Болезни Военный билет Призыв

8 подгруппа. Элементы подгруппы VIIIБ. Металлы семейства железа

6721 0

В 18 группу входят Не, Ne, Ar, Кr, Хе, Rn (табл. 1 и 2). Все элементы этой группы, кроме Не , имеют полностью заполненную валентными электронами внешнюю оболочку (8 электронов). Поэтому ранее считали, что они химически не реакционноспособны. Отсюда название «инертные» газы. Из-за малой распространенности в атмосфере их также называют редкими газами. Все благородные газы при комнатной температуре существуют в виде одноатомных молекул, бесцветны, не имеют запаха. При перемещении к нижней части группы повышаются плотность, температуры плавления и кипения элементов. От других элементов по свойствам отличается гелий. В частности, он имеет самую низкую из всех известных веществ температуру кипения и проявляет свойство сверхтекучести.

Таблица 1. Некоторые физические и химические свойства металлов 18 группы


Название

Относит, ат. масса

Электронная формула

Радиус, пм

Основные изотопы (%)

Гелий Helium [от греч. helios — солнце]

атомный 128

3 Не* (0.000138)

4 Не* (99.99986)

Неон Neon [от греч. neos — новый]

Вандерваальсов 160

Аргон Argon [от греч. argos — неактивный]

ls 2 2s 2 2p 6 3s 2 3p 6

атомный 174

Криптон Krypton [от греч. Kryptos — скрытый]

3d 10 4s 2 4p 6

Ковалентный 189

Ксенон Xenon [от греч. xenos — незнакомец]

4d 10 5s 2 5p 6

атомный 218,

ковалентный 209

129 Хе* (26,4)

Радон Radon [назван по аналогии с радием]

4f 14 5d 10 6s 2 6p 6

219*,220,222 Rn (следы)

Гелий (Не) — после водорода второй по распространенности элемент во вселенной. Встречается в атмосфере и в месторождениях природного газа. Химически неактивен. Его используют при водолазных работах в составе дыхательной смеси вместо азота, в аэростатах, в приборах для низкотемпературных исследований. Жидкий Не является важным хладагентом со сверхвысокой теплопроводностью, поэтому его применяют в ЯМР-спектрометрах на сильных полях, в том числе в медицинских магнитно-резонансных томографах (МРТ).

Неон (Ne) — химически инертен по отношению ко всем веществам, кроме F 2 . Его используют в газоразрядных трубках (красные «неоновые» огни). В последнее время начали применять в качестве хладагента.

Аргон (Аr) — наиболее распространенный в атмосфере благородный газ. Не имеет ни одного парамагнитного изотопа. Его используют для создания инертной атмосферы в флуоресцентных светильниках и фотоумножителях, в высокотемпературной металлургии; широко применяют в спектроскопии для получения высокотемпературной плазмы в высокочастотных (индуктивно-связанных) спектрометрах и масс-спектрометрах.

Криптон (Кr) — реагирует только с F 2 . 86 Kr имеет в атомном спектре оранжево-красную линию, которая является базовой для стандарта единиц длины: 1 метр равен 1 650 763,73 длины волны этой линии в вакууме. В промышленности криптон используют для наполнения флуоресцентных трубок и ламп-фотовспышек. Из возможных соединений наиболее изучен дифторид KrF 2 .

Ксенон (Хе) — используется для наполнения электронных трубок и стробоскопических (мигающих) ламп, в научных исследованиях, а также в пузырьковых камерах на атомных реакторах. Реагирует практически только с F 2 , образуя XeF 2 , XeF 4 , XeF 6 . Эти фториды используют как окислители и реактивы для фторирования других веществ, например, S или Ir . Известны также оксиды, кислоты и соли ксенона.

Радон (Rn) — образуется при α-распаде 226 Ra в виде 222 Rn . Его применяют в медицине, в частности, для лечения онкологических заболеваний. При хроническом воздействии опасен для здоровья, поскольку выявлена связь ингаляций Rn с развитием рака легких.

Таблица 2. Содержание в организме, токсическая (ТД) и летальная дозы (ЛД) металлов 18 группы


В земной коре (%)

В океане (%)

В человеческом организме

Среднее (при массе тела 70 кг)

Кровь (мг/л)

нетоксичен, но может вызывать асфиксию

нетоксичен

токсичен из-за радиоактивности

Медицинская бионеорганика. Г.К. Барашков

Данные элементы: гелий (Не ), неон (), аргон (Аr ), криптон (Кr ), ксенон

(Хе ) и радон (Rn ) называют инертными газами, так как они обладают очень низкой химической активностью. На внеш­нем энергетическом уровне гелия находится два электрона, а у остальных элементов по восемь электронов, что соответствует энергетически выгодной электронной конфигурации.

Неоном и аргоном заполняют лампы накаливания. Сварка в среде аргона нержавеющих сталей, титана, алюминия и алюминиевых сплавов обеспечивает исключительно чистый и прочный сварной шов.

Криптон, ксенон и радон способны вступать в соединение с другими элементами и прежде всего с фтором. Данные соединения (ХеF 2 , ХеF 6 , ХеО 3 и др.) обладают сильными окислительными свойствами. Радон является радиоактивным элементом с периодом полураспада 3,8 суток. Однако в природе он постоянно образуется. По мольной массе он в 7,65 раза тяжелее воздуха, поэтому скапливается в подвальных, непроветриваемых помещениях. За сутки концентрация радона в непроветриваемом помещении возрастает в 6 раз, а при пользовании душем в ванной комнате в 40 раз. Большую часть облучения человек получает от радиоактивного распада радона.

18 Комплексные соединения

Комплексные соединения это соединения, содержащие сложный (комплексный) ион, способный к самостоятельному существованию в растворе . Большое количество возможных комплексообразователей и лигандов, а также такое явление, как изомерия, приводят к многообразию данных соединений.

18.1 Состав комплексных соединений

Для ответа на данный вопрос проведем сравнительный анализ диссоциации обычной соли, двойной соли и комплексного соединения:

1) диссоциация средних солей – сульфатов калия и алюминия

K 2 SO 4 → 2K + + SO 4 2– ,

Al 2 (SO 4) 3) → 2Al 3+ + 3SO 4 2– ;

2) дисоциация двойной соли – алюмокалиевых квасцов

KAl(SO 4) 2 → K + + Al 3+ + 2SO 4 2– ;

3) диссоциация комплексного соединения – гексацианоферрата (III) калия

K 3 → 3K + + 3– .

Из приведенных уравнений электролитической диссоциации видно, что продукты диссоциация двойной соли полностью совпадают с продуктами диссоциации сульфатов калия и алюминия. В случае комплексной соли в продуктах диссоциации присутствует сложная частица (комплексный ион), заключенная в квадратные скобки, и нейтрализующие её заряд простые ионы.

