Болезни Военный билет Призыв

Закономерности наследования. Основные законы наследования и наследственности. Генетика пола. Наследование, сцепленное с полом

В этой статье кратко и понятно описываются три закона Менделя. Эти законы - основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип - это совокупность генов организма, а фенотип - его внешних признаков.

Кто такой Мендель и чем он занимался

Грегор Иоганн Мендель - известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя - закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого - белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые- a. Генотип одного родителя - AA (пурпурные), а второго - aa (белые). От первого родителя будет унаследован ген A, а от второго - a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной - рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены - гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками - это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой - за белые, то половина лепестков камелии станут красными, а остальные - белыми.

Такое явление называют кодоминированием.

Неполное доминирование - похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Второй закон Менделя - закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA - пурпурные цветки (25%);
  • aa - белые цветки (25%);
  • Aa - пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета - доминантный, а зелёного - рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета - это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете - а их две - находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт - закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели - гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя - закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость - B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали - другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Заключение

Три закона Менделя - основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел - генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика - это один из самых интересных и перспективных разделов биологии.

Биология 9 класс. Общие закономерности (Мамонтов). Раздел 3. Наследственность и изменчивость организмов. Электронная версия (ТРАНСКРИПТ). Цитаты использованы в учебных целях.

Раздел 3. Наследственность
и изменчивость организмов

Глава 7. Закономерности наследования признаков.

Генетика - это наука о закономерностях наследственности и изменчивости живых организмов.

Наследственность - это способность живых организмов передавать свои признаки, свойства и особенности развития из поколения в поколение.

Изменчивость - это способность организмов приобретать в процессе индивидуального развития новые признаки и свойства по сравнению с другими особями того же вида.

Основоположником генетики является чешский учёный Г. Мендель, который разработал методы генетических исследований, установил основные законы наследования признаков и опубликовал их в 1865 г. Эти законы были подтверждены разными учёными в 1900 г., который и считается годом рождения генетики.

Закономерности наследования признаков. Первые попытки экспериментального решения проблем, связанных с передачей признаков из поколения в поколение, предпринимались уже в XVIII в. Учёные, скрещивая между собой различающиеся особи и получая от них потомство, стремились узнать, как наследуются родительские признаки. Однако неверный методический подход - одновременное изучение большого количества признаков - не позволял выявить каких-либо закономерностей.

14. Основные понятия генетики

Вспомните! Наследственность Изменчивость ДНК

Генетика изучает два фундаментальных свойства живых организмов: наследственность и изменчивость.

Обычно наследственность определяется как способность родителей передавать свои признаки, свойства и особенности развития следующему поколению. Благодаря этому каждый вид животных или растений, грибов или микроорганизмов сохраняет на протяжении многих поколений характерные для него черты.

Клетки, через которые осуществляется преемственность поколений, - специализированные половые при половом размножении и неспециализированные клетки тела (соматические) при бесполом - несут в себе не сами признаки и свойства будущих организмов, а только их задатки, получившие название генов. Ген - участок молекулы. ДНК, определяющий возможность развития отдельного элементарного признака, или синтез одной белковой молекулы.

Признак, определяемый каким-либо геном, может и не развиться. Возможность проявления признаков в значительной степени зависит от присутствия других генов и от условий внешней среды. Следовательно, изучение условий проявления генов в виде признаков также составляет предмет генетики.

У всех организмов одного вида каждый ген располагается в одном и том же месте, или локусе, определённой хромосомы. В гаплоидном наборе хромосом имеется только один ген, ответственный за развитие данного признака. В диплоидном наборе хромосом (в соматических клетках) содержатся две гомологичные хромосомы и соответственно два гена, определяющих развитие какого-то одного признака. Гены, расположенные в одних и тех же локусах гомологичных хромосом и ответственные за развитие одного признака, называют аллельными.

Совокупность всех генов одного организма называют генотипом. Однако генотип - это не просто сумма генов. Возможность и форма проявления гена зависят, как будет показано дальше, от условий среды. В понятие среды входят не только условия, в которых существует данный организм или клетка, но и присутствие других генов. Оказавшись в одном генотипе, гены могут сильно влиять на проявление действия соседних генов.

Организмы одного вида различаются между собой. Это хорошо видно на примере вида Homo sapiens (Человек разумный), каждый представитель которого имеет свои индивидуальные особенности. Подобная индивидуальная изменчивость существует у организмов любого вида животных и растений. Таким образом, изменчивость - свойство организмов, противоположное наследственности, - это способность организмов приобретать новые признаки и свойства. Изменчивость обусловлена изменением строения наследственных задатков - генов - и, как следствие, изменением их проявления в процессе развития организмов. Существуют разные типы изменчивости. Изучением причин, форм изменчивости и её значения для эволюции также занимается генетика. При этом исследователи имеют дело не непосредственно с генами, а с результатами их проявления - признаками или свойствами. Поэтому законы наследственности и изменчивости изучают, наблюдая за признаками организмов в ряду поколений.

Совокупность всех признаков организма называют фенотипом. Сюда относятся не только внешние, видимые признаки (цвет кожи, волос, форма уха или носа, окраска цветков), но и биохимические (структура белка, активность фермента, концентрация гормонов в крови и т. д.), гистологические (форма и размеры клеток, строение тканей и органов), анатомические (строение тела и взаимное расположение органов) и т. д.

  1. Что такое ген?
  2. Как вы считаете, правильно ли будет сказать, что ген - это участок хромосомы?
  3. Сравните понятия «генотип» и «фенотип».
  4. Что такое признак? Какие бывают признаки? Приведите примеры признаков на различных уровнях организации.
  5. Опираясь на внешние, видимые признаки, опишите фенотип своего товарища по классу. Предложите одноклассникам по описанию определить, чей это фенотип.

15. Гибридологический метод изучения наследования признаков Грегора Менделя

Вспомните! Цветковые растения Самоопыление Наследственность Перекрёстное опыление

В своих опытах Г. Мендель использовал горох. Он выбрал для экспериментов организмы, относящиеся к чистым линиям, т. е. такие растения, в ряду поколений которых при самоопылении всё потомство было единообразным по изучаемому признаку. Надо отметить также, что он наблюдал за наследованием альтернативных, т. е. взаимоисключающих, контрастных признаков (см. таблицу). Например, цветки у одного растения были пурпурными, у другого - белыми, рост растения высокий или низкий и т. д.

Суть предложенного Менделем метода заключается в следующем: он скрещивал растения, различающиеся по одной паре взаимоисключающих признаков, а затем проводил индивидуальный анализ результатов каждого скрещивания с использованием математической статистики.

Мендель особенно подчёркивал среднестатистический характер открытых им закономерностей и необходимость исследования большого количества (тысячи) потомков для их выявления. Метод Менделя получил название гибридологического или метода скрещивания.

Закономерности наследования признаков, выявленные Менделем, в настоящее время принято формулировать в виде законов.

Вопросы для повторения и задания

  1. Кто был первооткрывателем закономерностей наследования признаков?
  2. Как вы считаете, почему в качестве экспериментального объекта Г. Мендель выбрал горох?
  3. Благодаря каким приёмам Г. Менделю удалось вскрыть законы наследования признаков?
  4. Известны ли вам какие-либо альтернативные, или контрастные, признаки у человека? Приведите примеры.
  5. Чем объяснить, что разработанный Г. Менделем гибридологический метод не используется в генетике человека?
  6. Используя дополнительные источники информации, подготовьте сообщение о жизни и творчестве Г. Менделя.

16. Первый закон Менделя

Вспомните! Половое размножение Гомологичные хромосомы Диплоидный набор хромосом Гаплоидный набор хромосом Фенотип Генотип

Скрещивание двух организмов называют гибридизацией’, потомство от скрещивания двух особей с различной наследственностью называют гибридным, а отдельную особь - гибридом. Моногибридным называют скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных (взаимоисключающих) признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Например, признак - цвет семян, взаимоисключающие варианты - жёлтый или зелёный. Все остальные признаки, свойственные данным организмам, во внимание не принимаются.

Если скрестить растения гороха с жёлтыми и зелёными семенами, то у полученных в результате скрещивания потомков (гибридов) семена будут жёлтыми. При скрещивании растений, различающихся гладкой и морщинистой формой семян, у гибридов семена будут гладкими. Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один. Второй признак не развивается. Преобладание у гибрида признака одного из родителей Г. Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным (от лат. доминус - господин), а противоположный, т. е. подавляемый, - рецессивным (от лат. рецессус - отступление, удаление). Ген, обеспечивающий формирование доминантного признака, принято обозначать прописной буквой, например А, рецессивного - строчной, а. Гены А и а называют аллельными генами или аллелями.

Как уже говорилось, Г. Мендель использовал в опытах растения, относящиеся к разным чистым линиям, потомки которых в длинном ряду поколений были сходны с родителями. Следовательно, у этих растений оба аллельных гена одинаковы.

Если в генотипе организма (зиготы) есть два одинаковых аллельных гена, абсолютно идентичных по последовательности нуклеотидов, такой организм называют гомозиготным по этому гену. Организм может быть гомозиготным по доминантным (АА или ВВ) или по рецессивным (аа или bb) генам. Если же аллельные гены отличаются друг от друга (один из них доминантный, а другой - рецессивный (Аа, ВЬ)), такой организм носит название гетерозиготного.

