Болезни Военный билет Призыв

Барий металл или неметалл. Барий. Свойства бария. Применение бария. Токсикология соединений бария

Тяжеловес в легком весе. Так можно представить барий . Его имя переводится с греческого, как «тяжелый». В сравнении с другими щелочноземельными элементами, вещество, действительно увесисто. В «сражении» же с металлами из иных групп, как правило, проигрывает.

Имя бария связано с историей его открытия. В 17-ом веке была актуальна идея выделения из бросовых материалов. Сапожник из Болони Касциароло нашел исключительно тяжелый камень. Золото, как известно, металл не из легких. Вот мужчина и заподозрил его присутствие в булыжнике.

Выделить драгоценность не удалось. Зато, после прокаливания начал светиться красным. Явление привлекло внимание химика Карла Шееле. Он установил присутствие в породе нового элемента – «тяжелой земли». Когда же в 1808-ом году Гэмфри Дэви из Англии выделил эту «землю», она оказалась легкой. Но, менять название не стали.

Химические и физические свойства бария

Атомная масса бария равна 137-ми граммам на моль. Металл не только легкий, но и мягкий. Твердость по не превышает 3-х баллов. Материал ковкий и слегка вязкий. Плотность элемента около 3,7 граммов на кубический сантиметр. Если присутствуют загрязнения , барий становится хрупким.

Цвет элемента серебристо-серый. Но, визитной карточкой бария считается зеленый. Он проявляется в характерной для 56-го вещества реакции. В ней участвуют элемента, к примеру, сульфат бария .

Если погрузить в него стеклянную палочку и поднести к горелке, вспыхнет зеленое пламя. Так можно определить присутствие даже ничтожно малых примесей тяжелого металла.

Барий – вещество с кубической решеткой. Ее можно лицезреть не только в лабораторных условиях. Металл встречается в чистом виде и в природе. Известно 2-е модификации элемента. Одна из них устойчива до 365-ти градусов Цельсия, другая – от 375-ти до 710-ти. Закипает барий при температуре в 1696 градусов Цельсия.

Синтезировано несколько радиоактивных изотопов металла. Формула бария с атомной массой 140 – результат распада тория, плутония и урана. Изотоп извлекают хроматографическим способом, то есть абсорбируют, ориентируясь на цвет вещества.

133-ий барий образуется в процессе облучении цезия. На него воздействуют ядрами одного из изотопов водорода – дейтронами. Выделенная при этом радиоактивная форма щелочноземельного металла распадается чуть больше, чем за 3-е суток. Цикл 140-го бария длиннее, только на полураспад уходит 13,5 дней.

Как и все щелочноземельные металлы, барий химически активен. В группе числится в середнячках, опережая, к примеру, и . Последние хранят на воздухе. С барием такое не пройдет. 56-ой элемент помещают под парафиновое масло, или же петролевый эфир.

Взаимодействие бария с кислородом приводит к потере блеска. После, материал желтеет, коричневеет и, в итоге, становится серым. Так выглядит оксид бария – итог его разрушения на воздухе. Если атмосферу нагреть, 56-ой металл в ней взорвется.

Взаимодействие элемента с водой обратно реакции с кислородом. Здесь разлагается уже жидкость. Процесс возможен лишь при контакте с чистым металлом. После реакции он переходит в гидроксид бария .

Если же изначально поместить в воду не самородный элемент, а его соли, ничего не произойдет. Хлорид бария , и не только, не растворимы в H 2 O, активно взаимодействуют лишь с кислотами .

Барий легко реагирует с водородом. Единственное условие – нагрев. Образуется гидрид металла. При нагреве реакция протекает и с аммиаком. Получается нитрид. Он может перейти в цианид, если продолжить повышать температуру.

Раствор бария синего цвета – итог взаимодействия все с тем же аммиаком, но в жидком виде. Из смеси выделяют аммиакат. У него золотистый цвет, вещество легко разлагается.

Стоит добавить катализатор, и получишь амид бария . Правда, применяется он лишь как реактив. А каково использование других соединений металла и его самого?

