Биологические ритмы или биоритмы - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, в целых организмах и в популяциях.

Выделим следующие важные достижения хронобиологии (область науки, которая исследует периодические (циклические) феномены, протекающие у живых организмов во времени, и их адаптацию к солнечным и лунным ритмам):

Описание работы

В условиях современности, науке нельзя ограничиваться анализом пространственного аспекта отдельно от временного, они связаны воедино. Пространство в естествознании выражает протяженность, порядок и характер размещения материального объекта, их взаимное расположение.
Время в естествознании отражает последовательность процессов изменений и длительность существований объекта.

Попыток определить единство пространственно-временной организации в отношении живого объекта не предпринималось. Писатель Сартаков в романе “Философский камень”:

“Альберт Эйнштейн как математик разгадал единое пространство-время, найдя 4ое измерение. Но это только для мертвой материи. А между тем жизнь, течение жизни никак не отделимы от пространства и времени. Эйнштейн, почему же вы пренебрегли этим? Я тоже хочу разгадать пространство и время, но для живой материи. Я все испробовал. Какая наука даст мне ответ на это?”

Глава 1. Биологическое время 5

§1. Формулировка понятия и введение термина 5

§2. Биоритмологический подход к феномену времени 7

Глава 2. Биологический возраст 11

§1. Понятие и критерии определения биологического возраста 11

§2. Биологический возраст мужчин и женщин 13

Заключение 16

Список использованной литературы 18

Давно замечено, что все животные и растения обладают способностью ощущать время, или, как говорят ученые, имеют биологические часы . Ход этих часов тесно связан со сменой дня и ночи, сезонов года и другими внешними побудителями. Стрелки биологических часов сообщают растениям, когда им надлежит зацвести, животным — приступить к охоте, птицам — устраивать брачные «концерты» и отправляться в теплые края, а человеку — проснуться и не опоздать на работу.

Ученые полагают, что сама идея времени возникла тогда, когда наши предки учились думать: ведь ум действует последовательно — мы не можем сосредоточиться сразу же на двух событиях, все впечатления осознаются нами в некоей протяженности. С веками способность измерять время стала необходимым условием выживания организмов.

Человек рождается снабженным биологическими часами , и только по мере становления речи у него появляются вторые психологические часы, позволяющие различать прошлое, настоящее и будущее. Будущее — это то, к чему мы движемся, определенный промежуток между потребностью и моментом ее удовлетворения, образно говоря, расстояние между чашей и губами. Будущее не идет к нам, мы сами идем к нему, прошлое же остается позади.

Так время обрело характер движения. Когда мы не заняты делом, время ползет черепашьим шагом, но оно неудержимо мчится, когда мы поглощены любимым занятием. К слову сказать, первобытный человек на основе своих наивных представлений о времени пришел к выводу о неотвратимости смерти. Инстинкт подсказал ему способы борьбы с небытием, и он «перехитрил» время тем, что увековечил прошлое в ритуалах. Отмечая их, торжественно осуществляя обряды, человек убедился в необходимости измерять время. По меткому выражению Аристотеля, прошлое стало объектом памяти, будущее объектом надежд.

Много труда отдано было учеными поискам таинственных биологических часов. Кропотливые и сложные исследования подтвердили, что живые организмы мерят время периодическими процессами — от кратких, в доли секунды, реакций в клетке, до суточных и месячных циклов на уровне организма, который буквально «пронизан» ритмическими процессами.

Как же все-таки мы отмечаем время? В какой-то мере приблизился к ответу наш соотечественник известный ученый-физиолог И. П. Павлов: головной мозг за день получает раздражение, утомляется, затем восстанавливается. Пищеварительный канал периодически то занят пищей, то освобождается от нее. И так как каждое состояние может отражаться на больших полушариях, то вот и основание, чтобы отличить один момент от другого. Действительно, чудо природы — мозг человека — способен отражать события, длящиеся от тысячной доли секунды до десятков лет. И только поражение определенных его областей стирает следы прошлого, дезориентирует в событиях настоящего и лишает нас возможности планировать будущее.