Комплексный ион в свою очередь диссоциирует по типу слабого электролита, то есть обратимо и ступенчато:

3– ↔ Fe 3+ + 6CN – .

Для комплексных ионов допускается запись в одном уравнении продуктов диссоциации по всем ступеням.

Продукты диссоциации комплексного иона:


1) Fe 3+ – комплексообразователь,

2) 6СN – – лиганды.

Таким образом, в состав комплексного соединения входят:

1) комплексообразователь – центральный атом,

2) лиганды – частицы координированные вокруг комплексообразователя,

3) частицы нейтрализующие заряд комплексного иона. Если заряд комплексного иона равен нулю, то он соответственно состоит только из комплексообразователя и лигандов.

Типичные комплексообразователи – катионы металлов побочных подгрупп: Ag + , Cu 2+ , Fe 3+ и другие.

Типичные лиганды: NH 3 , H 2 O, CN – , NO 2 – , галогенид-ионы и другие.

Комплексообразователь посредством ковалентных связей и (или) электростатического взаимодействия образует прочную связь с лигандами.

Координационное число – это количество монодентантных лигандов, координированных вокруг комплексообразователя. Кординационное число, как правило, равно удвоенному заряду комплексообразователя.

Число связей, образуемых каждым лигандом с центральным атомом, называют дентантностью лиганда. Например:

1) монодентантные лиганды: F – , Br – , I – , CN – , OH – , NH 3 , H 2 O и др.;

2) бидентантные лиганды: H 2 N–CH 2 –CH 2 –NH 2 – этилендиамин, оксалат-ион, карбонат-ион и др.;

3) полидентантные лиганды – примером может служить этилендиаминтетраацетат-ион (ЭДТА). Комплексы с полидентантными лигандами называются хелатными. Они широко распространены в природе и играют важную роль в биологических процессах, например, гемоглобин крови (комплексообразователь Fe 2+), хлорофилл (комплексообразователь Mg 2+).

Название комплексного соединения состоит из названий аниона и катиона. Название соединения читается справа налево, при этом анион называют в именительном падеже, а катион – в родительном.

Число лигандов указывают греческими числительными: 1 – моно, 2 – ди, 3 – три, 4 – тетра, 5 – пента, 6 – гекса, 7 – гепта, 8 – окта. Названия наиболее распространённых лигандов: F – – фторо, Cl – – хлоро, Br – – бромо, I – – йодо, OH – – гидроксо, SO 3 2– – сульфито, NO 2 – – нитро, CN – – циано,

CNS – – родано, NH 3 – аммин, en – этилендиамин, H 2 O – аква.

Название комплексообразователя зависит от заряда иона, в который он входит. В случае комплексного катиона или комплексной частицы без внешней сферы применяется русское название комплексообразователя, а в случае комплексного аниона – после названия лигандов добавляется корень латинского названия элемента-комплексообразователя и окончание «ат».

Если в состав внутренней сферы комплекса входят в качестве лигандов молекулы и анионы, то в первую очередь называют анионы (с окончанием на «о»), а затем молекулы. Если для комплексообразователя возможно несколько степеней окисления, то ее указывают в круглых скобках римской цифрой.

Примеры названий комплексных соединений:

1) анионного типа:

Na – тетрагидроксоалюминат натрия,

K 4 – гексацианоферрат(II) калия;

2) катионного типа:

SO 4 - сульфат тетраамминмеди(II),

Cl 2 – хлорид дихлоротетраамминплатины(IV);

3) электронейтральных комплексов:

– трифторотриаквахром,

– пентакорбонил железа.

Диссоциация комплексных соединений протекает по типу сильного электролита на комплексный ион и ионы внешней сферы. В свою очередь комплексный ион или электронейтральный комплекс диссоциируют по типу слабого электролита на коплексообразаватель и лиганды.

Количественно состояние равновесия характеризуется соответствующим значением Кр. Применительно к диссоциации комплексного иона константу равновесия (Кр) называют константа нестойкости (Кн). Чем меньше Кн, тем более устойчив комплекс. Например:

1) Диссоциации анионного комплекса

K 3 → 3K + + 3– ,

3- ↔ Fe 3+ + 6CN – ,

2) Диссоциации катионного комплекса

SO 4 → 2+ + SO 4 2– ,

2+ ↔ Cu 2+ + 4NH 3 ,

Более устойчив цианидный комплекс трехвалентного железа.

18.2 Реакции с участием комплексных соединений

Примеры реакций образования комплексных соединений с комплексным катионом (1), комплексным анионом (2) и нейтральным комплексом (3):

1) Ni(NO 3) 2 + 6NH 3 → (NO 3) 2 ,

Ni 2+ + 6NH 3 → 2+ ;

2) Cr(OH) 3 + 3KOH конц. ↔ K 3 ,

Cr(OH) 3 + 3OH – ↔ 3– ;

3) Fе + 5СО = .

Вывод: комплексные соединения образуются, если в растворе присутствуют ионы комплексообразователя и лиганды.

В качестве примера перехода от одного комплексного соединения к

другому разберем реакцию превращения аммиачного комплекса меди в цианидный комплекс:

SO 4 + 4КСN ↔ К 2 + К 2 SO 4 + 4NH 3 ,

2+ + SO 4 2– + 4К + + 4СN – ↔ 2– + 4К + + 4NH 3 + SO 4 2– ,

Cu(NH 3) 4 ] 2+ + 4СN – ↔ 2– + 4NH 3 .

Кн( 2+) = 5,0·10 – 4 , а Кн( 2–) = 5,0·10 – 28 ,

то есть образуется более прочный комплексный ион.

Разрушение комплексного соединения разберем на примере аммиачного комплекса серебра:

NO 3 + KI ↔ AgI¯ + 2NH 3 + KNO 3 ,

NO 3 – + K + + I – ↔ AgI¯ + 2NH 3 + NO 3 – + K + ,

I – ↔ AgI¯ + 2NH 3 .

Равновесие данной реакции смещено вправо, так как

Кн( +) = 6,8·10 – 8 , а ПР(AgI) = 1,5·10 – 16 ,

то есть образуется плохо растворимое в воде соединение – йодид серебра.

Приведенные реакции характеризуют участие комплексных соединений в ионно-обменных реакциях.

В качестве примера окислительно-восстановительной реакции разберем реакцию превращения цианидного комплекса двухвалентного железа в цианидный комплекс трехвалентнного железа:

K 4 + О 2 + Н 2 О → K 3 + KОН,

Fe +2 – 1е = Fe +3 | × 4,

О 2 + 4е = 2О –2 | × 1.

4K 4 + О 2 + 2Н 2 О → 4K 3 + 4KОН.

Побочная подгруппа восьмой группы охватывает три триады d-элементов.

Первую триаду образуют элементы железо, кобальт и никель , вторую – рутений, родий, палладий , и третью триаду – осмий, иридий и платина .

Большинство элементов рассматриваемой подгруппы имеют два электрона на внешней электронной оболочке атома; все они представляют собой металлы.