Применение бария

Поскольку чистый металл требует особой техники хранения, применяют его нечасто. Закрыть глаза на неудобство элемента готовы специалисты вакуумных технологий. Уж очень хорошо барий поглощает остаточные газы, то есть служит геттером.

В качестве очистителя металл применяют и при производстве некоторых и . Здесь элемент впитывает не только газы, но и примеси , а так же, раскисляет смеси.

Как компонент сплавов 56-ой элемент применяют в дуэте со свинцом. Смесь идет на производство подшипников. Сплавы с барием , так же, вытесняют используемые ранее полиграфические составы из свинца и сурьмы. Щелочноземельный металл лучше упрочняет сплав.

Сплав с – сырье для изготовления электродов запальных свечей. Они нужны в двигателях внутреннего сгорания и радиолампах. На этом применение чистого бария заканчивается. В игру вступают соединения металла.

Тяжелый камень, найденный когда-то в Болони, — известный краситель. По химическому составу порода является сернокислым барием, относится к классу . Сырье измельчают и добавляют в литопоний. Это белая краска известна кроющей способностью.

На фото лампа, для производства которой используется барий

Бариевая порода присутствует и в дорогих сортах , к примеру, предназначенных для печати денег. Сульфат бария утяжеляет банкноты, делает их более плотными и белыми.

Интересно, что изначально болонский камень в красящей промышленности использовали нелегально. Дешевым компонентом разбавляли свинцовые белила. Качество продукта снижалось, зато предприниматели обогащались. В современных красителях бариевый шпат – добавка улучшающая, а не ухудшающая их параметры.

Осадки бария , в том числе сернокислую форму, применяют и в медицине. Шпат задерживает рентгеновские лучи. Сульфат бария добавляют в кашу и дают пациенту с подозрением на заболевания желудочно-кишечного тракта. После этого результаты рентгенографии проще расшифровывать.

Уравнения бария свидетельствуют о способности поглощать не только рентгеновские, но и гамма-лучи. Так что, соединения 56-го элемента защищают многие атомные реакторы.

Карбонат бария нужен для приготовления стекломассы. Нитрат бария – составная . Раствор гидроксида бария эффективно очищает животные жиры и растительные масла. В качестве яда используют раствор хлорида бария .

На фото салют — ещё одна отрасль, применяющая элемент барий

Из 56-го металла, так же, получают родизонат натрия. Барий используют даже для инъекций статуе Сфинкса. Песчаное изваяние разрушается. Тяжелый металл помогает укрепить конструкцию.

Добыча бария

Металлический барий получают несколькими путями. Их объединяет атмосфера. Реакции проводят в вакууме из-за бурного взаимодействия 56-го элемента с кислородом.

Метод металлотермического восстановления применяют к окиси и хлориду бария. Из последнего соединения элемент выделяют с помощью карбида кальция. С окисью работает порошок алюминия. Требуется нагрев до 1200-от градусов Цельсия.

Из гидрида и нитрида 56-го элемента тоже можно выделить чистый барий. Калий получают подобным образом, то есть не путем восстановления, а по средствам термического разложения.

Процесс проходит в герметичных капсулах и или фарфора. Применяют и электролиз. Он подходит для работы с расплавленным хлоридом бария . Катод берут ртутный.

Цена бария

На металлический барий цены на рынке договорные. Товар специфический, редко запрашиваемый. Реализуют элемент, как правило, химические лаборатории и металлургические предприятия. Стоимость соединений металла – не секрет.

Хлористый барий , к примеру, обходится в 50-70 рублей за килограмм. Баритовый песок можно приобрести и по 10 рублей за 1000 граммов. Килограмм гидроокиси оценивают примерно в 80-90 рублей. За сернокислый барий просят минимум 50 рублей, обычно, около ста. При оптовых поставках ценник, зачастую, немного скидывают.

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами .

Все элементы IIA группы относятся к s -элементам, т.е. содержат все свои валентные электроны на s -подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO 2):

2Mg + O 2 = 2MgO

2Ca + O 2 = 2CaO

2Ba + O 2 = 2BaO

Ba + O 2 = BaO 2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me 3 N 2 .