Закон доминирования - первый закон Менделя - называют также законом единообразия гибридов первого поколения, так как у всех особей этого поколения признак проявляется одинаково. Сформулировать этот закон можно следующим образом: при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных признаков, всё первое поколение гибридов (F1) окажется единообразным и будет нести признак одного из родителей.

Рассмотрите результаты скрещивания растений гороха, различающихся по окраске семян (жёлтые и зелёные) и по форме (гладкие и морщинистые).

Неполное доминирование. В гетерозиготном состоянии доминантный ген не всегда полностью подавляет проявление рецессивного гена. В ряде случаев гибрид первого поколения Fj не воспроизводит полностью ни одного из родительских признаков, и выражение признака носит промежуточный характер. Но все особи этого поколения проявляют единообразие по данному признаку. Так, при скрещивании ночной красавицы с красными цветками (АА) с растением, цветки которого окрашены в белый цвет (aa), в их потомстве - F1 - образуется промежуточная, розовая, окраска цветка (Аа): все потомки F1 единообразны (рис. 37).

Неполное доминирование - широко распространённое явление. Оно обнаружено при изучении наследования окраски цветка у львиного зева, строения перьев у птиц, окраски шерсти у крупного рогатого скота и овец, биохимических признаков у человека и т. д.

Вопросы для повторения и задания

  1. Что такое гибридизация?
  2. Какое скрещивание называют моногибридным?
  3. Какое явление носит название доминирования?
  4. Какой признак называют доминантным и какой - рецессивным?
  5. Расскажите об опытах Менделя по моногибридному скрещиванию растений гороха.
  6. Какой организм называют гомозиготным; гетерозиготным?
  7. Сформулируйте первый закон Менделя. Почему этот закон называют законом доминирования?
  8. Используя дополнительные источники информации, приведите примеры неполного доминирования признаков у человека.
  9. Какие растения ночной красавицы надо скрестить между собой, чтобы в потомстве получилась половина растений с розовыми цветками и половина - с белыми цветками?

17. Второй закон Менделя. Закон чистоты гамет

Вспомните! Доминантный Рецессивный Генотип Фенотип

Второй закон Менделя (закон расщепления). Если потомков первого поколения - гетерозиготных особей, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей проявляются в определённом числовом соотношении: 3/4 особей будут иметь доминантный признак, 1/4 - рецессивный.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называют расщеплением. Следовательно, расщепление - это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении (F2).

Таким образом, второй закон Менделя можно сформулировать следующим образом: при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определённом числовом отношении: по фенотипу 3:1, по генотипу 1:2:1. Это означает, что среди потомков 25% организмов будут обладать доминантным признаком и являться гомозиготными, 50% потомков, также с доминантным фенотипом, окажутся гетерозиготными, а остальные 25% особей, несущих рецессивный признак, будут гомозиготными по рецессивному гену.

При неполном доминировании в потомстве гибридов (F2) расщепление по генотипу и фенотипу совпадает (1:2:1).

Закон чистоты гамет. Мендель предположил, что наследственные факторы при образовании гибридов не смешиваются, а сохраняются в неизменном виде. У гибрида F1 полученного от скрещивания родителей, различающихся по альтернативным признакам, присутствуют оба фактора: доминантный и рецессивный. В виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки - гаметы. Следовательно, необходимо допустить, что каждая гамета содержит только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несёт рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, несущих по доминантному фактору, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении (F2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1) если у гибридов наследственные факторы сохраняются в неизменном виде; 2) если половые клетки содержат только один наследственный фактор из аллельной пары.

Расщепление признаков в потомстве при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы с генетической точки зрения чисты, т. е. несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары.

Почему и как это происходит? В процессе образования гамет у гибрида гомологичные хромосомы во время первого мейотического деления попадают в разные клетки:

Образуются два сорта гамет по данной аллельной паре. При оплодотворении гены могут случайно комбинироваться в зиготе во всех возможных сочетаниях: АА, Аа, аа.

Цитологической основой расщепления признаков у потомства при моногибридном скрещивании является расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.

Вопросы для повторения и задания

  1. Сформулируйте второй закон Г. Менделя. Почему его называют законом расщепления?
  2. Объясните, что такое чистота гамет. В прямом или переносном смысле в этом термине используется слово «чистота»?
  3. На каком явлении основан закон чистоты гамет?

18. Третий закон Менделя. Анализирующее скрещивание

Вспомните! Моногибридное скрещивание Гетерозиготный Гомозиготный Гомологичные хромосомы

Дигибридное скрещивание . Третий закон Менделя. Изучение наследования одной пары аллелей позволило Менделю установить ряд важных генетических закономерностей. Явление расщепления позволило предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельной пары.

Однако организмы отличаются друг от друга по многим признакам. Установить закономерности наследования двух (и более) пар альтернативных признаков можно путём дигибридного или полигибридного скрещивания. Дигибридным или полигибридным скрещиванием называют такое скрещивание, при котором исследователи наблюдают за характером наследования двух или более пар взаимоисключающих (альтернативных) признаков.

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, различающиеся по двум генам: окраске семян (жёлтые и зелёные) и форме семян (гладкие и морщинистые). Доминантные признаки - жёлтая окраска (А) и гладкая форма (В) семян. Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии этих гамет всё потомство будет единообразным.

При образовании гамет у гибрида первого поколения из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b, точно так же как ген а может объединиться в одной гамете с геном В или с геном b.

Поскольку в каждом организме образуется много половых клеток, в силу статистических закономерностей у гибрида возникают четыре сорта гамет в одинаковом количестве (по 25%): АВ, Ab, аВ, аb. Во время оплодотворения каждая из гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решётки Пеннета. Над решёткой по горизонтали выписывают гаметы одного родителя, а по левому краю решётки по вертикали - гаметы другого. В квадратики вписывают генотипы зигот, образующихся при слиянии гамет (рис. 38). Так, по фенотипу потомство делится на четыре группы в следующем отношении: 9 жёлтых гладких: 3 жёлтых морщинистых: 3 зелёных гладких: 1 зелёное морщинистое. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа жёлтых семян к числу зелёных и отношение числа гладких к числу морщинистых для каждой пары равно 3:1. Таким образом, в дигибридном скрещивании каждая пара признаков ведёт себя так же, как при моногибридном скрещивании, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. Независимое распределение признаков в потомстве и возникновение различных комбинаций генов, определяющие развитие этих признаков, при дигибридном скрещивании возможны лишь в случае, если пары аллельных генов расположены в разных парах гомологичных хромосом.

Теперь можно сформулировать третий закон Менделя: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Если родительские формы различаются по двум парам признаков, во втором поколении наблюдается расщепление 9: 3: 3: 1. На законах Менделя основан анализ расщепления и в более сложных случаях: при различиях особей по трём, четырём (и более) парам признаков.

Анализирующее скрещивание . Для того чтобы установить, гомозиготен или гетерозиготен организм, имеющий доминантный фенотип по исследуемому гену (генам), его скрещивают с организмом, гомозиготным по рецессивному аллелю (аллелям), имеющему рецессивный фенотип.

Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдёт:

Иная картина произойдет, если исследуемы организм гетерозиготен:

Расщепление произойдёт в отношении 1: 1 по фенотипу. Такой результат - прямое доказательство образования у одного из родителей двух сортов гамет, т. е. его гетерозиготности (рис. 39).

Анализирующее скрещивание при гетерозиготности исследуемого организма по двум парам генов выглядит так:

В потомстве от такого скрещивания образуются четыре группы фенотипов, отличающиеся друг от друга по комбинации двух изучаемых признаков, в отношении 1: 1: 1: 1.

Вопросы для повторения и задания

  1. Сформулируйте третий закон Менделя. Почему его называют законом независимого наследования?
  2. Для каких аллельных пар справедлив третий закон Менделя?
  3. Что такое анализирующее скрещивание?
  4. Какое будет расщепление в анализирующем скрещивании, если исследуемая особь с доминантным фенотипом имеет генотип ААВЬ?
  5. Сколько типов гамет образуется у особи с генотипом AaBBCcDdffEe?
  6. Обсудите в классе, можно ли утверждать, что законы Менделя носят всеобщий характер, т. е. справедливы для всех организмов, размножающихся половым путём.

19. Сцепленное наследование генов

Вспомните! Мейоз Гомологичные хромосомы Негомологичные хромосомы Конъюгация Кроссинговер

Г. Мендель проследил наследование семи пар признаков у душистого горошка. В дальнейшем многие исследователи, изучая наследование признаков у организмов разных видов, подтвердили законы Менделя. Было признано, что эти законы носят всеобщий характер.

Однако позднее оказалось, что у душистого горошка два признака - форма пыльцы и окраска цветков - не дают независимого распределения в потомстве: потомки оставались похожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось всё больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. В самом деле, у любого организма признаков очень много, а число хромосом невелико. Следовательно, в каждой хромосоме должно находиться много генов. Такие гены называют сцепленными друг с другом. Они образуют группу сцепления. Иными словами, каждая хромосома представляет собой не что иное, как группу сцепления, а поскольку гомологичные хромосомы несут гены, отвечающие за развитие одних и тех же признаков, генетики в неё включают обе парные хромосомы. Число групп сцепления соответствует количеству хромосом в гаплоидном (одинарном) наборе. Так, например, у человека 46 хромосом - 23 группы сцепления, у дрозофилы 8 хромосом - 4 группы сцепления, у гороха 14 хромосом - 7 групп сцепления.

Гены, расположенные в одной хромосоме, наследуются так:

Явление совместного наследования генов, локализованных в одной хромосоме, называют сцепленным наследованием, а локализацию генов в одной хромосоме - сцеплением генов.