Кроме наружных электронов в образовании химических связей принимают участие также электроны из предыдущей недостроенной электронной оболочки.

Семейство железа включает в себя железо, кобальт и никель. Рост электроотрицательности в ряду Fe (1,83) – Co (1,88) – Ni (1,91) показывает, что от железа к никелю должно происходить уменьшение основных и восстановительных свойств. В электрохимическом ряду напряжений эти элементы стоят до водорода.

По распространенности в природе, применению соединений в медицине и технике и роли в организме железо стоит на первом месте в данной группе.

Элементы семейства железа в соединениях проявляют степени окисления +2,

Соединения железа (II) . Соли двухвалентного железа образуются при растворении железа в разбавленных кислотах. Важнейшая из них – сульфат железа (II), или железный купорос, FeSO 4 . 7H 2 O, образующий светло-зеленые

кристаллы, хорошо растворимые в воде. На воздухе железный купорос постепенно выветривается и одновременно окисляется с поверхности, переходя в желто-бурую основную соль железа (III).

Сульфат железа (II) получают путем растворения обрезков стали в 20-30% -ной серной кислоте:

Fe + H 2 SO 4 = FeSO 4 + H 2

Сульфат железа (II) применяется для борьбы с вредителями растений, в производстве чернил и минеральных красок, при крашении тканей. При взаимодействии раствора соли железа (II) со щелочью выпадает белый осадок гидроксида железа (II) Fe(OH) 2 , который на воздухе вследствие окисления быстро принимает зеленоватую, а затем бурую окраску, переходя в гидроксид железа (III) Fe(OH) 3:

4Fe(OH) 2 + O 2 + 2H 2 O = 4Fe(OH) 3

Соединения двухвалентного железа являются восстановителями и легко могут быть переведены в соединения трехвалентного железа:

6FeSO 4 + 2HNO 3 + 3H 2 SO 4 = 3Fe 2 (SO 4) 3 + 2NO +4H 2 O

10FeSO 4 + 2KMnO 4 + 8H 2 SO 4 = 5Fe 2 (SO 4) 3 + K 2 SO 4 + 2MnSO 4 + 8H 2 O

Оксид и гидроксид трехвалентного железа обладают амфотерными свойствами. Гидроксид железа (III) – более слабое основание, чем гидроксид железа (II), это выражается в том, что соли трехвалентного железа сильно гидролизуются, а со слабыми кислотами (например, с угольной, сероводородной) Fe(OH) 3 солей не образует.

Кислотные свойства оксида и гидроксида трехвалентного железа проявляются в реакции сплавления с карбонатами щелочных металлов, в результате которой образуются ферриты – соли не полученной в свободном состоянии железистой кислоты HFeO 2:



Fe 2 O 3 + Na 2 CO 3 = 2NaFeO 2 + CO

Если нагревать стальные опилки или оксид железа (III) с нитратом и гидроксидом калия, то образуется сплав, содержащий феррат калия K 2 FeO 4 – соль не выделенной в свободном состоянии железной кислоты H 2 FeO 4:

Fe 2 O 3 + 4KOH + 3KNO 3 = 2K 2 FeO 4 + 3KNO 2 + 2H 2 O

В биогенных соединениях железо связано в комплекс с органическими лигандами (миоглобин, гемоглобин). Степень окисления железа в этих комплексах дискутируется. Одни авторы считают, что степень окисления равна +2, другие предполагают, что она меняется от +2 до +3 в зависимости от степени взаимодействия с кислородом.

Приложение

Константы диссоциации некоторых кислот и оснований /при 25 0 С/

Соединение К 1 К 2 К 3
HF 6,8 . 10 -4
HClO 5,0 . 10 -8
HBrO 2,5 . 10 -9
H 2 S 9,5 . 10 -8 1.0 . 10 -14
H 2 SO 3 1,7 . 10 -2 6,2 . 10 -8
HNO 2 5,1 . 10 -4
H 3 PO 4 7,6 . 10 -3 6,2 . 10 -8 4,2 . 10 -13
H 2 CO 3 4,5 . 10 -7 4,8 . 10 -11
CH 3 COOH 1,8 . 10 -5
HCN 6,2 . 10 -10
NH 4 OH 1,8 . 10 -5

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ВОРОНЕЖСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ХИМИЯ ЭЛЕМЕНТОВ VIII ГРУППЫ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ

Учебное пособие

Издательско-полиграфический центр Воронежского государственного университета

Утверждено научно-методическим советом химического факультета 12 декабря 2012 г., протокол № 9

Составители: И.Я. Миттова, Е.В. Томина, Б.В. Сладкопевцев, Д.О. Солодухин

Рецензент д-р хим. наук, профессор В.Н. Семенов

Учебное пособие подготовлено на кафедре материаловедения и индустрии наносистем химического факультета Воронежского государственного университета.

Для направлений: 020300 – Химия, физика и механика материалов, 020100 – Химия

ПРЕДИСЛОВИЕ

Данное учебное пособие является продолжением первых трех частей, в которых были рассмотрены Периодический закон как основа неорганической химии, химия элементов I–VI групп Периодической системы. В четвертой части рассматривается химия элементов VIII группы Периодической системы химических элементов Д.И. Менделеева.

Пособие призвано помочь студенту-первокурснику в изучении дисциплины «Неорганическая химия» и по сути дела является конспектом лекционного курса, где отображены все основные ключевые моменты, которые необходимо учесть при ее изучении.

Являясь продолжением цикла пособий по курсу «Неорганическая химия», данное издание в целом сохраняет структуру и последовательность изложения материала. Описание начинается с общей характеристики простых веществ, их распространенности в природе, способов получения и химических свойств, в отдельных подразделах рассматриваются свойства соединений элементов группы. Особое внимание уделено применению химических элементов и их соединений в качестве разнообразных современных материалов.

Для реализации принципа наглядности в пособии приведено большое количество иллюстративного материала и таблиц, которые позволяют в компактном виде представить обширные объемы материала и отразить основные закономерности в изменении свойств химических элементов и их соединений.

При написании использованы современные литературные источники, список которых приведен в конце пособия. Иллюстративный материал большей частью взят из учебников «Неорганическая химия» (под ред. Ю.Д. Третьякова, М. : Асаdemia, 2004) и «Химия элементов» (Н. Гринвуд, А. Эрншо. М. : БИНОМ. Лаб. знаний, 2008).

Настоящее пособие прежде всего предназначено для студентов первого курса химического факультета, однако оно может быть полезным и студентам старших курсов, в частности магистрам, изучающим дисциплины «Современная неорганическая химия» и «Современные проблемы неорганической химии», для актуализации полученных ранее знаний.