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I 2 = MgI 2 – иодид магния

Са + Br 2 = СаBr 2 – бромид кальция

Ва + Cl 2 = ВаCl 2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно бо льшая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C 2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me 2 Si, с азотом – нитриды (Me 3 N 2), фосфором – фосфиды (Me 3 P 2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н 2 SO 4(разб.) = BeSO 4 + H 2

Mg + 2HBr = MgBr 2 + H 2

Ca + 2CH 3 COOH = (CH 3 COO) 2 Ca + H 2

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N 2 O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH 4 NO 3):

4Ca + 10HNO 3( разб .) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4Mg + 10HNO 3(сильно разб.) = 4Mg(NO 3) 2 + NН 4 NO 3 + 3H 2 O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H 2 SO 4 → BeSO 4 + SO 2 + 2H 2 O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы может происходить до SO 2 , H 2 S и S в зависимости от активности металла, температуры проведения реакции и концентрации кислоты:

Mg + H 2 SO 4( конц .) = MgSO 4 + SO 2 + H 2 O

3Mg + 4H 2 SO 4( конц .) = 3MgSO 4 + S↓ + 4H 2 O

4Ca + 5H 2 SO 4( конц .) = 4CaSO 4 +H 2 S + 4H 2 O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H 2 O = H 2 + K 2 — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H 2 + K 2 BeO 2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.

Барий - элемент главной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 56. Обозначается символом Ba (лат. Barium ). Простое вещество - мягкий, ковкий щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью.

История открытия бария

Барий был открыт в виде оксида BaO в 1774 г. Карлом Шееле. В 1808 году английский химик Гемфри Дэви электролизом влажного гидроксида бария с ртутным катодом получил амальгаму бария; после испарения ртути при нагревании он выделил металлический барий.

В 1774 г. шведский химик Карл Вильгельм Шееле и его друг Юхан Готлиб Ган исследовали один из самых тяжелых минералов – тяжелый шпат BaSO 4 . Им удалось выделить неизвестную раньше «тяжелую землю», которую потом назвали баритом (от греческого βαρυς – тяжелый). А через 34 года Хэмфри Дэви, подвергнув электролизу мокрую баритовую землю, получил из нее новый элемент – барий. Следует отметить, что в том же 1808 г., несколько раньше Дэви, Йене Якоб Берцелиус с сотрудниками получил амальгамы кальция, стронция и бария. Так появился элемент барий.

Древние алхимики прокаливали BaSO 4 с деревом или древесным углем и получали фосфоресцирующие «болонские самоцветы». Но химически эти самоцветы не BaO, а сернистый барий BaS.

Происхождение названия

Своё название получил от греческого barys - «тяжёлый», так как его оксид (BaO) был охарактеризован, как имеющий необычно высокую для таких веществ плотность.

Нахождение бария в природе

В земной коре содержится 0,05% бария. Это довольно много – значительно больше, чем, скажем, свинца, олова, меди или ртути. В чистом виде в земле его нет: барий активен, он входит в подгруппу щелочноземельных металлов и, естественно, в минералах связан достаточно прочно.

Основные минералы бария – уже упоминавшийся тяжелый шпат BaSO 4 (чаще его называют баритом) и витерит BaCOз, названный так по имени англичанина Уильяма Витеринга (1741...1799), который открыл этот минерал в 1782 г. В небольшой концентрации соли бария содержатся во многих минеральных водах и морской воде. Малое содержание в этом случае плюс, а не минус, ибо все соли бария, кроме сульфата, ядовиты.

Типы месторождений бария

По минеральным ассоциациям баритовые руды делятся на мономинеральные и комплексные. Комплексные подразделяются на барито-сульфидные (содержат сульфиды свинца, цинка, иногда меди и железного колчедана, реже Sn, Ni, Au, Ag), барито-кальцитовые (содержат до 75 % кальцита), железо-баритовые (содержат магнетит, гематит, а в верхних зонах гетит и гидрогетит) и барито-флюоритовые (кроме барита и флюорита, обычно содержат кварц и кальцит, а в виде небольших примесей иногда присутствуют сульфиды цинка, свинца, меди и ртути).