Таким образом, третий закон Менделя применим к наследованию аллельных пар, находящихся в негомологичных хромосомах.

Все гены, входящие в одну хромосому, передаются по наследству вместе. Эта закономерность была впервые вскрыта американским генетиком Томасом Морганом и впоследствии получила название закона его имени: гены, расположенные в одной хромосоме, называются сцепленными и наследуются совместно.

Однако при анализе наследования сцепленных генов было обнаружено, что в некотором проценте случаев, строго определённом для каждой пары генов, сцепление может нарушаться.

Вспомним мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют. В этот момент между ними может произойти обмен участками:

Если в результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В, то появляются гаметы Аb и аВ и в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Отличие заключается в том, что числовое отношение фенотипов не соответствует отношению 1: 1: 1: 1, установленному для дигибридного анализирующего скрещивания.

Таким образом, сцепление генов может быть полным и неполным. Причиной нарушения сцепления служит кроссинговер - перекрёст хромосом в профазе I мейотического деления. Чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекрёста между ними и тем больше процент гамет с перекомбинированными генами, а следовательно, и больше процент особей, отличных от родителей.

Вопросы для повторения и задания

  1. Для каких пар аллельных генов справедлив третий закон Менделя? При каком расположении различных пар аллельных генов он «не работает»?
  2. Что такое сцепленное наследование?
  3. Что такое группы сцепления? Сколько таких групп у человека?
  4. Какие процессы могут нарушать сцепление генов?
  5. Подумайте, чем можно объяснить тот факт, что вероятность перекрёста между генами тем больше, чем дальше друг от друга расположены эти гены на хромосоме.
  6. Согласны ли вы с утверждением, что нарушение сцепления генов повышает изменчивость? Объясните свою точку зрения.

20. Генетика пола. Наследование признаков, сцепленных с полом

Вспомните! Первичные половые признаки Вторичные половые признаки Гаметы Кариотип Дальтонизм Гемофилия

Проблема происхождения половых различий, механизмов определения пола и поддержания определённого соотношения полов в группах животных очень важна и для теоретической биологии, и для практики. Возможность искусственного регулирования пола животных была бы исключительно полезна для сельского хозяйства.

Пол у животных чаще всего определяется в момент оплодотворения. Важнейшая роль в этом принадлежит хромосомному набору зиготы. Вспомним, что в зиготе содержатся парные - гомологичные - хромосомы, одинаковые по форме, размерам и набору генов в каждой. На рисунке 40 изображены хромосомы человека - женщины и мужчины. В женском кариотипе все хромосомы парные. В мужском кариотипе имеются одна крупная равноплечая непарная хромосома, не имеющая гомолога, и маленькая палочковидная хромосома, встречающаяся только в кариотипе мужчин. Таким образом, кариотип человека содержит 22 пары хромосом, одинаковых у мужского и женского организмов, и одну пару хромосом, по которой различаются оба пола.

Хромосомы, по которым мужской и женский пол отличаются друг от друга, называют половыми или гетерохромосомами. Половые хромосомы у женщин одинаковы, их называют Х-хромосомами. У мужчин имеются одна Х-хромосома и одна У-хромосома. При созревании половых клеток в результате мейоза гаметы получают гаплоидный набор хромосом. При этом все яйцеклетки имеют по одной Х-хромосоме.

Пол, который образует гаметы, одинаковые по половой хромосоме, называют гомогаметным и обозначают как XX.

При сперматогенезе получаются гаметы двух сортов: половина несёт Х-хромосому, половина - У-хромосому.

Пол, который формирует гаметы, неодинаковые по половой хромосоме, называют гетерогаметным и обозначают как ХУ.

У млекопитающих, в частности человека, некоторых насекомых, например дрозофилы, и ряда других организмов гомогаметен женский пол; у бабочек, пресмыкающихся, птиц - мужской. Так, кариотип петуха обозначается как XX, а кариотип курицы - ХУ.

У человека решающую роль в определении пола играет У-хромосома. Если яйцеклетка оплодотворяется сперматозоидом, несущим Х-хромосому, развивается женский организм. Следовательно, женщины имеют одну Х-хромосому от отца и одну Х-хромосому от матери. Если яйцеклетка оплодотворяется сперматозоидом, несущим У-хромосому, развивается мужской организм. Мужчина (ХУ) получает Х-хромосому только от матери. Этим обусловлена особенность наследования генов, расположенных в половых хромосомах. Наследование признаков, гены которых находятся в X- или Y-хромосомах, называют наследованием, сцепленным с полом. Распределение этих генов в потомстве должно соответствовать распределению половых хромосом в мейозе и их сочетанию при слиянии половых клеток в процессе оплодотворения.

Рассмотрим наследование генов, расположенных в Х-хромосоме. Следует иметь в виду, что в половых хромосомах могут находиться и гены, не участвующие в развитии половых признаков. Так, Х-хромосома дрозофилы включает ген, от которого зависит окраска её глаз. Х-хромосома человека содержит ген, определяющий свёртываемость крови (Я). Его рецессивный аллель (h) вызывает тяжёлое заболевание, характеризующееся пониженной свёртываемостью крови, - гемофилию. В этой же хромосоме находятся гены, обусловливающие слепоту к красному и зелёному цветам (дальтонизм), форму и объём зубов, синтез ряда ферментов и т. д.

При сцеплении с полом может проявиться и рецессивный ген, имеющийся в генотипе в единственном числе. Это происходит, когда он находится в Х-хромосоме гетерогаметного организма. При кариотипе ХУ рецессивный ген в Х-хромосоме проявляется фенотипически, поскольку У-хромосома не гомологична Х-хромосоме и не содержит доминантного аллеля. Наследование сцепленного с полом гена дальтонизма изображено на рисунке 41.

Наследование гемофилии представлено на следующей схеме на примере брака женщины - носительницы гена гемофилии (ХНХh) со здоровым мужчиной:

Половина мальчиков от такого брака будет страдать гемофилией.

При локализации какого-либо гена в Y-хромосоме признаки передаются только от отца к сыну.

В настоящее время изучено наследование многих нормальных и патологических (от греч. патос - болезнь) признаков у человека.

Вопросы для повторения и задания

  1. Какие хромосомы называют половыми?
  2. Какой пол называют гомогаметным и какой - гетерогаметным?
  3. Что такое сцепление генов с полом? Приведите примеры наследования гена, сцепленного с полом.
  4. Почему проявляются в виде признака рецессивные гены, локализованные в Х-хромосоме человека? Используя дополнительные источники информации, приведите примеры доминантных и рецессивных признаков у человека, сцепленных с полом.
  5. Объясните, почему пол организма обычно определяется в момент оплодотворения, т. е. при слиянии сперматозоида и яйцеклетки.
  6. Решите задачу. У молодых цыплят нет заметных половых различий, а между тем экономически целесообразно устанавливать для будущих петушков и курочек различные режимы кормления. Известно, что ген, определяющий окраску оперения, локализован в Х-хромосоме, причём рябая окраска доминирует над белой, и различие между окрасками заметно сразу же после вылупления. Какое надо поставить скрещивание, чтобы можно было сразу разделить вылупившихся цыплят по полу?

Глава 8. Закономерности изменчивости

Изменчивостью называют способность живых организмов приобретать новые признаки и свойства. Изменчивость отражает взаимосвязь организма с внешней средой. Различают наследственную (генотипическую) и ненаследственную (модификационную, или фенотипическую) изменчивость.

21. Наследственная (генотипическая) изменчивость

Вспомните! Генотип Ген Кроссинговер Кариотип Полиплоидия

К наследственной изменчивости относят такие изменения признаков организма, которые определяются генотипом и сохраняются в ряду поколений. Иногда это крупные, хорошо заметные изменения, например коротконогость у овец (см. рис. 58), отсутствие оперения у кур (рис. 42, 43), раздвоенные пальцы у кошек, отсутствие пигмента (альбинизм), короткопалость (рис. 44) или полидактилия у человека (рис. 45). Вследствие внезапных изменений, стойко передающихся по наследству, возникли карликовый сорт душистого горошка, растения с махровыми цветками и многие другие признаки. Чаще же это мелкие, едва заметные отклонения от нормы.

Наследственные изменения генетического материала называют мутациями (от лат. мутацио - изменение).

Дарвин называл наследственную изменчивость неопределённой или индивидуальной изменчивостью, подчёркивая тем самым её случайный, ненаправленный характер и относительную редкость возникновения. Мутации возникают вследствие изменения структуры гена или хромосом и служат источником генетического разнообразия внутри вида. Благодаря постоянному мутационному процессу возникают различные варианты генов, составляющие резерв наследственной изменчивости. Однако разнообразие живых организмов, уникальность каждого генотипа обусловлены комбинативной изменчивостью - перегруппировкой хромосом при половом размножении и участков хромосом в процессе кроссинговера. При этом структура самих генов и хромосом остаётся той же, что и у родителей, но меняются сочетания наследственных задатков и характер их взаимодействия в генотипе.

Характер проявления мутаций. Различают мутации доминантные и рецессивные. Большинство из них рецессивны и не проявляются у гетерозиготных организмов. Такие мутации составляют скрытый резерв наследственной изменчивости. Обладатели вредных доминантных мутаций часто оказываются нежизнеспособными и погибают на самых ранних этапах индивидуального развития.