Как же работают наши внутренние часы , хотя бы на протяжении суток? Вот их ход:

1 час ночи . Мы спим уже около трех часов, пройдя через все фазы сна. Около часа ночи наступает легкая фаза сна, мы можем пробудиться. В это время мы особенно чувствительны к боли.

2 часа ночи . Большинство наших органов работают в экономичном режиме. Трудится только печень. Она использует эти спокойные минуты, чтобы интенсивнее переработать необходимые нам вещества. И прежде всего те, которые удаляют из организма все яды. Организм подвергается своего рода «большой стирке». Если вы не спите в это время, не следует пить кофе, чай и особенно спиртное. Лучше всего выпить стакан воды или молока.

3 часа ночи . Тело отдыхает, физически мы полностью истощены. Если вам приходится бодрствовать, постарайтесь не рассеиваться, а сосредоточьтесь полностью над работой, которую необходимо закончить. В это время у нас самое низкое давление, редкий пульс и медленное дыхание.

4 часа ночи . По-прежнему сохраняется низкое давление. Мозг снабжается минимальным количеством крови. В этот час чаще всего умирают люди. Организм работает на малых оборотах, но слух обостряется. Мы пробуждаемся от малейшего шума.

5 часов утра . Мы сменили уже несколько фаз сна: фазу легкого сна и сновидения и фазу глубокого сна без сновидений. Встающий в это время быстро приходит в бодрое состояние.

6 часов утра . Начинает повышаться давление, учащается пульс. Даже если мы хотим спать, наш организм уже пробудился.

7 часов утра . В это время резко возрастает иммунологическая защита организма. Шанс заражения при контакте с вирусами минимальный.

8 часов утра . Мы отдохнули. Печень полностью освободила наш организм от ядовитых веществ. В этот час нельзя принимать алкоголь — на печень обрушится большая нагрузка.

9 часов утра . Повышается психическая активность, уменьшается чувствительность к боли. Сердце работает на полную мощность.

10 часов дня . Наша активность повышается. Мы в лучшей форме. Появилось желание своротить горы. Такой энтузиазм сохранится до обеда. Любая работа по плечу. Не растрачивайте зря это время на пустые разговоры с друзьями за чашкой кофе. Не распыляйте свою работоспособность, потом уже она в таком виде не проявится.

11 часов . Сердце продолжает работать ритмично в гармонии с психической активностью. Большие нагрузки почти не ощущаются.

12 часов . Наступает первый спад активности. Падает физическая и умственная работоспособность. Чувствуется усталость, нужен отдых. В эти часы печень «отдыхает», в кровь поступает немного гликогена.

13 часов . Кривая энергии опускается. Это, пожалуй, самая низкая точка в 24-часовом цикле. Реакции замедляются. Наступает время обеденного перерыва.

14 часов . Усталость проходит. Наступает улучшение. Работоспособность повышается.

15 часов . Обостряются органы чувств, особенно обоняние и вкус. Гурманы в это время предпочитают садиться за стол. Мы входим в рабочую норму.

16 часов . Уровень сахара в крови повышается. Некоторые врачи это состояние называют послеобеденным диабетом. Однако, такое отклонение от нормы не свидетельствует о заболевании.

17 часов . Сохраняется высокая работоспособность. Активно, с удвоенной энергией тренируются спортсмены. Время занятий на свежем воздухе.

18 часов . У людей понижается чувствительность к боли. Усиливается желание больше двигаться. Психическая бодрость постепенно снижается.

Сохранность хода биологических часов — важный элемент долгожительства. Ритмичность — вот что продлевает жизнь. Еще 200 лет назад немецкий врач Хуфелянд, даже не подозревавший о хронобиологии, писал, что главным является не время, когда человек ложится спать, а регулярность, то есть надо постоянно ложиться в один и тот же час. Для современного же человека главное не длительность сна, а его качество — сон должен быть глубоким и спокойным.