С практической точки зрения наибольший интерес представляют гидротермальные жильные мономинеральные, барито-сульфидные и барито-флюоритовые месторождения. Промышленное значение имеют также некоторые метасоматические пластовые месторождения и элювиальные россыпи. Осадочные месторождения, представляющие собой типичные химические осадки водных бассейнов, встречаются редко и существенной роли не играют.

Как правило, баритовые руды содержат другие полезные компоненты (флюорит, галенит, сфалерит, медь, золото в промышленных концентрациях), поэтому они используются комплексно.

Изотопы бария

Природный барий состоит из смеси семи стабильных изотопов: 130 Ba, 132 Ba, 134 Ba, 135 Ba, 136 Ba, 137 Ba, 138 Ba. Последний является самым распространенным (71,66 %). Известны и радиоактивные изотопы бария, наиболее важным из которых является 140 Ba. Он образуется при распаде урана, тория и плутония.

Получение бария

Металл можно получить разными способами, в частности при электролизе расплавленной смеси хлористого бария и хлористого кальция. Можно получать барий и восстанавливая его из окиси алюмотермическим способом. Для этого витерит обжигают с углем и получают окись бария:

BaCO 3 + C → BaO + 2CO.

Затем смесь BaO с алюминиевым порошком нагревают в вакууме до 1250°C. Пары восстановленного бария конденсируются в холодных частях трубы, в которой идет реакция:

3BaO + 2Al → Al 2 O 3 + 3Ba.

Интересно, что в состав запальных смесей для алюмотермии часто входит перекись бария BaO 2 .

Получить окись бария простым прокаливанием витерита трудно: витерит разлагается лишь при температуре выше 1800°C. Легче получать BaO, прокаливая нитрат бария Ba(NO 3) 2:

2Ba (NO 3) 2 → 2BaO + 4NO 2 + O 2 .

И при электролизе и при восстановлении алюминием получается мягкий (тверже свинца, но мягче цинка) блестящий белый металл. Он плавится при 710°C, кипит при 1638°C, его плотность 3,76 г/см 3 . Все это полностью соответствует положению бария в подгруппе щелочноземельных металлов.

Известны семь природных изотопов бария. Самый распространенный из них барий-138; его больше 70%.

Барий весьма активен. Он самовоспламеняется от удара, легко разлагает воду, образуя растворимый гидрат окиси бария:

Ba + 2H 2 O → Ba (OH) 2 + H 2 .

Водный раствор гидрата окиси бария называют баритовой водой. Эту «воду» применяют в аналитической химии для определения CO 2 в газовых смесях. Но это уже из рассказа о применении соединений бария. Металлический же барий практического применения почти не находит. В крайне незначительных количествах его вводят в подшипниковые и типографские сплавы. Сплав бария с никелем используют в радиолампах, чистый барий – только в вакуумной технике как геттер (газопоглотитель).

Металлический барий получают из оксида восстановлением алюминием в вакууме при 1200-1250°С:

4BaO + 2Al = 3Ba + BaAl 2 O 4 .

Очищают барий перегонкой в вакууме или зонной плавкой.

Получение титана бария. Получить его сравнительно просто. Витерит BaCO 3 при 700...800°C реагирует с двуокисью титана ТЮ 2 , получается как раз то, что нужно:

BaCO 3 + TiO 2 → BaTiO 3 + CO 2 .

Осн. пром. метод получения металлического бария из ВаО - восстановление его порошком А1: 4ВаО + 2А1 -> ЗВа + ВаО*А1 2 О 3 . Процесс проводят в реакторе при 1100-1200 °С в атмосфере Аг или в вакууме (последний способ предпочтителен). Молярное соотношение ВаО:А1 составляет (1,5-2):1. Реактор помещают в печь так, чтобы температура его "холодной части" (в ней конденсируются образующиеся пары бария) была около 520°С Перегонкой в вакууме барий очищают до содержания примесей менее 10~ 4 % по массе, а при использовании зонной плавки - до 10~ 6 %.