Место возникновения мутаций. Мутации подразделяют на генеративные и соматические. Мутация, возникшая в половых клетках, не влияет на проявления признаков данного организма, а обнаруживается только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся - мутировавший - ген, мутации могут передаваться потомству. Такие мутации называют соматическими. В растениеводстве соматические мутации используют для выведения новых сортов культурных растений. Пример соматической мутации у млекопитающих - изредка встречающееся чёрное пятно на фоне коричневой окраски шерсти у каракулевых овец.

Уровни возникновения мутаций. Изменения, обусловленные заменой одного или нескольких нуклеотидов в пределах одного гена, называют генными или точковыми мутациями. Они влекут за собой изменение строения белков. В полипептидной цепи изменяется последовательность аминокислот и, как следствие, нарушается нормальное функционирование белковой молекулы.

Изменения структуры хромосом называют хромосомными мутациями. Эти мутации могут возникать вследствие утраты части хромосомы. Если в утраченный участок входят жизненно важные гены, то такая мутация может привести организм к гибели. Потеря небольшой части 21-й хромосомы у человека служит причиной развития у детей тяжёлого врождённого заболевания - острого лейкоза. В других случаях оторвавшийся участок может присоединиться к негомологичной хромосоме, в результате чего возникает новая комбинация генов, изменяющая характер их взаимодействия.

Изменения числа хромосом (уменьшение или увеличение) называют геномными мутациями. Вследствие нерасхождения какой-либо пары гомологичных хромосом в мейозе одна из образовавшихся гамет содержит на одну хромосому меньше, а другая - на одну хромосому больше, чем в нормальном гаплоидном наборе. Слияние с нормальной гаплоидной гаметой при оплодотворении приводит к образованию зиготы с меньшим или большим числом хромосом по сравнению с диплоидным набором, характерным для данного вида. В таких случаях нарушение генного баланса сопровождается нарушением развития. Известный пример - болезнь Дауна у человека, причина которой - присутствие в кариотипе трёх хромосом 21-й пары. Болезнь Дауна проявляется значительным снижением жизнеспособности, недостаточным умственным развитием и рядом других расстройств.

У простейших и у растений часто наблюдается увеличение числа хромосом, кратное гаплоидному набору. Такое изменение хромосомного набора носит название полиплоидии. Степень её бывает различной. У простейших число хромосом может увеличиваться в несколько сотен раз. Широко распространена полиплоидия у высших растений. С увеличением числа хромосомных наборов в кариотипе возрастает надёжность генетической системы, уменьшается опасность снижения жизнеспособности в случае мутации. Полиплоидия нередко повышает жизнеспособность, плодовитость и другие жизненные свойства. В растениеводстве искусственно получают полиплоидные сорта культурных растений, которые отличаются высокой продуктивностью (рис. 46). У высших животных, например у млекопитающих, полиплоидия встречается лишь в некоторых тканях, например в клетках печени.

Свойства мутаций. Мутации наследственны, т. е. стойко передаются из поколения в поколение. Одни и те же мутации могут возникать у разных организмов, относящихся к одному виду. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию - одно из свойств гена. Однако существуют внешние факторы, значительно увеличивающие частоту мутаций. К ним относятся, например, все виды ионизирующих излучений, соли тяжёлых металлов и многие другие.

Искусственное получение мутаций имеет и практическое значение, так как повышает генетическое разнообразие внутри популяции или вида, «поставляя» материал для селекционеров.

Вопросы для повторения и задания

  1. Какие формы изменчивости вам известны?
  2. Что такое мутация? Чем комбинативная изменчивость отличается от мутационной?
  3. Какие структуры клетки перестраиваются при мутационной изменчивости?
  4. Сравните генеративные и соматические мутации. Что у них общего и чем они принципиально отличаются?
  5. Составьте и заполните таблицу «Многообразие мутаций (по уровню возникновения)».
  6. Какие критерии положены в основу классификации мутаций, представленных в учебнике? Предложите свои варианты классификаций мутаций.
  7. Что такое полиплоидия? Почему среди высших животных не существует полиплоидных организмов?
  8. Как можно вызвать увеличение частоты мутаций?
  9. Объясните, почему Чарлз Дарвин называл наследственную изменчивость неопределённой.

22. Ненаследственная (фенотипическая) изменчивость

Вспомните! Внешняя среда Генотип Фенотип

Каждый организм развивается и обитает в определённых условиях, испытывая на себе действие различных факторов внешней среды - температуры, освещённости, влажности, количества и качества пищи; кроме того, он вступает во взаимоотношения с другими организмами своего и других видов. Все эти факторы могут изменять морфологические и физиологические свойства организмов, т. е. их фенотип.

Если у гималайского кролика на спине выщипать белую шерсть и наложить холодную повязку, на этом месте вырастет чёрная шерсть (рис. 47). Если чёрную шерсть удалить и наложить тёплую повязку, вырастет белая шерсть. При выращивании гималайского кролика при температуре +30 °С вся шерсть у него будет белая. У потомства двух таких белых кроликов, выращенного в нормальных условиях, будет обычное распределение пигмента.

Многие признаки изменяются в процессе роста и развития под влиянием факторов внешней среды. Такие изменения признаков не наследуются.

Рис. 47. Фенотипическое изменение окраски шерсти гималайского кролика под влиянием различных температур

У лотоса (рис. 48) и водяного ореха (рис. 49) подводные и надводные листья имеют разную форму: у лотоса в воде длинные тонкие листья ланцетовидной формы, а у водяного ореха - изрезанные - перистые.

Под действием ультрафиолетовых лучей у всех людей (если они не альбиносы) кожа покрывается загаром благодаря накоплению в ней гранул пигмента меланина.

Таким образом, на действие определённого фактора внешней среды каждый вид организмов реагирует специфически и реакция (изменение признака) оказывается сходной у всех особей данного вида.

Вместе с тем изменчивость признака под влиянием условий внешней среды не беспредельна. Степень варьирования признака, или, другими словами, пределы изменчивости, называют нормой реакции. Широта нормы реакции обусловлена генотипом и зависит от значения признака в жизнедеятельности организма. Узкая норма реакции свойственна таким важным признакам, как, например, размеры сердца или головного мозга. В то же время количество жира в организме изменяется в широких пределах. Мало варьирует строение цветка у растений, опыляемых насекомыми, зато очень изменчивы размеры листьев. Знание нормы реакции организма, пределов его модификационной изменчивости имеет большое значение в селекционной практике при «конструировании» новых форм растений, животных и микроорганизмов, полезных человеку. Особенно важно это для практики сельского хозяйства, цель которой - повышение продуктивности растений и животных путём не только внедрения новых селекционных форм - пород и сортов, но и максимального использования возможностей уже существующих пород и сортов. Знание закономерностей модификационной изменчивости необходимо и в медицине для поддержания и развития человеческого организма в пределах нормы реакции.

Вопросы для повторения и задания

  1. Как среда влияет на проявление признака? Приведите примеры.
  2. Докажите на примерах ненаследуемость изменений признака, вызванных действием условий внешней среды.
  3. Что такое норма реакции? От чего зависит её широта? Приведите примеры признаков с широкой и узкой нормой реакции.
  4. Перечислите свойства фенотипической изменчивости. Сравните её с генотипической изменчивостью. Оформите результаты сравнения в виде таблицы.
  5. Приведите примеры известных вам из жизни приобретённых признаков. Объясните, почему они не наследуются.

Глава 9. Селекция растений, животных и микроорганизмов

В процессе становления человека как вида ему пришлось не только защищаться от диких зверей, устраивать убежища и т. п., но и обеспечивать себя пищей. Поиск съедобных растений и охота - не очень надёжные источники пищи, и голод был постоянным спутником первобытных людей. Естественный отбор на интеллект и развитие общественных отношений в первобытном людском стаде привели к формированию для человека искусственной среды обитания, уменьшающей его зависимость от природных условий. При этом одним из крупнейших достижений стало создание постоянного источника продуктов питания путём одомашнивания диких животных и возделывания растений.

Таким образом, фенотипическая изменчивость характеризуется следующими основными свойствами: 1) ненаследуемость; 2) групповой характер изменений; 3) зависимость изменений от действия определённого фактора среды; 4) обусловленность пределов изменчивости генотипом, т. е. при одинаковой направленности изменений степень их выраженности у разных организмов различна.

Выведение разнообразных пород животных и сортов растений стало возможным благодаря существованию у диких видов комбинативной наследственной изменчивости как результата полового размножения, а также искусственному отбору, применяемому человеком. Животные и растения, выведенные человеком, резко отличаются от своих диких предков по ряду качеств. У культурных форм сильно развиты отдельные признаки, ненужные или даже вредные для существования в естественных условиях, но полезные для человека. Например, способность некоторых пород кур нести 300 и более яиц в год лишена биологического смысла, поскольку такое количество яиц курица не может насиживать. Можно привести множество подобных примеров, относящихся не только к хозяйственно полезным признакам, но и к декоративным - у голубей, бойцовых петухов.

Размеры и продуктивность культурных растений выше, чем у родственных диких видов, но вместе с тем они лишены средств защиты от неблагоприятных условий окружающей среды и от поедания: горьких или ядовитых веществ, шипов, колючек.

Для более полного удовлетворения пищевых и технических потребностей человека создаются всё новые сорта растений и породы животных с заранее заданными свойствами. Разработка теории и методов создания и совершенствования пород животных и сортов растений представляет предмет особой науки - селекции.