ГЛАВА 1. VIII-A ГРУППА

1.1. Простые вещества

1.1.1. Свойства элементов

Элементы VIII-A группы: гелий 2 Не, неон 10 Ne, аргон 18 Аr, криптон 36 Kr, ксенон 54 Хе и радон 86 Rn – называют благородными газами. Электрон-

ная конфигурация первого представителя группы, гелия – 1s 2 . Атомы остальных благородных газов на внешнем уровне имеют восемь валентных электронов (табл. 1), что отвечает устойчивой электронной конфигурации.

Таблица 1

Свойства элементов VIII-A группы

Свойство

Заряд ядра Z

Электронная конфигу-

4f 14

рация восновном со-

[Не]2s 2р

3s 3p

4 s 4 p

5 s 5 p

5p 6

Атомный радиус, нм

Первая энергия иони-

зации I 1 , кДж/моль

Энергия возбуждения

ns2 np6 →ns2 np5 (n + 1) s1 ,

Электроотрицатель-

Полностью завершенная конфигурация внешнего электронного слоя (в случае гелия и неона) или наличие октета электронов обусловливает высокие значения энергий ионизации атомов благородных газов и, как следствие, их низкую химическую активность. Способность атомов этих элементов вступать в химические реакции возрастает с ростом атомного радиуса вследствие ослабления притяжения валентных электронов к ядру. К настоящему времени получены химические соединения лишь тяжелых благородных газов: криптона, ксенона и радона.

1.1.2. Нахождение в природе, получение

Гелий – второй (после водорода) элемент по распространенности во Вселенной. В то же время масса «земного» гелия составляет лишь одну миллионную массы земной коры. На Солнце значительное количество ядер гелия образуется при ядерном «горении» водорода, поэтому содержание этого элемента во Вселенной постепенно возрастает. Гелий образуется также при α-распаде радионуклидов. Он заполняет пустоты в радиоактивных горных породах и минералах, а оттуда попадает в атмосферу. В виде примеси гелий сопутствует метану. Основным источником гелия является природный газ.

Все благородные газы содержатся в воздухе, являющемся сырьем для их промышленного получения.

Радон – радиоактивный элемент. Наиболее долгоживущий изотоп 222 Rn, образующийся при α-распаде 226 Ra, имеет период полураспада 3,82 дня. Один грамм радия-226 за сутки выделяет 6,6 · 10–4 мл радона. В минералах тория присутствует некоторое количество изотопа 220 Rn.

1.1.3. Физические свойства

Все благородные газы не имеют цвета, вкуса и запаха, обладают низкими температурами плавления и кипения. Их молекулы одноатомные. Аргон, криптон и ксенон образуют клатраты на основе воды и гидрохинона, например Хе · 3С6 Н4 (ОН)2 , в которых атомы благородного газа расположены в полостях структуры вещества-«хозяина». Меньшие по размерам атомы гелия и аргона не способны удерживаться в полостях. Основные физические свойства простых веществ приведены в табл. 2.

Свойства простых веществ

Таблица 2

Свойство

Стандартная эн-

тальпия испаре-

ния, кДж/моль

t пл , ° С

t кип, ° С

5,2 · 10–4

1,8 · 10–3

1,1 · 10–3

8,7 · 10–6

6,0 ·10–18

в воздухе, %

Растворимость в

воде при 20 °С,

1.2. Химические свойства

Истинные химические соединения получены лишь для криптона, ксенона и радона. Лучше всего изучена химия ксенона, так как соединения криптона крайне неустойчивы, а радон радиоактивен.

Взаимодействие ксенона со фтором приводит к образованию смеси фторидов. Удобным методом синтеза дифторида, позволяющим избежать прямого фторирования, является окисление ксенона фторидом серебра (II) в присутствии кислоты Льюиса:

2AgF2 + 2BF3 + Хе = XeF2 + 2AgBF4.

Фториды ксенона представляют собой бесцветные летучие кристаллические вещества, легко гидролизующиеся. Дифторид ксенона образует устойчивые растворы, которые в течение нескольких часов разлагаются:

2XeF2 + 2Н2 O = 2Xe + 4HF + O2 .

Тетра- и гексафторид ксенона гораздо более чувствительны к влаге воздуха – при попадании в воду они мгновенно гидролизуются с образованием ХeO3 :

6XeF4 + 12H2 O = 2ХеO3 + 4Xe + 3O2 + 24HF, XeF6 + 3H2 O = XeO3 + 6HF.

Фториды ксенона имеют молекулярное строение (рис. 1). XeF2 – линейная молекула с тремя неподелеными электронными парами, лежащими в экваториальной плоскости (тип АВ2 Е3 ); XeF4 имеет форму квадрата с двумя неподелеными парами (тип АВ4 Е2 ), a XeF6 – искаженного октаэдра с одной неподеленой парой электронов (тип АВ6 Е). Свободные молекулы ХеF6 известны в паре.

Рис. 1. Строение молекул XeF2 (а), XeF4 (б), ХeF6 (динамическая модель с мигрирующей электронной парой) (в)

Метод молекулярных орбиталей описывает образование фторидов ксенона с позиций трехцентровых четырехэлектронных связей. Например, в образовании молекулы XeF2 участвуют p x -орбитали атома ксенона и двух атомов фтора (рис. 2). Их взаимодействие приводит к возникновению тpex молекулярных σ-орбиталей: связывающей, несвязывающей и разрыхляющей, первые две из которых заполнены электронами. Порядок связи, таким образом, оказывается равным единице. Соединения, содержащие трехцентровые четырехэлектронные связи, называют гипервалентными.

Рис. 2. Схема молекулярных орбиталей молекулы XeF2 . Справа показаны комбинации атомных орбиталей, участвующих в формировании каждой из молекулярных орбиталей молекулы

Фториды ксенона являются сильными окислителями. Они превращают броматы в перброматы, иодаты в периодаты, серу в гексафторид, соли марганца (II) в перманганаты:

3XeF2 + S = 3Хе + SF6 ,

5XeF2 + 2Mn(NO3 )2 + 16КОН = 2KMnO4 + 10KF + 4KNO3 + 8H2 O + 5Xe.

На этом основано использование фторидов ксенона в синтезе высших фторидов переходных металлов:

XeF2 + 2CeF3 → Xe + 2CeF4 .

Другим важным свойством фторидов ксенона является их способность выступать как донорами, так и акцепторами фторид-ионов. Донорные свойства убывают в ряду XeF2 > XeF6 > XeF4 . С типичными кислотами Льюиса PF5 , AsF5 , SbF5 , PtF5 и другими наиболее легко взаимодействует дифторид ксенона, образуя соли + – , + – :

XeF2 + AsF5 = + – .

Взаимодействием XeF2 с избытком пентафторида сурьмы при давлении 3 атм удалось получить темно-зеленые кристаллы, содержащие парамагнитный катион диксенона Хе2 + :

4XeF2 + 8SbF5 = 2Xe2 + – + 3F2 .

Расстояние Хе–Хе в катионе составляет 0,309 нм, что свидетельствует лишь об очень слабом взаимодействии.