Небольшие кол-ва бария получают также восстановлением ВаВеО 2 [синтезируемого сплавлением Ва(ОН) 2 и Ве(ОН) 2 ] при 1300°С титаном, а также разложением при 120°С Ba(N 3) 2 , образующегося при обменных р-циях солей бария с NaN 3 .

Ацетат Ва(ООССН 3), - бесцв. кристаллы; т. пл. 490°С (с разл.); плотн. 2,47 г/см 3 ; раств. в воде (58,8 г в 100 г при 0°С). Ниже 25 °С из водных р-ров кристаллизуется тригидрат, при 25-41 °С - моногидрат, выше 41 °С- безводная соль. Получают взаимод. Ва(ОН) 2 , ВаСО 3 или BaS с СН 3 СО 2 Н. Применяют как протраву при крашении шерсти и ситца.

Манганат(VI) ВаМnО 4 - зеленые кристаллы; не разлагается до 1000°С. Получают прокаливанием смеси Ba(NO 3) 2 с МnО 2 . Пигмент (касселева, или марганцовая, зелень), обычно используемый для фресковой живописи.

Хромат(VI) ВаСrO 4 - желтые кристаллы; т. пл. 1380°С; - 1366,8 кДж/моль; раств. в неорг. к-тах, не раств. в воде. Получают взаимод. водных р-ров Ва(ОН) 2 или BaS с хроматами(VI) щелочных металлов. Пигмент (баритовый желтый) для керамики. ПДК 0,01 мг/м 3 (в пересчете на Сг0 3). Пирконат ВаZrО 3 -бесцв. кристаллы; т. пл. ~269°С; - 1762 кДж/моль; раств. в воде и водных р-рах щелочей и NH 4 HCO 3 , разлагается сильными неорг. к-тами. Получают взаимод. ZrO 2 с ВаО, Ва(ОН) 2 или ВаСО 3 при нагревании. Цирконат Ва в смеси с ВаТiO 3 -пьезоэлект-рик.

Бромид ВаВr 2 - белые кристаллы; т. пл. 847°С; плотн. 4,79 г/см 3 ; -757 кДж/моль; хорошо раств. в воде, метаноле, хуже - в этаноле. Из водных р-ров кристаллизуется дигидрат, превращающийся в моногидрат при 75°С, в безводную соль - выше 100°С В водных р-рах взаимод. с СО 2 и О 2 воздуха, образуя ВаСО 3 и Вr 2 . Получают ВаВr 2 взаимод. водных р-ров Ва(ОН) 2 или ВаСО 3 с бромистоводородной к-той.

Иодид ВаI 2 - бесцв. кристаллы; т. пл. 740°С (с разл.); плотн. 5,15 г/см 3 ; . -607 кДж/моль; хорошо раств. в воде и этаноле. Из горячих водных р-ров кристаллизуется дигидрат (обезвоживается при 150°С), ниже 30 °С - гексагидрат. Получают ВаI 2 взаимод. водных р-ров Ва(ОН) 2 или ВаСО 3 с иодистоводородной к-той.

Физические свойства бария

Барий - серебристо-белый ковкий металл. При резком ударе раскалывается. Существуют две аллотропные модификации бария: до 375 °C устойчив α-Ba с кубической объемно-центрированной решеткой (параметр а = 0,501 нм), выше устойчив β-Ba.

Твердость по минералогической шкале 1,25; по шкале Мооса 2.

Хранят металлический барий в керосине или под слоем парафина.

Химические свойства бария

Барий - щёлочноземельный металл. Интенсивно окисляется на воздухе, образуя оксид бария BaO и нитрид бария Ba 3 N 2 , а при незначительном нагревании воспламеняется. Энергично реагирует с водой, образуя гидроксид бария Ba(ОН) 2:

Ba + 2Н 2 О = Ba(ОН) 2 + Н 2

Активно взаимодействует с разбавленными кислотами. Многие соли бария нерастворимы или малорастворимы в воде: сульфат бария BaSO 4 , сульфит бария BaSO 3 , карбонат бария BaCO 3 , фосфат бария Ba 3 (PO 4) 2 . Сульфид бария BaS, в отличие от сульфида кальция CaS, хорошо растворим в воде.