23. Центры многообразия и происхождения культурных растений

Вспомните! Дикорастущие злаки Культурные злаки Селекция Генофонд

Генофонд существующих пород животных или сортов растений, естественно, беднее по сравнению с генофондом исходных диких видов. Между тем успех селекционной работы зависит главным образом от генетического разнообразия исходной группы растений или животных. Поэтому при выведении новых сортов растений и пород животных очень важны поиски и выявление полезных признаков у диких форм. С целью изучения многообразия и географического распространения культурных растений выдающийся русский генетик и селекционер Н. И. Вавилов в 1920- 1940 гг. организовал многочисленные экспедиции как на территории нашей страны, так и во многие зарубежные страны. Во время этих экспедиций были изучены мировые растительные ресурсы и собран огромный семенной материал, который в дальнейшем использовали для селекционной работы. Н. И. Вавилов сделал важные обобщения, послужившие крупным вкладом в теорию селекции; он выделил семь центров происхождения культурных растений, из которых они расселились по всему миру. Это Южноазиатский тропический центр - родина 50% культурных растений, Восточноазиатский, из которого расселились по миру 20% культурных растений, Юго-Западноазиатский (14% культурных растений, в том числе пшеница, рожь, бобовые и др.), Средиземноморский (11% культурных растений, в том числе капуста, сахарная свёкла, чечевица), Абиссинский - родина ячменя, бананов, кофейного дерева и др., Центральноамериканский, откуда пошли кукуруза, хлопок, тыква, табак, и, наконец, Южноамериканский - родина картофеля, ананаса и др.

История вавиловской коллекции включает и драматические страницы. В 1940 г. её создатель был арестован по ложному обвинению и в 1943 г. погиб от истощения в саратовской тюрьме. Коллекция хранилась во Всесоюзном институте растениеводства в Ленинграде. Во время фашистской блокады города сотрудники института, голодавшие вместе со всеми ленинградцами, сумели сохранить всю коллекцию до последнего зёрнышка.

Работа по созданию семенных коллекций сортов культурных растений и их дикорастущих предков, начало которой положил Н. И. Вавилов, продолжается и в настоящее время. В нашей стране эта коллекция включает более 320 тыс. образцов. Сюда входят дикие виды, сородичи культурных растений, старые местные сорта, всё лучшее и новое, что создано за последнее время усилиями селекционеров всех стран мира. Из мирового генофонда ученые отбирают генетические источники хозяйственно ценных признаков: урожайности, скороспелости, устойчивости к болезням и вредителям, засухоустойчивости, устойчивости к полеганию и др. Современные генетические методы дают возможность добиваться в селекции растений очень крупных успехов. Так, использование ценных генов дикого эфиопского ячменя позволило создать выдающийся по продуктивности сорт ярового ячменя Одесский-100.

Вопросы для повторения и задания

  1. Чем отличаются одомашненные животные и культурные растения от диких?
  2. Как вы считаете, какая наука является теоретической основой селекции? Объясните свой выбор.
  3. Какое значение для селекции имеет знание центров происхождения культурных растений?
  4. Какие центры происхождения культурных растений вам известны?
  5. Определите, какие центры происхождения являются родиной культурных растений, выращиваемых в вашем регионе.
  6. Объясните в классе, почему одомашнивание диких животных и возделывание культурных растений стало поворотным пунктом в развитии человечества.
  7. Почему для успешной селекционной работы необходимо знать биологические свойства исходных диких видов?

24. Селекция растений и животных

Вспомните! Порода Сорт. Генофонд Гомозиготные организмы Полиплоиды

Основная задача селекции - создание высокопродуктивных пород животных, сортов растений и штаммов микроорганизмов, наилучшим образом удовлетворяющих пищевые, эстетические и технические потребности человека.

Породой и сортом (чистой линией) называют искусственно созданную человеком популяцию организмов, которая характеризуется специфическим генофондом, наследственно закреплёнными морфологическими и физиологическими признаками, определённым уровнем и характером продуктивности.

Каждой породе или сорту свойственна определённая норма реакции. Так, куры породы белый леггорн отличаются высокой яйценоскостью. При улучшении условий содержания и кормления яйценоскость кур повышается, а масса их практически не меняется. Фенотип (в том числе продуктивность) наиболее полно проявляется лишь при определённых условиях, поэтому для каждого района с теми или иными климатическими условиями, агротехническими приёмами и т. д. необходимо иметь свои сорта и породы.

Все эти факторы необходимо учитывать при интенсивном сельскохозяйственном производстве, цель которого - максимальное производство продуктов питания при минимальных затратах средств на единицу продукции. Интенсификация сельского хозяйства стала актуальной задачей нашего времени в связи с острой нехваткой продуктов питания в некоторых регионах мира. Особенно большое значение имеет дефицит белка, без которого невозможно нормальное развитие. Решается эта проблема разными способами, включающими совершенствование агротехники, подбор пород животных и сортов культурных растений, наиболее продуктивных в данных условиях, производство для животных кормового белка из нетрадиционных источников и т. д. К числу таких способов относится и широкое использование современных методов селекции.

Отбор и гибридизация . Основными методами селекции являются отбор и гибридизация. В растениеводстве по отношению к перекрёстноопыляющимся растениям нередко применяют массовый отбор. При таком отборе в посеве сохраняют только растения с нужными качествами. При повторном посеве снова отбирают растения с определёнными признаками. Так были выведены сорта ржи (например, сорт Вятка). Сорт, получаемый этим способом, генетически неоднороден, и отбор время от времени приходится повторять. Индивидуальный отбор сводится к выделению отдельных особей и получению от них потомства. Индивидуальный отбор приводит к получению чистой линии - группы генетически однородных (гомозиготных) организмов. Путём отбора были выведены многие ценные сорта культурных растений (рис. 50).

Рис. 50. Полученный в результате селекционной работы низкостебельный сорт пшеницы с улучшенным качеством клейковины (справа) и исходный сорт(слева)

Для внесения в генофонд создаваемого сорта растений или породы животных ценных генов и получения оптимальных комбинаций признаков применяют гибридизацию с последующим отбором. Так, некий сорт пшеницы может иметь прочный стебель и быть устойчивым к полеганию, но в то же время его легко поражает ржавчина. Другой же сорт, с тонкой и слабой соломиной, устойчив к ржавчине. При скрещивании этих двух пшениц в потомстве обнаруживаются различные комбинации, в том числе у части растений сочетаются признаки устойчивости к полеганию и к ржавчине. Такие гибриды отбирают и используют для посева.

В животноводстве из-за малого числа потомков широко используют индивидуальный отбор с тщательным учётом хозяйственно полезных признаков и гибридизацию. У сельскохозяйственных животных проводят или близкородственное скрещивание для перевода большинства генов породы в гомозиготное состояние, или неродственное скрещивание между породами или даже видами. Неродственное скрещивание имеет целью комбинацию нескольких полезных признаков. Такое скрещивание при последующем строгом отборе приводит к улучшению свойств породы (рис. 51).

Рис. 51. Отбор по полезным для человека признакам приводит к изменению исходного дикого вида. Вверху справа - дикий кабан, слева и внизу - чистопородный одомашненный боров

При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях гибриды первого поколения отличаются повышенной жизнеспособностью и мощным развитием (рис. 52). Это явление, получившее название гетерозиса или гибридной силы, объясняется переходом многих генов в гетерозиготное состояние и взаимодействием благоприятных доминантных генов.

Одно из выдающихся достижений современной селекции - разработка способов преодоления бесплодия межвидовых гибридов. Впервые это удалось осуществить в начале XX в. советскому генетику Г. Д. Карпеченко при скрещивании редьки и капусты. Это вновь созданное человеком растение не было похоже ни на редьку, ни на капусту. Стручки его состояли из двух половинок, из которых одна напоминала стручок капусты, другая - редьки.

Впоследствии удалось получить гибрид пшеницы с пыреем. На основе этого гибрида был выведен новый сорт пшеницы - зерно-кормовой, который за три укоса в сезон даёт до 300-450 ц/га зелёной массы. Методами отдалённой гибридизации получена также новая зерновая и кормовая культура - гибрид пшеницы с рожью. Этот гибрид, названный тритикале, удачно сочетает ценные признаки пшеницы и ржи, давая большие урожаи зерна и зелёной массы с высокими питательными качествами.

Нередко в растениеводстве получают и полиплоидные растения, отличающиеся более крупными размерами, высокой урожайностью и более активным синтезом органических веществ (рис. 53). Широко распространены полиплоидные сорта клевера, сахарной свёклы, турнепса, ржи, гречихи, масличных растений.

  1. Что называют породой; сортом?
  2. Какие основные методы селекции вы знаете?
  3. Сравните массовый отбор и индивидуальный отбор. В чём их сходство и отличия?
  4. С какой целью в селекционной работе производится скрещивание?
  5. Какие межвидовые гибриды вам известны?
  6. Какими особенностями отличаются полиплоидные сорта культурных растений?
  7. Чем отличаются методы одомашнивания, применявшиеся первобытным человеком, от современных?
  8. Какие породы животных и сорта растений характерны для вашей местности? Какими особыми признаками они обладают?
  9. Если у вас есть домашние питомцы, подготовьте сообщение о породе, к которой они относятся. Как была выведена эта порода? В чём её особенности и преимущества? Какие условия необходимы для содержания животных такой породы?
  10. Объясните в классе, почему в селекции растений и животных применяют разные методы.
  11. Согласны ли вы с утверждением, что исходный материал местного происхождения представляет большую ценность для селекционной работы? Объясните свою точку зрения.