Биологические ритмы , как показывают исследования, оказывают существенное влияние на процесс творчества. Так, анализируя музыкальный ритм произведений классиков, ученые пришли к выводу, что музыкальные темы менялись с частотой: у Чайковского — в три секунды, у Бетховена — в пять, у Моцарта — в семь. Если проанализировать взаимосвязь между музыкальным ритмом и памятью на музыку и биологическими ритмами организма, то окажется, что нам нравится и мы легко запоминаем те музыкальные мелодии, ритм которых в наибольшей степени соответствует нашему биологическому ритму. Следовательно, биоритмы являются как бы внутренними камертонами воспринимаемой музыки, и если они совпадают, то человек с удовольствием слушает ее.

В настоящее время на некоторых производствах, особенно при монотонной работе, широко используется музыка. Психологи считают, что это способствует производительности труда и снимает усталость. Музыка дает хороший эффект и при лечении бессонницы и нервно-психических болезней. Знание и учет биологических ритмов важны при организации профилактических и лечебных мероприятий.


В биологической науке видное место занимают вопросы временной организации живых систем, причем это относится ко всем биологическим уровням бытия. Все понимают, что всякий биологический процесс имеет темпоральный характер. Но всего лишь констатация этого факта мало что дает. Значительно актуальнее определиться относительно концепта биологического времени1, без которого, как очевидно, нельзя построить биологическую теорию. В этой связи приходится искать ответы на ряд сложных вопросов. Что такое время? Существует ли биологическое время? Отличается ли биологическое время от физического времени? Тождественно ли время, относящееся к различным уровням биологического бытия? Как измеряется биологическое время?
Время - это длительность (б) некоторых процессов. Длительности физических процессов (tf) образуют физическое время. Длительности биологических процессов (tb) как раз и являются биологическим временем. Вроде бы очевидно, что биологическое время отличается от физического. Но уже на этом этапе анализа нас поджидает неожиданность. Многие авторы полагают, что единицы измерения физического И биологического времени одни и те же, например, секунды. Если это так. то налицо явный парадокс: качественно различные явления не Должны измеряться в одних и тех же единицах.

Столкнувшись с указанным выше парадоксом, резонно призадуматься над природой длительностей. Строго говоря, длительность является элементарным признаком процессов, а это означает, что она не может быть определена на основе других признаков. Но длительность вполне может быть сравнена с другими признаками объектов. Поступив таким образом, нетрудно выяснить, что длительность является интегральной характеристикой необратимой процессуальное™. Чем больший участок своей истории прошел объект, тем больше его длительность (возраст). Если же исследователя интересует более детальная характеристика процесса, то он рассматривает дифферен