Прир. барий состоит из семи стабильных изотопов с мае. ч. 130, 132, 134-137 и 138 (71,66%). Поперечное сечение захвата тепловых нейтронов 1,17-10 28 м 2 . Конфигурация внеш. электронной оболочки 6s 2 ; степень окисления + 2, редко + 1; энергия ионизации Ва°->Ва + ->Ва 2+ соотв. 5,21140 и 10,0040 эВ; электроотрицательность по Полингу 0,9; атомный радиус 0,221 нм, ионный радиус Ва 2+ 0,149 нм (координационное число 6).

Легко вступает в реакцию с галогенами, образуя галогениды.

При нагревании с водородом образует гидрид бария BaH 2 , который в свою очередь с гидридом лития LiH дает комплекс Li.

Реагирует при нагревании с аммиаком:

6Ba + 2NH 3 = 3BaH 2 + Ba 3 N 2

Нитрид бария Ba 3 N 2 при нагревании взаимодействует с CO, образуя цианид:

Ba 3 N 2 + 2CO = Ba(CN) 2 + 2BaO

С жидким аммиаком дает темно-синий раствор, из которого можно выделить аммиакат , имеющий золотистый блеск и легко разлагающийся с отщеплением NH 3 . В присутствии платинового катализатора аммиакат разлагается с образованием амида бария:

Ba(NH 2) 2 + 4NH 3 + Н 2

Карбид бария BaC 2 может быть получен при нагревании в дуговой печи BaO с углем.

С фосфором образует фосфид Ba 3 P 2 .

Барий восстанавливает оксиды, галогениды и сульфиды многих металлов до соответствующего металла.

Применение бария

Сплав бария с А1 (сплав альба, 56% Ва) - основа геттеров (газопоглотителей). Для получения собственно геттера барий испаряют из сплава высокочастотным нагревом в вакуумированной колбе прибора, в результате на холодных частях колбы образуется т. наз. бариевое зеркало (или диффузное покрытие при испарении в среде азота). Активной частью подавляющего большинства термоэмиссионных катодов является ВаО. Барий используют также как раскислитель Си и Рb, в кач-ве присадки к антифрикц. сплавам, черным и цветным металлам, а также к сплавам, из к-рых изготавливают типографские шрифты для увеличения их твердости. Сплавы бария с Ni служат для изготовления электродов запальных свечей в двигателях внутр. сгорания и в радиолампах. 140 Ва (T 1/2 12,8 дней) - изотопный индикатор, используемый при исследовании соединений бария.

Металлический барий, часто в сплаве с алюминием используется в качестве газопоглотителя (геттера) в высоковакуумных электронных приборах.

Антикоррозионный материал

Барий добавляется совместно с цирконием в жидкометаллические теплоносители (сплавы натрия, калия, рубидия, лития, цезия) для уменьшения агрессивности последних к трубопроводам, и в металлургии.

Фторид бария применяется в виде монокристаллов в оптике (линзы, призмы).

Пероксид бария используется для пиротехники и как окислитель. Нитрат бария и хлорат бария используется в пиротехнике для окрашивания пламени (зеленый огонь).

Хромат бария применяется при получении водорода и кислорода термохимическим способом (цикл Ок-Ридж, США).

Оксид бария совместно с оксидами меди и редкоземельных металлов применяется для синтеза сверхпроводящей керамики работающей при температуре жидкого азота и выше.

Оксид бария применяется для варки специального сорта стекла - применяемого для покрытия урановых стержней. Один из широкораспространенных типов таких стекол имеет следующий состав - (оксид фосфора - 61 %, ВаО - 32 %, оксид алюминия - 1,5 %, оксид натрия - 5,5 %). В стекловарении для атомной промышленности применяется так же и фосфат бария.

Фторид бария используется в твердотельных фторионных аккумуляторных батареях в качестве компонента фторидного электролита.

Оксид бария используется в мощных медноокисных аккумуляторах в качестве компонента активной массы (окись бария-окись меди).

Сульфат бария применяется в качестве расширителя активной массы отрицательного электрода при производстве свинцово-кислотных аккумуляторов.