25. Селекция микроорганизмов

Вспомните! Прокариоты Бактерии Витамины Незаменимые аминокислоты Интерферон Инсулин

Микроорганизмы интенсивно используются в самых разнообразных технологических процессах. Прокариоты и одноклеточные эукариоты (в основном грибы и бактерии) с каждым годом всё шире применяются в разных отраслях народного хозяйства: в хлебопечении, пивоварении, виноделии, приготовлении многих молочных продуктов. В связи с этим развивается промышленная микробиология и ведётся интенсивная селекция новых штаммов микроорганизмов с повышенной продуктивностью веществ, необходимых человеку. Такие штаммы имеют большое значение для производства кормового белка, ферментных и витаминных препаратов, антибиотиков (рис. 54), используемых в пищевой промышленности, медицине, животноводстве.

Рис. 54. На графике показано относительное увеличение продуктивности штаммов микроорганизмов, выведенных человеком, по сравнению с исходными дикими формами. Левый столбик - продуктивность дикого штамма, правый - выведенного человеком.

Например, микроорганизмы применяют для получения витаминов В2, В12. Дрожжевые грибы, растущие на гидролизатах древесины или за счёт потребления парафинов, служат источником кормового белка. В дрожжах содержится до 60% белков. Применение этих высокобелковых концентратов позволяет дополнительно получать до 1 млн т мяса в год. Важное значение в народном хозяйстве имеет производство незаменимых аминокислот с помощью микроорганизмов. Недостаток в пище этих соединений резко тормозит рост. В традиционных для животных кормах незаменимых аминокислот мало, и для нормального питания скота приходится увеличивать рационы. Добавление же 1 т лизина - аминокислоты, полученной путём микробиологического синтеза, - позволяет сэкономить десятки тонн фуража.

Технологию получения необходимых человеку продуктов из живых клеток или с их помощью называют биотехнологией. Биотехнология развивается чрезвычайно быстро. За последние десятилетия возник ряд совершенно новых производств, основанных на использовании различных бактерий и грибов.

Микроорганизмы «работают» в металлургии. Обычная технология извлечения металлов из руд не позволяет широко использовать бедные или сложные по составу руды: в результате их переработки образуются огромные скопления отходов, в атмосферу выбрасываются ядовитые газы. Биотехнология металлов основана на способности бактерий окислять минералы и переводить металлы в растворимые соединения. При окислении бактериями сульфидных минералов большинство цветных металлов и редких элементов переходит в раствор. Таким путём, например, во всём мире получают сотни тысяч тонн меди в год, причём стоимость её в 2-3 раза ниже, чем при добыче традиционным путём. С помощью бактерий из руды извлекают уран, золото и серебро, удаляют такую вредную примесь, как мышьяк.

Микроорганизмы способны при благоприятных условиях непрерывно синтезировать белки. Учёные разработали способы внедрения в бактериальную клетку определённых генов, в том числе генов человека. Такие способы получили название генной инженерии. Бактериальная клетка синтезирует белок, кодируемый чужим для неё геном, в больших количествах. Так получают сейчас интерфероны - белки, подавляющие размножение вирусов, и инсулин, регулирующий уровень глюкозы в крови.

Вопросы для повторения и задания:

  1. Какое значение для народного хозяйства имеет селекция микроорганизмов?
  2. Приведите примеры промышленного получения и использования продуктов жизнедеятельности микроорганизмов.
  3. Что такое биотехнология?
  4. Подумайте и приведите пример, свидетельствующий о том, что биотехнологические производства используются человечеством многие сотни и даже тысячи лет.
  5. Дайте определение понятия «генная инженерия».
  6. Какое понятие более широкое - «биотехнология» или «генная инженерия»? Объясните свою точку зрения.
  7. Обсудите в классе, какие перспективы открываются перед человечеством при использовании микроорганизмов в сельском хозяйстве.
  8. Под руководством учителя вместе с одноклассниками подготовьте выставку «Микроорганизмы на службе у человека».
  9. Подготовьте сообщение «Вклад отечественных учёных (Н. И. Вавилов, Г. Д. Карпеченко, В. И. Мичурин и др.) в развитие селекции».

ОГЛАВЛЕНИЕ

  1. Особенности метода гибридологического анализа. Законы Менделя.
  2. Типы взаимодействия генов.
  3. Сцепленное наследование признаков.
  4. Цитоплазматическое наследование.

Метод гибридологического анализа , заключающийся в скрещивании и последующем учете расщеплений (соотношений фенотипических и генотипических разновидностей потомков), был разработан чешским естествоиспытателем Г. Менде­лем (1865). К особенностям этого метода относят: 1) учет при скрещивании не всего многообразного комплекса признаков у родителей и потомков, а анализ наследования отдельных, выделяемых исследователем альтернативных признаков; 2) количе­ственный учет в ряду последовательных поколений гибридных растений, различающихся по отдельным признакам; 3) индивиду­альный анализ потомства от каждого растения.

Работая с самоопыляющимися растениями гороха садового, Г.Мендель выбрал для эксперимента сорта (чистые линии), отличающиеся друг от друга альтернативными проявлениями признаков. Полученные данные Мендель обработал математически, в результате чего раскрылась четкая закономерность наследования отдельных признаков родительских форм их потомками в ряде последующих поколений. Эту закономерность Мендель сформулировал в виде правил наследственности, получивших позднее название законов Менделя .



Скрещивание двух организмов называют гибридизацией. Моногибридным (моногенным ) называют скрещивание двух организмов, при котором прослеживают наследование одной пары альтернативных проявлений какого-либо признака (развитие этого признака обусловлено парой аллелей одного гена). Гибриды первого поколения являются единообразными по исследуемому признаку. В F1 проявляется лишь один из пары альтернативных вариантов признака цвета семян, названный доминантным. Эти результаты иллюстрируют первый закон Менделя - закон единообразия гибридов первого поколения, а также правило доминирования.

Первый закон Менделя можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам едино­образными. У гибридов проявятся доминантные признаки родите­лей.

Во втором поколении обнаружилось расщепление по исследуемому признаку

Соотношение потомков с доминантным и рецессивным проявлением признака оказалось близко к ¾ к ¼. Таким образом, второй закон Менделя можно сформулировать следующим образом: при моногибридном скрещивании гетерозигот­ных особей (гибридов F1) во втором поколении наблюдается расщепление по вариантам анализируемого признака в отношении 3:1 по фенотипу и 1:2:1 по генотипу. Чтобы объяснить распределение признаков у гибридов после­довательных поколений, Г. Мендель предположил, что каждый наследственный признак зависит от наличия в соматических клетках двух наследственных факторов, полученных от отца и матери. К настоящему времени установлено, что наследственные факторы Менделя соответствуют генам - локусам хромосом.

Гомозиготные растения с желтыми семенами (АА) образуют гаметы одного сорта с аллелем А; растения с зелеными семенами (аа) образуют гаметы с а. Таким образом, пользуясь современной терминологией, гипоте­зу «чистоты гамет » можно сформулировать следующим образом: "В процессе образования половых клеток в каждую гамету попадает только один ген из аллельной пары, потому что, в процессе мейоза в гамету попадает одна хромосома из пары гомологичных хромосом.

Скрещивание, при котором прослеживается наследование по двум парам альтернативных признаков, называют дигибридным , по нескольким парам признаков- полигибридным . В опытах Менделя при скрещивании сорта гороха, имевшего желтые (А) и гладкие (В) семена, с сортом гороха с зелеными (а) и морщинистыми (Ь) семенами, гибриды F1 имели желтые и гладкие семена, т.е. проявились доминантные признаки (гибриды едино­образны).

Гибридные семена второго поколения (F2) распределились на четыре фенотипические группы в соотношении: 315 - с гладкими желтыми семенами, 101 - с морщинистыми желтыми, 108- с гладкими зелеными, 32 - с зелеными морщинистыми семенами. Если число потомков в каждой группе разделить на число потомков в самой малочисленной группе, то в F2 соотношение фенотипических классов составит приблизительно 9:3:3:1. Итак, согласно третьему закону Менделя , гены разных аллельных пар и соответствующие им признаки передаются потомству независимо друг от друга, комбинируясь во всевозмож­ных сочетаниях.

При полном доминировании одного аллеля над другим гетерозиготные особи фенотипически неотличимы от гомозиготных по доминантному аллелю и различить их можно только с помощью гибридологического анализа, т.е. по потомству, которое получается от определенного типа скрещивания, получившего название анализирующего . Анализирующим является такой тип скрещивания, при котором испытуемую особь с доминантным признаком скрещивают с особью, гомозиготной по рецессивному аплелю.

Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдет. В том случае, если особь с доминантным признаком гетерозиготна, расщепление произойдет в отношении 1:1 по фенотипу и генотипу.

Взаимодействие генов

В отдельных случаях действие разных генов относительно независимо, но, как правило, проявление признаков есть результат взаимодействия продуктов разных генов. Эти взаимодействия могут быть связаны как с аллельными , так и с неаллельными генами.

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Ранее были рассмотрены опыты Менделя, выявившие полное доминирование одного аллеля и рецессивность другого. Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. При кодоминирсвании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака. Примером этой формы взаимогействия аллелей служит наследование групп крови человека по системе АВО, детерминируемых геном I. Существует три аллеля этого гена Iо,Iа,IЬ, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно.

Взаимодействие неаллельных генов. В ряде случаев на один признак организма могут влиять две (или более) пары неаллельных генов. Это приводит к значитель­ным численным отклонениям фенотипических (но не генотипических) классов от установленных Менделем при дигибридном скрещивании. Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.