Акцепторные свойства убывают в ряду XeF6 > XeF4 > ХeF2 . Они наиболее характерны для гексафторида ксенона, который легко вступает в реакции с фторидами тяжелых щелочных металлов (рубидия и цезия):

XeF6 + CsF = Cs+ – .

Для криптона известны лишь соединения со фтором в степени окисления +2. Фторид KrF2 образуется из простых веществ при температуре жид-

кого азота. Его обычно получают, пропуская электрический разряд через смесь криптона с фтором в реакторе, охлаждаемом жидким азотом. По строению и свойствам KrF2 напоминает дифторид ксенона, являясь по сравнению с ним еще более сильным окислителем. KrF2 окисляет трифторид золота до пентафторида и пентафторид хлора до иона + , превращает металлическое золото в золото (V):

7KrF2 + 2Au = 2KrF+ – + 5Kr.

Интересно, что свободный фтор в отличие от дифторида криптона не способен окислить золото доAuF5 .

Кислородные соединения известны лишь для ксенона. Ксенон образует два оксида: ХеО3 и ХеO4 (рис. 3), оба чрезвычайно неустойчивы и легко взрываются от малейшего сотрясения. Оксид ХеO3 образуется при гидролизе тетра- и гексафторидов или при действии гексафторида на оксид кремния:

2XeF6 + 3SiO2 = 2ХеO3 + 3SiF4 .

В свободном виде он представляет собой бесцветные кристаллы, хорошо растворимые в воде.

Рис. 3. Строение молекул XeO3 (а) и XeO4 (б)

Удалось выделить лишь кислые ксенаты щелочных металлов (М) состава МНХеO4 , которые при добавлении избытка щелочи диспропорционируют:

2NaHXeO4 + 2NaOH = Na4 XeO6 + Хе + O2 + 2Н2 O.

Так получают перксенаты – соли перксеноновой кислоты Н4 ХеО6 . Они содержат ион [ХеO6 ]4– , имеющий октаэдрическое строение.

Действием на перксенаты 100%-й серной кислоты получают высший оксид ксенона ХеO4 :

Na4 XeO6 + 2H2 SO4 = 2Na2 SO4 + XeO4 + 2H2 O.

Он представляет собой бесцветный газ, самопроизвольно взрывающийся, более устойчивы его растворы в донорных растворителях (BrF5 , HF), их можно хранить при температуре –33 °С. Тетраоксид ксенона и перксенаты – одни из самых сильных окислителей.

1.3. Применение

Первоначальное применение гелия как негорючего газа для наполнения аэростатов (его подъемная сила составляет приблизительно 1 кг/м3 ) потеря-

ло свое значение, хотя его все еще используют для метеорологических зондов. Гелий применяется в качестве криогенной жидкости для поддержания температур порядка 4,2 К и ниже (на эти цели идет 30 % получаемого Не); 2/3 расходуются на спектрометры и томографы ЯМР. Другие важные области применения – электродуговая сварка (21 %), герметизация и очистка (11 %). Выбор между Аr и Не для этих целей определяется стоимостью газа, и везде, кроме США, обычно предпочитают использовать аргон. Небольшие по объему, но важные области применения гелия таковы:

а) для замены N2 в искусственных газовых смесях при дыхании на большой глубине (низкая растворимость гелия в крови сводит к минимуму газовыделение, которое происходит в случае азота – когда водолаз проходит декомпрессию – и иногда приводит к смертельному исходу);

б) как рабочая среда в детекторах утечки газа; в) как теплоноситель в системе охлаждения высокотемпературных

ядерных реакторов; г) как газ-носитель в газожидкостной хроматографии;

д) для деаэрации растворов и вообще как инертный разбавитель или инертная атмосфера.

Аr применяют главным образом в качестве инертной газовой среды при высокотемпературных металлургических процессах и в меньшем количестве – для заполнения ламп накаливания. Вместе с Ne, Кr и Хе, которые получают в значительно меньших количествах, Аr также используют в разрядных трубках – получаемый цвет трубки зависит от того, какой состав имеет смесь газов. Благородные газы также используются в флуоресцентных трубках, хотя в этом случае цвет зависит не от газа, наполняющего трубку, а от фосфора, покрывающего изнутри стенки трубки. Еще одна важная область применения – лазеры, хотя по сравнению с другими областями применения количество газа, который здесь используется, незначительно.

Другие благородные газы существенно дороже, поэтому их применение ограничено только узкоспециальными областями. Радон использовали в лечении раковых заболеваний и в качестве источника радиоактивности в дефектоскопии металлического литья, однако из-за короткого периода полураспада (3,824 суток) его вытеснили другие материалы. То небольшое количество радона, которое требуется в практике, получают как продукт распада 226 Ra (1 г которого в течение 30 суток дает 0,64 см3 радона).

ГЛАВА 2. VIII-B ГРУППА

2.1. Простые вещества

2.1.1. Электронное строение

VIII-B группа включает сразу девять элементов: железо 26 Fe, рутений 44 Ru, осмий 76 Os, кобальт 27 Со, родий 45 Rh, иридий 77 Ir, никель 28 Ni, палладий 46 Pd и платину 78 Pt.

Свойства химических элементов VIII-B группы различаются не слишком сильно, что послужило причиной их объединения в триады. Сходство в свойствах обусловлено сохранением состава и строения наружной электронной оболочки атомов при последовательном увеличении атомного номера элемента и соответственно общего числа электронов в изолированном атоме. У элементов триад при неизменной структуре внешней электронной оболочки (главное квантовое число n = 4, 5, 6) достраивается (при росте атомного номера) соответствующий d -подуровень (электронный n – 1-слой), степень заполнения которого не оказывает определяющего влияния на размеры атомов и ионов, а также на свойства соединений – по крайней мере, если химическая связь в них имеет преимущественно ионный характер.

В то же время свойства соединений элементов триады железа отличаются от свойств аналогичных по составу соединений элементов триад палладия и платины (семейство платиновых элементов) очень существенно.

Одной из причин большего сходства между собой соединений платиновых элементов (ПЭ) по сравнению с соединениями триады железа является влияние лантанидного сжатия. Так, атомные радиусы элементов триад палладия и платины почти одинаковы, но значительно отличаются от радиусов атомов элементов триады железа.

При движении сверху вниз по группе возрастает устойчивость соединений, содержащих элемент в высшей степени окисления (см. схему ниже). Если для железа наиболее характерными являются степени окисления +2 и +3, а состояния +6 и особенно +8 неустойчивы, то для осмия вполне стабильны соединения, содержащие элемент в наиболее высокой из возможных степеней окисления +8. Аналогичная закономерность наблюдается при переходе от Со и Ni к их тяжелым аналогам. Так, для никеля наиболее устойчивы соединения, где он имеет степень окисления +2, а для палладия и особенно для платины характерна степень окисления +4.