Карбонат бария BaCO 3 добавляют в стекольную массу, чтобы повысить коэффициент преломления стекла. Сернокислый барий применяют в бумажной промышленности как наполнитель; качество бумаги во многом определяется ее весом, барит BaSO 4 утяжеляет бумагу. Эта соль обязательно входит во все дорогие сорта бумаги. Кроме того, сульфат бария широко используется в производстве белой краски литопона – продукта реакции растворов сернистого бария с сернокислым цинком:

BaS + ZnSO 4 → BaSO 4 + ZnS.

Обе соли, имеющие белый цвет, выпадают в осадок, в растворе остается чистая вода.

При бурении глубинных нефтяных и газовых скважин используется в качестве буровой жидкости взвесь сернокислого бария в воде.

Еще одна бариевая соль находит важное применение. Это титанат бария BaTiO 3 – один из самых главных сегнетоэлектриков (сегнетоэлектрики же поляризуются сами по себе, без воздействия внешнею поля. Среди диэлектриков они выделяются так же, как ферромагнитные материалы среди проводников. Способность к такой поляризация сохраняется только при определенной температуре. Поляризованные сегнетоэлектрики отличаются большей диэлектрической проницаемостью), считающихся очень ценными электротехническими материалами.

В 1944 г. этот класс пополнился титанатом бария, сегнетоэлектрические свойства которого были открыты советским физиком Б.М. Вулом. Особенность титаната бария состоит в том, что он сохраняет сегнетоэлектрические свойства в очень большом интервале температуры – от близкой к абсолютному нулю до +125°C.

Барий нашёл применение и в медицине. Его сернокислую соль применяют при диагностике желудочных заболеваний. BaSO 4 смешивают с водой и дают проглотить пациенту. Сульфат бария непрозрачен для рентгеновских лучей, и поэтому те участки пищеварительного тракта, по которым идет «бариевая каша», остаются на экране темными. Так врач получает представление о форме желудка и кишок, определяет место, где может возникнуть язва.

Влияние бария на организм человека

Пути поступления в организм.
Основным путем поступления бария в организм человека является пища. Так, некоторые морские обитатели способны накапливать барий из окружающей воды, причем в концентрациях в 7-100 (а для некоторых морских растений до 1000) раз, превышающих его содержание в морской воде. Некоторые растения (соевые бобы и помидоры, например) также способны накапливать барий из почвы в 2-20 раз. Однако в районах, где концентрация бария в воде высока, питьевая вода также может внести вклад в суммарное потребление бария. Поступление бария из воздуха незначительно.

Опасность для здоровья.
В ходе научных эпидемиологических исследований, проведенных под эгидой ВОЗ, не нашли подтверждения данные о связи между смертностью от сердечно-сосудистых заболеваний и содержанием бария в питьевой воде. В краткосрочных исследованиях на добровольцах не было выявлено вредного эффекта на сердечно-сосудистую систему при концентрациях бария до 10 мг/л. Правда, при опытах на крысах, при употреблении последними воды даже с невысоким содержанием бария, наблюдалось повышение систолического кровяного давления. Это свидетельствует о потенциальной опасности повышения кровяного давления и у людей при длительном употреблении воды, содержащий барий (такие данные есть у USEPA).
Данные USEPA также свидетельствуют о том, что даже разовое употребление воды, содержание бария в которой значительно превосходит максимально допустимые значения, может привести к мышечной слабости и болям в брюшной области. Необходимо, правда, учесть, что норматив по барию, установленный стандартом качества USEPA (2.0 мг/л) значительно превосходит величину, рекомендованную ВОЗ (0.7 мг/л). Российскими санитарными нормами установлено еще более жесткое значение ПДК по барию в воде - 0.1 мг/л. Технологии удаления из воды: ионный обмен, обратный осмос, электродиализ.

БАРИЙ, Ва (лат. Baryum, от греч. barys — тяжёлый * а. barium; н. Barium; ф. barium; и. bario), — химический элемент главной подгруппы 11 группы периодической системы элементов Менделеева, атомный номер 56, атомная масса 137,33. Природный барий состоит из смеси семи стабильных изотопов; преобладает 138 Ва (71,66%). Барий открыт в 1774 шведским химиком К. Шееле в виде ВаО. Металлический барий впервые получил английский химик Х. Дэви в 1808.