в дифференциально-временной форме. Как видим, концепт времени играет в формулировке процессуальных законов исключительно важную роль. Но какое время должно стоять в знаменателе? На этот вопрос пока нет ответа. Наша характеристика феномена времени все еще является поверхностной. Крайне важно уяснить, как именно уточнялся концепт времени в биологии.
Проблему биологического времени одним из первых осознал Карл Бэр. «Внутренняя жизнь человека или "животного, - отмечал он, - может в данное пространство времени проистекать скорее или медленнее... эта-то внутренняя жизнь есть основная мера, которой мы измеряем время при созерцании природы»1. Правильнее, наверно, утверждать, что биологическое время является мерой жизни человека или животного. Если бы еще знать, в чем именно состоит эта мера. В этой связи резонно прислушаться к В.И. Вернадскому. Характеризуя биологическое время, он отмечал, что «для каждой формы организмов есть закономерная бренность ее проявления: определенный средний свой срок жизни отдельного неделимого, определенная для каждой формы своя ритмическая смена ее поколений, необратимость процесса.
Для жизни время... выражается в трех разных процессах: во- первых, время индивидуального бытия, во-вторых, время смены поколений без изменения формы жизни и, в-третьих, время эволюционное - смены форм, одновременное со сменой поколений» . Нетрудно видеть, что указываемые В.И. Вернадским черты бренности организмов в принципе не противоречат традиционному исчислению календарного
времени в привычных нам секундах, минутах, часах и днях. Но вряд ли календарное время одновременно является и физическим, и биологическим феноменом.
Определенное уточнение концепта биологического времени сулит учение о биоритмах, которые изучаются широко и многопланово. В биоритмах находит свое наиболее полное выражение временная организация, упорядоченность биологических явлений, а также их адаптация к внешним условиям. В своем наиболее традиционном истолковании биоритмология сопрягается лишь с календарными длительностями. Поэтому в ее рамках вопрос об особых единицах измерения биологического времени обычно не получает сколько-нибудь существенного развития. Но ситуация резко изменяется тогда, когда биоритмология дополняется концепцией так называемых биологических часов. «В каждой клетке животных или растений, - отмечает С.Э. Шноль, - имеются гены, определяющие околосуточную (циркадную) периодичность жизнедеятельности. Внутриклеточные „часы“ подстраивают свой ход к периодам смены дня и ночи - светлого и темного времени суток и мало зависят от изменений температуры. В центральной нервной системе животных находятся главные „часы", управляющие часами других клеток»1. В рамках концепции биоритмов разумно считать единицей времени продолжительность одного ритма. Календарные длительности ритмов изменяются в некоторых пределах, но все ритмические единицы тождественны друг другу. Видимо, впервые перед нами забрезжил подлинный концепт биологического времени. Но продолжим наши усилия по поводу его постижения.
Как отмечали А. А. Детлаф и Т. А. Детлаф, на протяжении четверти века плодотворно занимавшиеся проблемой биологического времени, «перед биологами неоднократно возникала задача найти единицу биологического времени, которая была бы сопоставима у одного вида животных при разных условиях, а также у разных видов животных. Отдельными исследователями было предложено несколько частных решений этой задачи. При этом во всех случаях время было определено не в единицах астрономического времени, а в долях (или числе) того или иного периода развития, продолжительность которого была принята за единицу времени» . Сами они пришли к выводу, что в эмбриологии

«в качестве меры времени может служить продолжительность любого периода зародышевого развития».
Точка зрения, согласно которой единицей биологического времени является длительность некоторого имеющего биологическую значимость физико-химического процесса, чрезвычайно широко распространена в современной литературе. Она встречается едва ли не в каждой публикации, посвященной проблеме биологического времени. Показательно, например, заявление Н.В. Тимофеева-Ресовского: «Эволюционное время определяется не астрономическим временем, не часами, а поколениями, т.е. временем смены поколений».
На наш взгляд, рассматриваемая концепция биологического времени небезупречна. Ее содержание составляет прямолинейный переход от физического времени к биологическому. По сути, утверждается, что

Но эта формула заведомо неверна, ибо в левой и правой части стоят величины различных размерностей. Физическое - в секундах, а биологическое время измеряется в особых биологических единицах, которые предлагают называть, например, Дарвинами или менделями. Между физическим и биологическим временем действительно может быть связь, но в соответствии с формулой