Располагается в четвертом периоде.
Атомный вес железа 55, 84, заряд ядра +26. Распределение электронов по энергетическим уровням (+26): 2, 8, 14, 2. Электронная конфигурация внешнего и предвнешнего слоя железа 3s23p63d64s2.

Таким образом, у атома железа, помимо двух s -электронов четвёртого внешнего слоя, имеется еще шесть d -электронов третьего предвнешнего слоя. Из этих d -электронов наиболее активны 4 неспаренных. Следовательно, в образовании валентных связей железа особенно активно участвует 6 электронов - 2 из внешнего и 4 из предвнешнего слоев. Наиболее распространенными степенями окисления железа являются Fe +2 и Fe +3 . Железо - один из часто встречающихся в природе элементов. По распространенности среди остальных элементов оно занимает четвертое место.

■ 57. Исходя из строения атома железа, а также распределения электронов по орбиталям, укажите возможные степени окисления этого элемента.

Железо в свободном состоянии представляет собой серебристо-серый блестящий металл с плотностью 7,87, температурой плавления 1535° и температурой кипения 2740°. Железо обладает ярко выраженными ферромагнитными свойствами, т. е. под воздействием магнитного поля намагничивается и при прекращении действия поля сохраняет магнитные свойства, само становясь магнитом. Такими свойствами обладают все элементы группы железа.
По химическим свойствам железо является весьма активным металлом. В отсутствие влаги железо на воздухе не изменяется, но при воздействии влаги и кислорода воздуха подвергается сильной коррозии и покрывается рыхлой пленкой ржавчины, представляющей собой железа, которые не защищают его от дальнейшего окисления, и железо постепенно окисляется во всей своей массе:
4Fe + 2Н2О + 3О2 = 2Fe2O3 · 2H2O
Разработан ряд методов защиты этого ценнейшего металла от коррозии.

В ряду напряжений железо располагается левее водорода. В связи с этим оно легко подвергается действию разбавленных кислот, превращаясь в соль двухвалентного железа, например:
Fe + 2НСl = FeCl2 + Н2
С концентрированными серной и азотной кислотами железо не реагирует. Эти кислоты создают на поверхности металла такую прочную и плотную пленку окиси, что металл становится совершенно пассивным и уже не вступает в другие реакции. В же время при непосредственном взаимодействии с такими сильными окислителями, как , железо всегда проявляет степень окисления +3:
2Fe + 3Сl2 = 2FeCl3
Железо вступает в реакцию с перегретым паром; при этом из воды вытесняется , а раскаленное железо превращается в окисел, причем это всегда либо закись железа FeO, либо закись-окись железа Fe3O4(Fe2O3 · FeO):
Fe + Н2О = FeO + H2

3Fe + 4H2O = Fe3O4 + 4H2
Раскаленное в чистом кислороде железо энергично сгорает с образованием железной окалины (см. рис. 40).

3Fe + 2O2 = Fe3O4

При прокаливании железо образует с углеродом сплав и одновременно карбид железа Fe3C.

■ 58. Перечислите физические свойства железа.
59. Каковы химические свойства железа? Дайте обоснованный ответ.

Соединения железа

Железо образует два ряда соединений - соединения Fe +2 и Fe +3 . Для железа характерны два окисла - закись FeO и окись Fe2O3. Правда, известен смешанный окисел Fe3O4, молекула которого представляет собой двух- и трехвалентного железа: Fe2O3 · FeO. Этот окисел называется также железной окалиной, или закисью-окисью железа.

Соединения закисного железа менее стойки, чем окисно-о, и при наличии окислителя, даже если им является только воздуха, обычно переходят в соединения трехвалентного железа. Например, гидроокись железа (II) Fe(OH)2 представляет собой белое твердое вещество, но в чистом виде ее можно получить лишь тогда, когда растворы реагирующих веществ не содержат растворенного кислорода и если реакцию вести в отсутствие кислорода воздуха:
FeSO4 + 2NaOH = Fe(OH)2 + Na2SO4
Соль, из которой получают гидроокись железа (II), конечно, не должна содержать ни малейшей примеси окисных соединений. Поскольку такие условия создать в обычной учебной лаборатории очень трудно, гидроокись железа (II) получается в виде более или менее темно-зеленого осадка студенистого вида, что свидетельствует о происходящем окислении соединений двухвалентного железа в трехвалентное. Если гидроокись железа (II) держать длительное время на воздухе, постепенно происходит превращение ее в гидроокись железа (III) Fe(OH)3:

4Fe(OH)2 + О2 + 2Н2O = 4Fe(OH)3
железа являются типичными нерастворимыми гидроокисями. Гидроокись железа (II) обладает основными свойствами, а у Fe(OH)3 весьма слабо выражены амфотерные свойства.

■ 60. Перечислите свойства окиси железа как типичного основного окисла. Дайте обоснованный ответ. Все уравнения реакций напишите в полной и сокращенной ионных формах.

61. Перечислите свойства гидроокиси железа (II). Подтвердите свой ответ уравнениями реакций.

Среди солей железа (II) наибольшее значение имеет железный купорос FeSO4 · 7H2O, в состав которого входит 7 молекул кристаллизационной воды. Железный купорос хорошо растворяется в воде. Применяется он для борьбы с вредителями сельского хозяйства, а также при изготовлении красителей.
Из солей трехвалентного железа наибольшее значение имеет хлорид железа FeCl3, представляющий собой весьма гигроскопичные оранжевые кристаллы, которые при хранении поглощают воду и расплываются в коричневую кашицу.

Соли железа (II) легко могут переходить в соли железа (III), например при нагревании с азотной кислотой или с перманганатом калия в присутствии серной кислоты:
6FeSO4 + 2HNO3 + 3H2SO4 = 3Fe2(SO4)3 + 2NO + 4Н2O
Окисление солей Fe +2 в соли Fe +3 может происходить и под действием кислорода воздуха при хранении этих соединений, но только этот процесс более длительный. Для распознавания катионов Fe 2+ и Fe 3+ служат очень характерные специфические реактивы. Например, для распознавания двухвалентного железа берут красную кровяную соль K3, которая при наличии ионов двухвалентного железа дает с ними характерный интенсивный синий осадок турнбулевой сини:
3FeSО4 + 2K3 = Fe32 + 3K2SО4
или в ионном виде
3Fe 2+ + 2 3- = Fe32
Для распознавания солей Fe3+ применяют реакцию с желтой кровяной солью K4:
4FeCl3 + 3K4 = Fe43 + 12KCl

4Fe 3+ + 3 4- = Fe43
При этом выпадает интенсивного синего цвета осадок берлинской лазури. Берлинская лазурь и турнбулева синь используются в качестве красителей.
Кроме того, трехвалентное железо можно распознавать с помощью растворимых солей - роданида калия KCNS или роданида аммония NH4CNS. При взаимодействии этих веществ с солями Fe(III) раствор приобретает кроваво-красную окраску.