При комплементарном взаимодействии признак проявляется лишь в случае одновременного присутствия в генотипе организма двух доминантных неаллельных генов. Примером комплементар­ного взаимодействия может служить скрещивание двух различных сортов душистого горошка с белыми лепестками цветков.

Следующим видом взаимодействия неаллельных генов является эпистаз, при котором ген одной аллельной пары подавляет действие гена другой пары. Ген, подавляющий действие другого, называется эпистатическим геном (или супрессором). Подавля­емый ген носит название гипостатического. Эпистаз может быть доминантным и рецессивным. Примером доминантного эпистаза служит наследование окраски оперения кур. Ген С в доминантной форме определяет нормальную продукцию пигмента, но домина­нтный аллель другого гена I является его супрессором. В результате этого куры, имеющие в генотипе доминантный аллель гена окраски, в присутствии супрессора оказываются белыми. Эпистатическое действие рецессивного гена иллюстрнрует наследование окраски шерсти у домовых мышей. Окраска агути (рыжевато-серая окраска шерсти) определяется доминантным геном А. Его рецессивный аллель а в гомозиготном состоянии обусловливает черную окраску. Доминантный ген другой пары С определяет развитие пигмента, гомозиготы по рецессивному аллелю с являются альбиносами с белой шерстью и красными глазами (отсутствие пигмента в шерсти и радужной оболочке глаз).

Наследование признака, передача и развитие которого, обусловлены, как правило, двумя аллелями одного гена, называют моногенным . Кроме того известны гены из разных аллельных пар (их называют полимернымиили полигенами ), примерно одинаково влияющие на признак.

Явление одновременного действия на признак нескольких неаллельных однотипных генов получило название полимерии. Хотя полимерные гены не являются аллельными, но так как они определяют развитие одного признака, их обычно обозначают одной буквой А (а), цифрами указывая число аллельных пар. Действие полигенов чаще всего бывает суммирующим.

Сцепленное наследование

Анализ наследования од­новременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов F1 иногда отличаются от ожидаемых в случае их незави­симого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали, тенденцию к наследованию преимущественно родительских соче­таний признаков. Такое наследование признаков было названо сцепленным. Сцепленное наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.

Зависимость сцепленного наследования признаков от локали­зации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления. Анализ наследования призна­ка окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдель­ного типа наследования признаков сцепленное с полом наследование .

Зависимость результатов эксперимента от того, кто из родителей являлся носителем доминантного варианта признака, позволила высказать предположение, что ген, определяющий окраску глаз у дрозофилы, расположен в Х-хромосоме и не имеет гомолога в У-хромосоме. Все особенности сцепленного с полом наследования объясняются неодинаковой дозой соответствующих генов у пред­ставителей разного - гомо- и гетерогаметного пола. Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную X-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству. У млекопитающих (в том числе и человека) мужской пол получает Х-сцепленные гены от матери и передает их дочерям. При этом мужской пол никогда не наследует отцовского Х-сцепленного признака и не передает его своим сыновьям

Активно функционирующие гены У-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола. Так, у человека признак гипертрихоза ушной раковины («во­лосатые уши») наблюдается исключительно у мужчин и наследуется от отца к сыну.

Мы обращали внимание на то, что наследственность и наследование - два разных явления, которые не все строго различают.

Наследственность есть процесс материальной и функциональной дискретной преемственности между поколениями клеток и организмов. В основе ее лежит точная репродукция наследственно значимых структур.

Наследование - процесс передачи наследственно детерминированных признаков и свойств организма и клетки в процессе размножения. Изучение наследования позволяет раскрывать сущность наследственности. Поэтому следует строго разделять указанные два явления.

Рассмотренные нами закономерности расщепления и независимого комбинирования относятся, к изучению наследования, а не наследственности. Неверно, когда «закон расщепления » и «закон независимого комбинирования признаков-генов » трактуются как законы наследственности. Открытые Менделем законы являются законами наследования.

Во времена Менделя считали, что при скрещивании родительские признаки наследуются в потомстве слитно («слитная наследственность») или мозаично - одни признаки наследуются от матери, другие от отца («смешанная наследственность»). В основе таких представлений лежало убеждение, что в потомстве наследственность родителей смешивается, сливается, растворяется. Такое представление было ошибочным. Оно не давало возможности научно аргументировать теорию естественного отбора, и на самом деле, если бы при скрещивании наследственные приспособительные признаки в потомстве не сохранялись, а «растворялись», то естественный отбор работал бы вхолостую. Чтобы освободить свою теорию естественного отбора от подобных затруднений, Дарвин выдвинул теорию наследственного определения признака отдельными единицами - теорию пангенеза. Однако она не дала правильного решения вопроса.

Успех Менделя обусловлен открытием метода генетического анализа отдельных пар наследственных признаков; Мендель разработал метод дискретного анализа наследования признаков и по существу создал научные основы генетики, открыв следующие явления:

  1. каждый наследственный признак определяется отдельным наследственным фактором, задатком; в современном представлении эти задатки соответствуют генам: «один ген - один признак», «один ген - один фермент»;
  2. гены сохраняются в чистом виде в ряду поколений, не утрачивая своей индивидуальности: это явилось доказательством основного положения генетики: ген относительно постоянен;
  3. оба пола в равной мере участвуют в передаче своих наследственных свойств потомству;
  4. редупликация равного числа генов и их редукция в мужских и женских половых клетках; это положение явилось генетическим предвидением существования мейоза;
  5. наследственные задатки являются парными, один - материнский, другой - отцовский; один из них может быть доминантным, другой - рецессивным; это положение соответствует открытию принципа аллелизма: ген представлен минимум двумя аллелями.

Таким образом, Мендель, открыв метод генетического анализа наследования отдельных пар признаков (а не совокупности признаков) и установив законы наследования, впервые постулировал и экспериментально доказал принцип дискретной (генной) детерминации наследственных признаков.

На основании изложенного нам представляется полезным различать законы, непосредственно сформулированные Менделем и относящиеся к процессу наследования, и принципы наследственности, вытекающие из работы Менделя.

К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.

Законы наследственности имеют другое содержание, и они формулируются в следующем виде:

Первый закон - закон дискретной (генной) наследственной детерминации признаков; он лежит в основе теории гена.

Второй закон - закон относительного постоянства наследственной единицы - гена.

Третий закон - закон аллельного состояния гена (доминантность и рецессивность).

Именно эти законы представляют собой главный итог работ Менделя, так как именно они отражают сущность наследственности.

Менделевские законы наследования и законы наследственности являются основным содержанием генетики. Их открытие дало современному естествознанию единицу измерения жизненных процессов - ген и тем самым создало возможности объединения естественных наук - биологии, физики, химии и математики с целью Анализа биологических процессов.

В дальнейшем при определении наследственной единицы мы будем употреблять только термин «ген». Понятия «наследственный фактор» и «наследственный задаток» громоздки, и, кроме того, вероятно, наступило время, когда наследственный фактор и ген следует различать и вложить в каждое из этих понятий свое содержание. Под понятием «ген» мы пока будем иметь в виду далее неделимую функционально целостную единицу наследственности, определяющую наследственный признак. Термин «наследственный фактор» следует толковать в более широком смысле как комплекс ряда генов и цитоплазматических влияний на наследственный признак.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Признак — любая особенность организма, любое его качество или свойство, по которому можно отличить одну особь от другой.

Альтернативные признаки — взаимоисключающие варианты одного и того же признака (пример: желтая и зеленая окраска семян гороха).

Доминирование — преобладание у гибрида признака одного из его родителей.

Доминантный признак — преобладающий признак, появляющийся в первом поколении потомства у гетерозиготных особей и доминантных гомозигот (см. ниже).

Рецессивный признак — признак, который передается по наследству, но подавляется, не проявляясь у гетерозиготных потомков; проявляется в гомозиготном состоянии рецессивного гена.

Фенотип — совокупность всех внешних и внутренних признаков организма. Фенотип формируется при взаимодействии генотипа со средой обитания организма.

Аллельные, доминантные и рецессивные гены. Генотип

Аллель — одна из альтернативных форм существования гена, определяющего некоторый признак. Количество аллелей одного и того же гена может достигать нескольких десятков.
■ Каждая хромосома или хроматида может нести только один аллель данного гена.
■ В клетках одной особи присутствует только два аллеля каждого гена.

Локус — участок хромосомы, на котором расположен ген.

Аллельные гены — гены, расположенные в одних и тех же локусах гомологичных хромосом и отвечающие за альтернативные проявления одного и того же признака (пример: гены, отвечающие за цвет глаз человека). Аллельные гены обозначают одинаковыми буквами латинского алфавита: А, а; В, b .

Неаллельные гены — гены, расположенные в негомологичных хромосомах или в разных локусах гомологичных хромосом.

Доминантные гены — гены, соответствующие доминантным признакам; обозначаются прописными латинскими буквами (А, В ).

Рецессивные гены — гены, соответствующие рецессивным признакам; обозначаются строчными латинскими буквами (а, b ).

Генотип — совокупность всех генов данного организма.

Скрещивание

Скрещивание — получение потомства путем искусственного объединения генетического материала разных родителей (разных клеток) в одной клетке.

Генетическая запись скрещивания:

первая строка: буква Р (родители), генотип женского организма, знак скрещивания х, генотип мужского организма; под обозначениями генотипов могут быть указаны признаки организмов;

вторая строка: буква G (гаметы) и (под обозначениями генотипов, в кружочках) гаметы женской и мужской особей;

третья строка: буква F k (потомки), генотипы потомков (под обозначениями генотипов могут быть указаны признаки организмов); к — номер поколения.

