Болезни Военный билет Призыв

Закон сохранения энергии бернулли. В чем различие между водоструйным насосом и пульверизатором? Теория Бернулли в действии

Как закон Всемирного Тяготения Ньютона действовал задолго до самого Ньютона, так и уравнение Бернулли существовало задолго до того, как родился сам Бернулли. Ему удалось лишь облечь это уравнение в наглядную форму, в чем его неоспоримая и огромная заслуга. Зачем мне уравнение Бернулли, спросите Вы, ведь я прекрасно жил и без него. Да, но оно может пригодиться Вам хотя бы на экзамене по гидравлике! Как говорится, «все не так уж плохо, если ты знаешь и можешь сформулировать уравнение Бернулли».

Кто такой Бернулли?

Даниил Бернулли – сын известного ученого Якоба Бернулли, швейцарский математик и физик. Жил с 1700 по 1782 годы, а с 1725 по 1733 трудился в Петербургской Академии наук. Помимо физики и математики Бернулли также изучал медицину наряду с Д’Аламбером и Эйлером считается отцом основателем математической физики. Успехи этого человека позволяют с уверенностью сказать, что это был настоящий «супермозг».

Д. Бернулли (1700-1782)

Идеальная жидкость и течение идеальной жидкости

Помимо известной нам материальной точки и идеального газа существует также идеальная жидкость . Какой-нибудь студент, конечно, может подумать, что эта жидкость – его любимое пиво или кофе, без которого невозможно жить. Но нет, идеальная жидкость – это жидкость, которая абсолютно несжимаема, лишена вязкости и теплопроводности. Тем не менее, такая идеализация дает вполне хорошее описание движения реальных жидкостей в гидродинамике.

Течением жидкости называется движение ее слоев относительно друг друга или относительно всей жидкости.

Помимо того есть разные режимы течения жидкости. Нас интересует тот случай, когда скорость потока в какой-то конкретной точке не меняется со временем. Такой поток называют стационарным. При этом скорость течения в различных точках стационарного потока может различаться.

– совокупность частиц движущейся жидкости.


Вывод уравнения Бернулли

Но как описать движение жидкости? Для этого нам нужно знать вектор скорости частиц, точнее зависимость его от времени. Совокупность скоростей в разных точках потока дает поле вектора скорости.

Рассмотрим стационарное течение жидкости по трубке. В одном месте сечение этой трубки равно S1, а в другой – S2. При стационарном потоке через оба сечения за одинаковый промежуток времени пройдет одинаковое количество жидкости.

Данное уравнение – уравнение неразрывности струи.


Узнав его, Бернулли решил установить связь между давлением и скоростью жидкости в разных сечениях. Полное давление – это сумма статистического (обусловлено потенциальной энергией жидкости) и динамического давлений (обусловлено кинетической энергией). Оказывается, сумма статического и динамического давлений в любом сечении трубы постоянна. Само же уравнение Бернулли имеет вид:

Смысл уравнения Бернулли

Физический смысл уравнения Бернулли. Уравнение Бернулли является следствием закона сохранения энергии. Первый член уравнения Бернулли – это кинетическая энергия, второе слагаемое уравнения Бернулли – потенциальная энергия в поле силы тяжести, третье – работа силы давления при подъеме жидкости на высоту h.

Вот и все, друзья, не так уж и страшно. Совсем немного времени, а Вы уже знаете уравнение Бернулли. Даже если Вы не знаете больше ничего, с этими знаниями идти на экзамен или зачет гораздо лучше, чем просто так. А если Вам необходима помощь в том, как решать задачи на уравнение Бернулли – не стесняйтесь и оформляйте заявку. После того как распишут решение уравнения Бернулли максимально подробно, у Вас не останется пробелов в знаниях.

Принцип Бернулли описывает поток жидкости. Он стал одним из самых ранних примеров сохранения энергии, известных людям. В нем говорится, что в установившемся потоке энергия в любой точке трубы представляет собой сумму величины динамического давления (V), весового (высотного; гидростатического) давления (Z) и статического давления (P). Она принимает форму уравнения сохранения, в которой сумма трех переменных всегда будет оставаться постоянной при отсутствии потерь или добавления энергии.