■ 62. Перечислите свойства солей Fe +3 и Fe +2 . Какая степень окисления является более устойчивой?
63. Как осуществить превращение соли Fe +2 в соль Fe +3 и наоборот? Приведите примеры.

Реакция идет по уравнению:
FeCl3 + 3KCNS = Fe(CNS)3 + 3КСl
или в ионном виде
Fe 3+ + 3CNS — = Fe(CNS),
Соединения железа играют большую роль в жизни организмов. Например, оно входит в состав главного белка крови - гемоглобина, а также зеленого растений - хлорофилла. Железо поступает в организм главным образом в составе органических веществ пищевых продуктов. Много железа содержат яблоки, яйца, шпинат, свекла. В качестве лекарственных препаратов железо применяется в виде солей органических кислот. Хлорид железа служит кровоостанавливающим средством.

■ 64. В трех пробирках находятся: а) сульфат железа (II), б) сульфат железа (III) и в) хлорид железа (III). Как определить, в какой пробирке какая соль?
65. Как осуществить ряд превращений:
Fe → FeCl2 → FeSO4 → Fe2(SO4)3 → Fe(OH)3 → Fe2O3.
66. Даны следующие : железо, едкий натр. Как, пользуясь только этими веществами, получить гидроокись железа (II) и гидроокись железа (III)?
67. Раствор, содержащий хлорид хрома (III) и хлорид железа (III), обработали избытком щелочи. Полученный осадок отфильтровали. Что осталось на фильтре и что перешло в фильтрат? Дайте обоснованный ответ при помощи уравнений реакций в молекулярной, полной ионной и сокращенной ионной формах.

Сплавы железа

Железо является основой черной металлургии, поэтому его добывают в огромных количествах. Новая программа развернутого строительства коммунизма предусматривает в 1980 г. производство 250 млн. т стали. Это в 3,8 раза больше, чем в 1960 г.
Железо почти никогда не применяется в чистом виде, а только в виде сплавов. Важнейшими сплавами железа являются его с углеродом - различные чугуны и стали. Основное отличие чугуна от стали в содержании углерода: в чугуне содержится более 1,7% углерода, а в стали - менее 1,7%.

Большое практическое значение имеют ферросплавы (сплав железа с кремнием), феррохром (сплав железа с хромом), ферромарганец (сплав железа с марганцем). Ферросплавы - это чугуны, содержащие более 10% железа и не менее 10% соответствующего компонента. Кроме того, в них имеются те же самые элементы, что и в чугуне. Ферросплавы применяются в основном при «раскислении» стали и как легирующие примеси.
Среди чугунов различают линейные и передельные. Литейный чугун используется для отливок различных деталей, передельный-переплавляется на сталь, так как обладает очень высокой твердостью и не поддается обработке. Передельный чугун белого цвета, а литейный - серого. Передельный чугун содержит больше марганца.

Стали бывают углеродистые и легированные. Углеродистые стали обычно представляют собой сплав железа с углеродом, а легированные содержат легирующие добавки, т. е. примеси других металлов, придающие стали более ценные свойства. придает стали ковкость, упругость, устойчивость при закалке, и - твердость и жаропрочность. Стали с добавками циркония очень упруги и пластичны; их используют для изготовления броневых плит. Примеси марганца делают сталь устойчивой к удару и трению. Бор повышает режущие свойства стали при изготовлении инструментальных сталей.
Иногда даже незначительные примеси редких металлов придают стали новые свойства. Если выдержать стальную деталь в порошке бериллия при температуре 900-1000°, твердость стали, ее износоустойчивость сильно повышаются.
Хромоникелевые или, как их еще называют, нержавеющие, стали устойчивы к коррозии. Сильно вредят стали примеси серы и фосфора - они делают металл хрупким.

■ 68. Какие важнейшие железа вам известны?
69. В чем главное отличие стали от чугуна?
70. Какие свойства чугуна и какие виды чугуна вы знаете?
71. Что такое легированные стали и легирующие добавки?

Доменный процесс

Чугун получается путем восстановительной плавки в доменных печах. Это огромные сооружения тридцатиметровой высоты, выдающие в сутки более 2000 т чугуна. Схема устройства доменной печи приведена на рис. 83.
Верхняя часть домны, через которую загружается шихта, называется колошником. Через колошник шихта

Рис. 83. Схема устройства доменной печи.

попадает в длинную шахту печи, расширяющуюся книзу, что облегчает передвижение загружаемого материала сверху вниз. По мере передвижения шихты к наиболее широкой части печи - распару - с ней происходит ряд превращений, в результате которых образуется чугун, стекающий в горн - наиболее горячую часть печи. Здесь же собирается шлак. Чугун и шлак выпускают из печи через специальные отверстия в горне, называемые летками. Через верхнюю часть горна в домну вдувают воздух, поддерживающий горение топлива в печи.

Рассмотрим химические процессы, протекающие при выплавке чугуна. Шихта доменной печи, т. е. комплекс загружаемых в нее веществ, состоит из железной руды, топлива и флюсов, или плавней. Железных руд имеется много. Главные руды - магнитный железняк Fe3О4, красный железняк Fe2О3, бурый железняк 2Fe2О8 · 3H2О. В доменном процессе в качестве железной руды применяется сидерит FeCO3, а иногда FeS2, превращающийся после обжига в колчеданных печах в огарок Fe2О3, который и может использоваться в металлургии. Такая руда менее желательна из-за большой примеси серы. Выплавляют в доменной печи не только чугун, но и ферросплавы. Топливо, загружаемое в печь, служит одновременно для поддержания высокой температуры в печи и для восстановления железа из руды, а также принимает участие в образовании сплава с углеродом. Топливом служит обычно кокс.

В процессе выплавки чугуна кокс газифицируется, превращаясь, как и в газогенераторе, сначала в двуокись а затем в окись углерода:
С + О2 = СО3 СО2 + С = 2СО
Образующаяся окись углерода является хорошим газообразным восстановителем. С ее помощью происходит восстановление железной руды:
Fe2О3 + 3СО = 3СО2 + 2Fe
Вместе с рудой, содержащей железо, в печь обязательно попадают примеси пустой породы. Они бывают весьма тугоплавки и могут закупорить печь, которая работает непрерывно долгие годы. Для того чтобы пустую породу было легко извлечь из печи, ее переводят в легкоплавкое соединение, превращая флюсами (плавнями) в шлак. Для перевода в шлак основной породы, содержащей, например, известняк, который разлагается в печи по уравнению
СаСО3 = СаО + СО2
добавляют песок. Сплавляясь с окисью кальция, песок образует силикат:
СаО + SiO3 = CaSiO3
Это вещество с несравненно более низкой температурой плавления. В жидком состоянии оно может быть выпущено из печи.