где kbph - размерный коэффициент пропорциональности, фиксирующий соотношение физических и биологических единиц.
Его пытался установить Гастон Бакман. Он даже пришел к выводу, что между физическим и биологическим временем в онтогенезе существует относительно простая логарифмическая зависимость. Но новейшие данные этот вывод не подтверждают. По крайней мере, ему не присуща та степень универсальности, которую предполагал Бакман. Коэффициент kbph является не постоянной величиной, а «плавающей» функцией. Применительно к различным уровням бытия он выражается различными, причем далеко не простыми функциями.
Концепция биологических часов неудовлетворительна еще в одном отношении. Мы имеем в виду, что в ней не получила должного освещения проблема конгруэнтности длительностей. Две длитель-
ности конгруэнтны, если процессы, мерами которых они являются, равнозначны. Допустим, рассматривается физический процесс, длительность которого составляет 10 с. В таком случае, например, вторая секунда конгруэнтна восьмой или же любой другой. В физике дело обстоит не так, что любой периодический процесс признается в качестве часов. Физическими часами является лишь тот процесс, который обеспечивает соблюдение выполнения условия конгруэнтности.
Как нам представляется, условие конгруэнтности актуально не только для физики, но и для биологии. Проиллюстрируем сказанное простым примером. Будем считать, что некоторое биологическое состояние достигается за счет п клеточных делений. Допустимо ли всегда считать эти деления конгруэнтными друг другу? Ответ отрицательный, ибо значимости этих делений могут быть различными; возможно, что, например, пятое деление является самым важным. Но это означает, что календарная длительность одного деления не может считаться единицей времени. Все единицы времени должны быть конгруэнтными друг другу. Но в рассмотренном случае это требование не выполняется. В качестве биологических часов целесообразно избирать лишь тот периодический процесс, который выполняет условие конгруэнтности. Разумеется, обратившись к условию конгруэнтности, исследователю придется основательно заняться теоретическими размышлениями.
Выше мы неоднократно обращали внимание на необходимость четкого различения концептов физической и биологической длительности. Рассмотрим в этой связи их в контексте супервенции и символической связи. На стадии супервенции исследователь имеет дело лишь с физическим временем. На стадии символизации физическое время рассматривается в качестве символа биологического времени. Можно сказать, что речь идет о биологической относительности физического времени. Именно она часто попадает в поле внимания исследователей, которые руководствуются соотношением = Дtb.. На наш взгляд, они
недостаточно определенно выражают специфику и самостоятельность биологического времени. Если это не имеет место, то биологическое время редуцируется к физическому времени.
Но существует ли биологическое время как таковое? Может быть, достаточно рассуждать о биологической относительности физического времени? Эти вопросы, являющиеся ключевыми для проблемы биологического времени, абсолютное большинство исследователей вообще не обсуждают. На наш взгляд, биологическое время действительно существует. Мало кто сомневается в реальности биологических процессов. Но атемпоральных процессов не бывает. Физическое время не
является адекватной характеристикой биологических процессов. Этой характеристикой является биологическое время. Допустим, что рассматривается ряд последовательных состояний некоторого биологического объекта: Do, D\, D2, Ас, где Do - начальное состояние, а Ас - конечное состояние. Если исследователь пожелает узнать насколько далеко объект удалился от своего исходного состояния навстречу конечному состоянию, то у него нет другого пути, как воспользоваться параметром биологической длительности. Например, временной мерой состояния Dii является At%. Исследователи, сомневающиеся в реальности биологического времени, с тем же основанием могут сомневаться в действительности биологических процессов.
Многоуровневость биологических процессов сопровождается мнгоуровневостью биологического времени. Подчеркивание этого обстоятельства стало общим местом. Биологический объект сочетает в себе различные биологические времена. Можно сказать, что он находится между лезвиями времен. Если один из органов исчерпал свой временной ресурс, то наступает смерть индивида. Феномен жизни предполагает гармонию многих форм биологического времени.
Переходим к заключительному сюжету данного параграфа, возможно, самому актуальному. В науке есть немало идеалов, но едва ли не важнейшим является идеал дифференциального закона. Этот закон описывает последовательные стадии некоторого процесса посредством дифференциального уравнения. В идеале должна использоваться форма
В действительности же используется форма
ражает специфику биологического процесса. Подробный анализ показывает, что биологический анализ включает в себя множество стадий. В конечном счете находит свое осмысление и феномен биологического времени. На наш взгляд, по мере развития биологического знания обращение к нему будет все более явным.