Получение бария

Металлический барий получают термическим восстановлением в вакууме при 1100-1200°С окиси бария порошком . Барий применяют в сплавах — со свинцом (типографские и антифрикционные сплавы), алюминием и (газопоглотители в вакуумных установках). Широко используют его искусственные радиоактивные изотопы.

Применение бария

Барий и его соединения добавляют в материалы, предназначенные для защиты от радиоактивного и рентгеновского излучения. Широко применяются соединения бария: оксид, пероксид и гидроксид (для получения перекиси водорода), нитрид (в пиротехнике), сульфат (как контрастное вещество при рентгенологии, исследованиях), хромат и манганат (при изготовлении красок), титанат (один из важнейших сегнетоэлектриков), сульфид (в кожевенной промышленности) и т.д.

Барий — элемент главной подгруппы второй группы, шестого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 56. Обозначается символом Ba (лат. Barium). Простое вещество — мягкий, ковкий щёлочноземельный металл серебристо-белого цвета. Обладает высокой химической активностью. История открытия бария

1 элемент таблицы МенделееваБарий был открыт в виде оксида BaO в 1774 г. Карлом Шееле. В 1808 году английский химик Гемфри Дэви электролизом влажного гидроксида бария с ртутным катодом получил амальгаму бария; после испарения ртути при нагревании он выделил металлический барий.
В 1774 г. шведский химик Карл Вильгельм Шееле и его друг Юхан Готлиб Ган исследовали один из самых тяжелых минералов - тяжелый шпат BaSO4. Им удалось выделить неизвестную раньше «тяжелую землю», которую потом назвали баритом (от греческого βαρυς - тяжелый). А через 34 года Хэмфри Дэви, подвергнув электролизу мокрую баритовую землю, получил из нее новый элемент - барий. Следует отметить, что в том же 1808 г., несколько раньше Дэви, Йене Якоб Берцелиус с сотрудниками получил амальгамы кальция, стронция и бария. Так появился элемент барий.

Древние алхимики прокаливали BaSO4 с деревом или древесным углем и получали фосфоресцирующие «болонские самоцветы». Но химически эти самоцветы не BaO, а сернистый барий BaS.
Своё название получил от греческого barys — «тяжёлый», так как его оксид (BaO) был охарактеризован, как имеющий необычно высокую для таких веществ плотность.
В земной коре содержится 0,05% бария. Это довольно много - значительно больше, чем, скажем, свинца, олова, меди или ртути. В чистом виде в земле его нет: барий активен, он входит в подгруппу щелочноземельных металлов и, естественно, в минералах связан достаточно прочно.
Основные минералы бария - уже упоминавшийся тяжелый шпат BaSO4 (чаще его называют баритом) и витерит BaCOз, названный так по имени англичанина Уильяма Витеринга (1741...1799), который открыл этот минерал в 1782 г. В небольшой концентрации соли бария содержатся во многих минеральных водах и морской воде. Малое содержание в этом случае плюс, а не минус, ибо все соли бария, кроме сульфата, ядовиты.

56 Барий → Лантан
Свойства атома
Название, символ, номер

Барий / Barium (Ba), 56

Атомная масса
(молярная масса)

137,327(7)(г/моль)

Электронная конфигурация
Радиус атома
Химические свойства
Ковалентный радиус
Радиус иона
Электроотрицательность

0,89 (шкала Полинга)

Электродный потенциал
Степени окисления
Энергия ионизации
(первый электрон)

502,5 (5,21) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)
Температура плавления
Температура кипения
Уд. теплота плавления

7,66 кДж/моль

Уд. теплота испарения

142,0 кДж/моль

Молярная теплоёмкость

28,1 Дж/(K·моль)

Молярный объём

39,0 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

кубическая
объёмноцентрированая

Параметры решётки
Прочие характеристики
Теплопроводность

(300 K) (18.4) Вт/(м·К)