Если же порода кислая, содержащая большое количество двуокиси кремния, то тогда в печь загружается, наоборот, известняк, который переводит двуокись кремния в силикат, и в результате получается такой же шлак. Раньше шлак являлся отходом, а теперь его охлаждают водой и используют как строительный материал.
Для поддержания горения топлива в домну непрерывно подается подогретый, обогащенный кислородом воздух. Подогревается он в специальных воздухонагревателях - киуперах. Каупер - высокая башня, сложенная из огнеупорного кирпича, куда отводят отходящие из домны горячие газы. Доменные газы содержат двуокись углерода СО2, N2 и окись углерода СО. Окись углерода сгорает в каупере, тем самым повышая его температуру. Затем доменные газы автоматически направляются в другой каупер, а через первый начинается продувка воздуха, направляемого в домну. В раскаленном каупере воздух нагревается, и таким образом экономится топливо, которое в большом количестве расходовалось бы на подогрев поступающего в домну воздуха. Каждая домна имеет несколько кауперов.

■ 72. Каков состав-шихты доменной печи?
73. Перечислите основные химические процессы, протекающие при выплавке чугуна.
74. Каков состав доменного газа и как он используется в кауперах?
75. Сколько чугуна, содержащего 4% углерода, можно получить из 519, 1 кг магнитного железняка, содержащего 10% примесей?
76. Какое количество кокса дает объем окиси углерода, достаточный для восстановления 320 кг окиси железа, если кокс содержит 97% чистого углерода?
77. Как следует обработать сидерит и , чтобы из них можно было получить железо?

Выплавка стали

Сталь выплавляется в трех видах печей - в мартеновских регенеративных печах, бессемеровских конвертерах и электропечах.
Мартеновская печь - наиболее современная печь, предназначенная для выплавки главной массы стали (рис. 84). Мартеновская печь в отличие от доменной не является непрерывно действующей печью.

Рис. 84. Схема устройства мартеновской печи

Главная часть ее - это ванна, куда через окна специальной машиной загружают необходимые материалы. Ванна специальными ходами соединена с регенераторами, которые служат для нагрева горючих газов и воздуха, подающихся в печь. Нагревание же происходит за счет тепла продуктов горения, которые время от времени пропускают через регенераторы. Поскольку их несколько, то работают они по очереди и по очереди нагреваются. Мартеновская печь может выдавать до 500 т стали за одну плавку.

Шихта мартеновской печи весьма разнообразна: в состав шихты входят чугун, металлолом, руда, флюсы (плавни) такого же характера, как и в доменном процессе. Как и в доменном процессе, при выплавке стали осуществляется подогрев воздуха и горючих газов в регенераторах за счет тепла отходящих газов. Топливом в мартеновских печах является либо мазут, распыляемый форсунками, либо горючие газы, которые в настоящее время применяются особенно широко. Топливо здесь служит только для поддержания высокой температуры в печи.
Процесс выплавки стали принципиально отличается от доменного процесса, так как доменный процесс - процесс восстановительный, а выплавка стали -процесс окислительный, цель которого понизить содержание углерода путем его окисления в массе металла. Процессы, протекающие при этом, довольно сложные.

Содержащийся в руде и поступающий с воздухом в печь для сжигания газообразного топлива, окисляет , а также значительное количество железа, превращая его в основном в окись железа (II): 2Fe + О2 = 2FeO
Содержащиеся в чугуне , или какие-либо примеси других металлов при высокой температуре восстанавливают полученную окись железа (II) снова до металлического железа согласно уравнению: Si + 2FeO = SiO2 + 2Fe Мn + FeO = МnО + Fe
Аналогично реагирует с окисью железа (II) и : С + FeO = Fe + СО
В конце процесса для восстановления оставшейся окиси железа (II) (или, как говорят, для «раскисления» ее) добавляют «раскислители»- ферросплавы. Имеющиеся в них добавки марганца, кремния восстанавливают оставшуюся окись железа (II) по указанным выше уравнениям. После этого плавка заканчивается. Плавка в мартеновских печах ведется 8-10 часов.

Рис. 85. Схема устройства конвертора Бессемера

Бессемеровский конвертор (рис. 85) - печь более старого образца, но с очень высокой производительностью. Так как конвертор работает без затрат топлива, то этот способ производства стали занимает значительное место в металлургии. Конвертор - грушевидный стальной сосуд емкостью 20-30 т, футерованный изнутри огнеупорным кирпичом. Каждая плавка в конверторе продолжается 12-15 минут. Конвертор имеет ряд недостатков: он может работать только на жидком чугуне. Это связано с тем, что окисление углерода ведется воздухом, пропускаемым снизу через всю массу жидкого чугуна, что значительно ускоряет плавку и усиливает интенсивность окисления. Естественно, что «угар» железа в этом случае особенно велик. В то же время короткий срок плавки не позволяет регулировать ее, добавлять легирующие примеси, поэтому в конверторах выплавляют главным образом углеродистые стали. В конце плавки подачу воздуха прекращают и, как и в мартеновском процессе, добавляют «раскислители».

В электропечах (рис. 86) выплавляется легированная сталь специальных сортов, главным образом с высок и температурой плавления, содержащая , и другие добавки. Готовую сталь направляют в прокатку. Там на огромных прокатных станах - блюмингах и слябингах - обжимают раскаленные стальные болванки с помощью валков, позволяющих изготовлять из стального слитка разнообразные формы.

Рис 86. Схема электродуговой печи. 1 -электроды, 2- загрузочное окно, 3- желоб для выпуска стали, 4- поворотный механизм

Железо в виде сплавов находит широкое применение в народном хозяйстве. Без него не обходится ни одна отрасль народного хозяйства. В целях экономии черных металлов в настоящее время по мере возможности стараются заменять их синтетическими материалами.
Из черных металлов изготовляют станки и автомобили, самолеты и инструменты, арматуру для железобетонных конструкций, жесть для консервных коробок и кровельное листовое железо, корабли и мосты, сельскохозяйственные машины и балки, трубы и целый ряд бытовых изделий.

■ 78. В чем принципиальное отличие процесса выплавки стали от доменного процесса?
79. Какие печи служат для выплавки стали?
80. Что такое регенераторы в мартеновской печи?

81. Укажите состав шихты мартеновской печи и его отличие от состава шихты доменной печи?
82. Что такое «раскислители»?
83. Почему выплавку стали называют окислительной плавкой?
84. Сколько стали, содержащей 1% углерода, можно получить из 116,7 кг чугуна, содержащего 4% углерода?
85. Сколько потребуется ферромарганца, содержащего 80% марганца, чтобы «раскислить» 36 кг закиси железа?

Статья на тему Железо, побочная подгруппа VIII группы

ЖЕЛЕЗО И ЭЛЕКТРИЧЕСТВО Свойства сталей разнообразны. Есть стали, предназначенные для долгого пребывания в морской воде, стали, выдерживающие высокую температуру и...