равномерная длительность класса соравномерных биологических процессов живого организма. Мысль о том, что природа живых организмов обусловлена прежде всего спецификой временной организации протекающих в них процес сов, была высказана еще в середине XIX века Карлом Эрнстом фон Бэром1. Некоторые исследователи пытались ввести в научный обиход понятия «биологическое время» (Вернадский В.И.), «физиологическое время» (леконт дю Нуйи), «органическое время» (Бакман Г.). Однако недостаточная разработанность философского учения о времени не позволила определить вводимые понятия таким образом, чтобы ими можно было пользоваться при экспериментальных и теоретических исследованиях подобно тому, как в физике используется понятие «время». Ближе всего к адекватному пониманию биологического времени подошли исследователи, которые обнаружили, что если в качестве самотождественной единицы длительности использовать периоды какихлибо повторяющихся процессов живого организма, то можно выявить специфические закономерности его развития. Особенно значительные результаты на таком пути исследований получены Т.А. Детлаф1, которая в 1960 г. совместно с братом - физиком А. А. Детлафом - выступила с предложением использовать при изучении эмбрионального развития пойкилотермных животных в качестве единицы измерения времени длительность одного митотического цикла периода синхронных делений дробления, обозначенную ими? и 0 получившую по инициативе А.А. Нейфаха наименование «детлаф»2. Т.А. Детлаф разработала методику хронометрирования развития живых организмов в единицах биологического времени? и использовала ее 0 при изучении многих видов пойкилотермных животных3. Однако до последнего времени оставался открытым вопрос о правомерности квалификации подобных единиц длительности как единиц особого типа времени, поскольку, будучи длительностями периодов циклических процессов живых организмов, они подвержены случайным колебаниям, тогда как на протяжении всей истории развития понятия времени равномерность рассматривается как одно из важнейших свойств времени. Анализ понятия и критериев равномерности убедительно показал, что равномерность есть соотносительное свойство сравниваемых между собой материальных процессов и что в принципе возможно существование неограниченного множества удовлетворяющих критериям равномерности классов соравномерных процессов (КСП), каждый из которых в соответствующей области материальной действительности обладает свойствами равномерности и пригоден для введения единиц длительности и практического измерения времени1. При этом выяснилось, что КСП могут существовать в таких целостных высокоинтегрированных материальных системах, в которых материальные процессы настолько тесно взаимосвязаны и сопряжены, что ведут себя как единый поток, синхронно и пропорционально ускоряясь и замедляясь под воздействием различных и, в том числе, случайным образом изменяющихся факторов. Именно такого рода системами являются живые организмы. О наличии в живых организмах классов соравномерных биологических процессов свидетельствуют исследования Т.А. Детлаф и ее коллег. Они установили, что с изменением температуры среды дли тельности различных этапов эмбрионального развития пойкилотермных жи вотных изменяются пропорционально и что эта закономерность имеет фунда ментальный характер, охватывая процессы всех структурных уровней органи зации эмбриона. Как отмечает Т.А. Детлаф, «... с изменением температуры про порцио нально изменяется длительность процессов, имеющих самую разную природу и осуществляющихся на разных уровнях организации организма: внут риклеточном (молекулярном и ультраструктурном), клеточном (при делении клеток и их дифференцировке), на уровне морфогенетических движений, про цессов индук ции и органогенеза»2. Иными словами, вся совокупность биологических процессов, из которых складывается развитие эм бриона, ведет себя как единый целостный процесс. В нем имеются как сравнительно медленные (протекающие на кле точном уровне процессы деления клеток и их дифференци ровка), так и весьма быстрые, протекающие на внутриклеточном, молекуляр ном уровне, к которым относятся, например, ферментативные реакции внутри клеточного метаболизма. Достаточно очевидно, что если бы на каких-то структурных уровнях организации эмбриона нарушалась синхронность и пропорциональность изме нения темпов биологических процессов, то это разрушило бы закономерное течение всего потока процессов формирования и раз вития живого организма. Указывая на это обстоятельство, Т.