Гомозигота — зигота, содержащая одинаковые аллели одного гена — доминантные (АА, доминантная гомозигота ) или рецессивные (аа, рецессивная гомозигота ).

■ Гомозиготная особь образует один тип гамет и не дает расщепления при скрещивании.

Гетерозигота — зигота , содержащая два разных аллеля одного гена (Аа ).

■ Гетерозиготная особь в потомстве дает расщепление по данному признаку. Образует несколько типов гамет.

Правило (гипотеза) чистоты гамет . Так как каждая хромосома или хроматида может нести только один аллель данного гена, то при расхождении хромосом (при первом делении мейоза) или хроматид (при втором делении мейоза) вместе с ними в гаплоидные клетки гамет отходит лишь по одному из аллелей каждой аллельной пары.

Поэтому: любая гамета организма несет только по одному аллелю каждого гена, т.е. аллели в гаметах не перемешиваются.

Следствия правила чистоты гамет:

гомозиготный организм образует только один тип гамет:

гетерозиготный по одной паре генов организм образует два типа гамет (из двух гомологичных хромосом зиготы в процессе мейоза одна хромосома — с геном А — попадает в одну гамету, другая — с геном а — в другую гамету):

Гибридизация — процесс скрещивания двух организмов одного вида (внутривидовая гибридизация) или разных видов или родов (отдаленная гибридизация).

Гибрид — организм, полученный путем скрещивания генетически разных организмов.

Моногибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами только одного признака (одной парой аллелей).

Анализирующее скрещивание — скрещивание изучаемого организма с организмом, имеющим рецессивный гомозиготный генотип (и образующим только один тип гамет с рецессивными аллелями). Позволяет установить генотип изучаемого организма. Применяется в селекции растений и животных.

Дигибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами двух признаков (двумя парами аллелей).

Полигибридное скрещивание — скрещивание организмов, отличающихся друг от друга альтернативными вариантами трех и более признаков.

Сцепленное наследование — совместное наследование генов, локализованных в одной хромосоме; гены образуют группы сцепления.

Расщепление признаков — проявляющееся среди потомства второго и последующих поколений определенное соотношение между количествами особей, характеризующихся альтернативными признаками исходных родительских форм.

■ Конкретные количественные соотношения между числами особей, несущими признаки каждой из родительских форм, определяются тем, каковы родительские организмы по данным признакам — гомозиготные или гетерозиготные.

Первый закон Менделя

Первый закон Менделя (закон единообразия гибридов первого поколения, или правило доминирования ) описывает скрещивание гомозиготных особей: при скрещивании гомозиготных особей (взятых из чистых линий одного вида), отличающихся по одному из пары альтернативных признаков, получаемые гибриды первого поколения единообразны как по фенотипу, так и по генотипу.

Следствие: если первое поколение единообразно по одному из альтернативных признаков родительских особей, то данный признак является доминантным , а родительские особи гомозиготны по альтернативным признакам.

Второй закон Менделя

Второй закон Менделя (закон расщепления) описывает моно-гибридное скрещивание гетерозиготных особей: при скрещивании между собой гибридов первого поколения (т.е. гетерозиготных особей), отличающихся по одному из пары альтернативных признаков, во втором поколении наблюдается расщепление в соотношении 3: 1 по фенотипу и 1: 2: 1 по генотипу.

Расщепление по фенотипу: три части потомков второго поколения с доминантным признаком и одна часть — с рецессивным .

Расщепление по генотипу: одна часть потомков — доминантные гомозиготы (АА) , две части потомков — гетерозиготы (Аа) и одна часть — рецессивные гомозиготы (аа) .

Следствия второго закона Менделя:

■ если потомство родительских особей дает расщепление по фенотипу, близкое к 3: 1, то исходные родительские особи по данным аллелям гетерозиготны ;

анализирующее скрещивание: если потомство родительских особей дает расщепление по фенотипу, близкое к 1: 1, то одна из родительских особей была гетерозиготной, а другая — гомозиготной и несла пару рецессивных аллелей.

Третий закон Менделя

Третий закон Менделя (закон независимого наследования признаков ) описывает дигибридное скрещивание особей: при скрещивании гомозиготных организмов, отличающихся по двум или нескольким парам признаков, во втором поколении наблюдается независимое наследование генов разных аллельных пар и соответствующих им признаков.

Т.е. каждая пара аллельных генов (и соответствующих им альтернативных признаков) наследуется независимо друг от друга (другая формулировка 3-го закона Менделя ).

❖ Определение возможных генотипов и вероятностей их появления у особей второго поколения: сначала определяется генотип первого поколения и тип его гамет Gf1 (см. таблицу),

после чего генотипы особей и вероятности их появления определяются с помощью решетки Пеннета .

Решетка Пеннета — таблица, с помощью которой изображают и анализируют расщепление независимо наследуемых признаков. По горизонтали в верхней строке этой решетки записываются женские гаметы, по вертикали в левом столбце — мужские гаметы, на пересечениях строк и столбцов — генотипы дочерних особей.

Пример: скрещивание гомозиготной особи гороха, характеризующейся двумя доминантными признаками — желтой окраской и гладкой формой семян, — с гомозиготной особью гороха, имеющей два альтернативных рецессивных признака — зеленую окраску и морщинистую форму семян.

Так как, согласно третьему закону Менделя, расщепление по каждому признаку идет независимо: по цвету (во втором поколении) в соотношении 3: 1 (см. второй закон Менделя), по форме — также в соотношении 3: 1, то расщепление по фенотипу, т.е. по комбинации признаков, наблюдается в соотношении (3: 1) 2 = 9: 3: 3: 1 (девять частей из 16 составляют желтые гладкие семена, три части — желтые морщинистые, еще три части — зеленые гладкие и одну часть — зеленые морщинистые семена).

Из данных решетки Пеннета следует, что всего при дигибридном скрещивании гомозиготных особей (в частности, гороха) у особей второго поколения возможны девять различных генотипов (генотипических классов) , которые распадаются на четыре фенотипических класса. Потомки, доминантные по двум признакам (желтые гладкие семена гороха) имеют один из следующих генотипов (в скобках указана вероятность появления данного генотипа): ААВВ (1/16), ААВв (2/16), АаВВ (2/16) или АаВв (4/16); доминантные по первому и рецессивные по второму признаку (желтые морщинистые семена) — ААвв (1/16) или Аавв (2/16); рецессивные по первому и доминантные по второму признаку (зеленые гладкие семена) — ааВВ (1/16) или ааВв (2/16); рецессивные по обоим признакам — генотип аавв (1/16) (зеленые морщинистые семена).

❖ Расщепление по генотипу имеет вид:
■ при дигибридном скрещивании: (1:2:1) 2 ;
■ при полигибридном скрещивании (1:2:1) n , где n — число расщепляющихся пар аллелей.

❖ Расщепление по фенотипу имеет вид:
■ при дигибридном скрещивании: (3: 1) 2 = 9: 3: 1;
■ при полигибридном скрещивании (3: 1) n .

Следствия третьего закона Менделя:

■ если анализ расщепления по двум признакам дает по фенотипу соотношение, близкое к 9: 3: 3: 1, то исходные родительские особи дигетерозиготны по этим признакам;

■ в общем случае каждый новый ген увеличивает число типов различных гамет в два раза, а число генотипов — в три раза. Следовательно, особь, гетерозиготная по п парам генов, может произвести 2” типов гамет и 3” различных генотипов;

■ число различающихся классов фенотипов равно числу различных типов гамет при наличии доминирования и числу различных генотипов в отсутствие доминирования.

Замечания:

■ третий закон Менделя, т.е. независимое комбинирование признаков, выполняется только при условии, что аллельные гены, определяющие эти признаки, находятся в разных парах гомологичных хромосом;

■ он не объясняет закономерности наследования генов, находящихся совместно в одной и той же хромосоме;

❖ Вычисление частоты определенного генотипа в потомстве родителей, отличающихся определенным числом независимо наследуемых генов:

■ сначала вычисляется вероятность появления соответствующего генотипа отдельно для каждой пары генов;

■ искомая частота равна произведению этих вероятностей. Пример: вычислить частоту генотипа АаЬЬСс в потомстве от скрещивания АаВbсс x АаВbСс. Вероятность появления генотипа Аа в потомстве от скрещивания Аа x Аа равна 1/2; вероятность появления генотипа bb в потомстве от скрещивания Вb х Вb равна 1/4; вероятность появления генотипа Сс в потомстве от скрещивания Сс x сс равна 1/2. Следовательно, вероятность появления генотипа АаbbСс составляет (1/2) х (1/4) х (1/2) = 1/16.

Условия выполнения и значение законов Менделя

Законы Менделя выполняются лишь в среднем, при большом числе однотипных опытов. Они являются следствием случайного сочетания гамет, несущих разные гены, и статистического характера наследования, определяемого большим числом равновероятных встреч гамет.

❖ Дополнительные условия , при которых выполняются законы Менделя:
■ один ген должен контролировать только один признак, и один признак должен быть результатом действия только одного гена;
■ доминирование должно быть полным;
■ сцепление между генами должно отсутствовать;
■ равновероятное образование гамет и зигот разного типа;
■ равная вероятность выживания потомков с разными генотипами;
■ статистически большое количество скрещиваний.

❖ Значение законов Менделя:
■ эти законы носят универсальный характер и не зависят от систематического положения организма и сложности его строения;
■ с их помощью можно рассчитать число типов образующихся гамет и установить возможные варианты сочетания доминантных и рецессивных признаков у гибридов.