А. Детлаф подчеркивает: «Не будет преувеличе нием, если мы скажем, что без этой способности пойки лотермные организмы вообще не могли бы существовать в меняющихся усло виях внешней среды: если бы раз ные компоненты комплекса процессов, из ко торых складывается любой этап разви тия, изменялись асинхронно, то это при водило бы к возникновению нарушений нормального развития, а на более поздних стадиях - к на рушению нормального функционирования организма. Не случайно, что одной из первых реакций зародышей на приближение к границам оптимальных тем ператур является десинхронизация отдельных процессов развития» (Там же). Биологическое и физическое время взаимно стохастичны, поскольку единицы биологического времени представляют собой длительности таких повторяющихся биологических процессов, которые, будучи измеренными в единицах физического времени, меняются случайным образом, в зависимости от случайных изменений характеристик окружающих условий. Процессы функционирования и развития живых организмов даже генетически достаточно далеких друг от друга биологических видов при хронометрировании их в единицах собственного биологического времени подчиняются единым законам функционирования и развития2. В настоящее время становится все более очевидным, что раскрыть сущность жизни и научиться математически описывать ее как особое движение мате рии невозможно без введения в понятийный аппарат биологии понятия биологического времени. Хронометрируя и теоретически описывая биологические процессы в единицах биологического времени, можно будет пробиться сквозь внешнюю стохастичность процессов к тем динамическим законам, по которым в соответствии с заданной генетической программой идет развитие организма. Такой вывод подтверждается результатами более чем столетних исследований развития живых организмов и протекающих в них биологических процессов с использованием специфических единиц длительности. Впервые особую единицу длительности, названную им «пластохроном», ввел немецкий ботаник E. Аскенази1, который определил ее как период заложения одного зачатка метамера2 «стеблевой единицы». В дальнейшем единицу измерения длительности «пластохрон» применяли К. Торнтвейт1, Д.А. Сабинин2, Е.Ф. Марковская и Т.Г. Харькина (Марковская, Харькина 1997) и др. При изучении эмбрионального развития живых организмов одним из первых особые единицы длительности предложил И.И. Шмальгаузен3. Однако использованные И.И. Шмальгаузеном единицы длительности, связанные с определенным изменением объема зародыша, оказались применимы только при изучении роста организма, а не его развития. Некоторые исследователи в качестве единицы длительности используют ту или иную долю от полного времени эмбрионального развития. К таким единицам относится, например, «1% DT» (DT - Development Time - время развития), которая применялась при изучении развития эмбрионов осетровых рыб (Детлаф, Гинзбург, 1954), домашних птиц (Еремеев, 1957, 1959), насекомых (Striebel, 1960; Ball, 1982; Mori, 1986). И хотя она применима только при изучении организмов, которые выходят из яйцевых оболочек на одной и той же стадии развития, тем не менее позволяет открыть многие закономерности эмбрионального развития исследуемых животных. Так, Г.П. Еремеев, изучая зародышевое развитие разных видов птиц, время наступления этапов развития выразил в долях периода от откладки яйца до вылупления. В результате оказалось, что у таких домашних птиц, как куры, утки, гуси, индейки, а также у та ких птиц, как чибис, голубь домашний, крачка черная, одни и те же эта пы зародышевого развития при измерении времени указанным выше спо собом наступают «одновременно», тогда как в единицах астрономиче ского времени разница в длительности от дельных этапов развития у раз ных птиц достигает многих суток. В начале 80-х годов Ю.Н. Городиловым было предложено в качестве единицы длительности при изучении временных закономерностей развития костистых рыб использовать «отрезок времени, за который происходит приращение единичного сомита в течение метамеризации комплекса осевого зачатка зародыша от 1 до 60 сомитов» (Городилов, 1980, с. 471). В бактериологии существует мнение, что «для оценки процессов роста и развития бактерий целесообразно использовать не привычное и стабильное фи зическое время, а вариабельное время генерации (?)...»1. К сожалению, введенные рядом биологов единицы биологического времени слишком крупны для того, чтобы математически моделировать более фундаментальные биологические процессы живого организма2. Имеются веские основания считать, что биологические (биохимические и биофизические) процессы живого организма начинаются с каталитических циклов ферментативных реакций внутриклеточного метаболизма. Еще в начале 60-х годов ХХ столетия Христиансен привел убедительные аргументы в пользу когерентности каталитических циклов всех участвующих в катализе конкретной биохимической реакции молекул фермента3. При этом естественно предположить, что большую часть периода каталитического цикла макромолекулы фермента находятся в стабильных конформациях, а реагирующая среда пребывает в жидкокристаллическом состоянии4, при котором максимально заторможены перемещения молекул в реагирующей среде. лишь на короткие, строго дозированные моменты конформационных переходов макромолекул фермента реагирующая среда приходит в жидкое состояние, возбужденное конформационными изменениями макромолекул фермента1. При этом интенсивно протекают процессы диффузии молекул в реагирующей среде. Таким образом, вполне правомерным является представление, согласно которому каталитические циклы всех участвующих в биохимической реакции молекул фермента протекают синхронно, в силу чего каталитический цикл представляет собой обладающий биологическим значением элементарный акт биохимической реакции, а длительность этого цикла - далее неделимый квант биологического времени. В пределах квантов биологического времени нет биологических процессов, а имеют место физические взаимодействия атомов и элементарных частиц и физико-химические процессы, однако они не могут свободно протекать в силу структурных и организационных ограничений, которые накладывает на них живая клетка. В частности, нормальному течению физических и физико-химических процессов мешает принципиальная стохастичность длительности каталитических циклов, которая разрушает нормальное функционирование во внутриклеточной реагирующей среде физических законов и как бы переподчиняет эту среду действию биологических законов. Биологическое время исторично и иерархически многоуровнево. В процессе онтогенетического развития каждый живой организм, начиная с единственной оплодотворенной яйцеклетки, постепенно превращается в сложную иерархически многоуровневую материальную систему со специфическими закономерностями временной организации процессов на разных уровнях. Вопрос о том, являются ли биологические времена разных иерархических уровней лишь разными масштабными уровнями одного и того же времени или на разных уровнях возникают качественно разные биологические времена, на сегодняшний день остается открытым. Что касается биологического времени надорганизменных структур живой материи, то оно качественно отличается от биологического времени живых организмов. Основными единицами времени надорганизменных структур живой материи, видимо, могут служить длительности жизни следующих друг за другом поколений соответствующих живых организмов, как предполагают многие исследователи. При этом речь должна идти не об усредненной на все времена длительности жизни поколений живых организмов, а о длительности жизни поколений, реально сменяющих друг друга в непосредственно текущем настоящем времени, поскольку именно изменения (в единицах физического времени) длительностей существования следующих друг за другом поколений, рассматриваемых как конгруэнтные единицы, превращают их в единицы специфического времени, тогда как усредненные и содержащие постоянное число единиц физического времени периоды жизни поколений представляют собой единицы физического времени. В современной биологии, как и во всех естественных науках, используется Международная система единиц физических величин (СИ). Переход в биологии от физического к биологическому времени равносилен замене одной из фундаментальных единиц - секунды - на соответствующую единицу биологического времени. В силу взаимной стохастичности физического и биологического времени, производные величины, в размерностях которых имеется размерность физического времени «секунда», превратятся в стохастические переменные величины. Аналогичным образом в пределах биологических систем и процессов перестанут существовать и все физические константы, в размерностях которых фигурирует «секунда». По мере познания живой материи и выявления собственно биологических законов проявятся свои, биологические производные величины и константы, в размерностях которых будут находиться размерности биологического времени. В частности, с переходом при математическом описании биологических процессов к биологическому времени лишится смысла понятие «равномерного пространственного перемещения» и возникнет необходимость разработки представления о «биологическом пространстве» живого организма, равные расстояния в котором определяются не в пространственных, а во временных единицах. См.: «Историчность времени»; «Многоуровневость времени»; «Относительность равномерности времени»; «Физическое время». лит. Детлаф Т.А. Температурно-временные закономерности развития пойкилотермных животных. - М.: Наука, 2001. - 211 с. Хасанов И.А. Феномен времени. Часть I. Объективное время. - М., 1998. Хасанов И.А. Время: природа, равномерность, измерение. - М.: Прогресс Традиция, 2001. Хасанов И.А. Биологическое время. - М., 1999. - 39 с. // http://www.chronos. msu.ru/RREPORTS/khasanov_biologicheskoe.pdf Ильгиз А. Хасанов