Энергия = V + Z + P = константа

Сумма трех слагаемых равна полному давлению. Первое слагаемое представляет собой кинетическую энергию, второе слагаемое потенциальную энергию сил тяжести, а третье потенциальную энергию сил давления. Полное давление будет оставаться постоянным, пока в систему не добавляется или из системы не отнимается дополнительная энергия.

1/2ρv 2 (динамическое давление) + ρgz (весовое давление) + P (статическое давление) = P общ = константа

где:
ρ = плотность
v = скорость потока
g = ускорение свободного падения
z = высота

P = давление

С помощью уравнения Бернулли также могут сравниваться давления в любых двух точках трубы с потоком жидкости. Еще раз, если не добавляется (не отнимается) энергия, сумма трех слагаемых в левой части будет равна сумме слагаемых в правой части.

(1/2ρv a 2 + ρgz a + P a) = (1/2ρv b 2 + ρgz b + P b)

где:
a и b – точки в разных местах трубы

Теория Бернулли в действии


На рисунке 1 показан принцип Бернулли в действии. Поток течет в горизонтальной трубе слева направо без потерь энергии на трение. Диаметр левой и правой части равен, а часть в центре составляет две трети от этого диаметра. Вертикальные трубки (пьезометрические трубки) слева и в центре выводятся в атмосферу, и уровень воды в них пропорционален статическому давлению (P) в этих зонах. Они измеряют статическое давление так же как и манометр. Обратите внимание, что измеренное давление в части с большим диаметром больше измеренного давления в суженной части. Этого можно ожидать, так как скорость в центральной части, очевидно, выше. В соответствии с уравнением Бернулли, давление уменьшается с увеличением скорости.

Рисунок 1. Горизонтальная труба с постоянным потоком слева направо без потерь энергии на трение

Тем не менее, нечто необычное происходит со статическим давлением (P), которое показано уровнем воды в вертикальной трубке справа. Можно было бы ожидать, что давление вернется к уровню как в левой пьезометрической трубке при отсутствии потерь на трение на суженном участке. Но уровень справа указывает на большее давление, и никакой дополнительной энергии в систему не добавляется. Оказывается, столбик справа – это трубка Пито. Это устройство измеряет давление иным способом – кроме статического давления, она также измеряет дополнительное давление, создаваемое скоростью потока.

Если бы клапан со стороны выхода потока был закрыт, и поток прекратился, все три вертикальные трубки показывали бы одинаковое статическое давление, независимо от формы и положения. После возобновления потока, статическое давление, измеряемое пьезометрическими трубками, будет соответствовать статическому давлению на определенном участке. Однако, в отличие от пьезометрической трубки, впускное отверстие трубки Пито направлено в сторону потока, при этом поток вталкивает в трубку большее количество воды. Когда вода перестает течь в трубку (застой), вертикальный уровень в ней максимальный и равен сумме статического и динамического давления. Давление, измеряемое трубкой Пито – это полное давление в трубе с потоком.

На рисунке 2 графически представлено Уравнение Бернулли. Оно часто используется при проектировании трубопроводов и систем с открытым каналом. Уравнение показывает влияние на гидравлическую систему при изменениях размера трубы, высоты, давления и при потерях на соединительных элементах и клапанах. Этот пример иллюстрирует давление в трех точках трубы с равномерным непрерывным потоком без изменения высоты.

Рисунок 2. Графическое представление уравнения Бернулли. Гидравлический градиент отражает изменение статического давления P из-за потерь на трения. Градиент энергии отражает изменение полного давления (V+P). Весовое давление (Z) в данном примере не влияет на полное давление, поскольку нет перепада высот.

Уровень воды в вертикальных трубках соответствует статическому давлению (P) в этих точках. Наклонная линия, соединяющая трубки, называется гидравлическим градиентом или пьезометрической линией. Наклонная линия выше гидравлического градиента, параллельная ему – это градиент энергии, который соответствует полному давлению в трубопроводе. Его можно измерить с помощью трубки Пито, либо рассчитать, используя скорость потока и уравнение для скоростного давления (1/2ρv 2).

Градиент энергии или напорная линия – это сумма скоростного напора и статического давления в любой точке. В этом примере скоростной напор остается постоянным в каждой точке, а гидростатический набор уменьшается в зависимости от полного трения в каждой точке. В более сложных примерах эти два градиента не параллельны друг другу, а будут перемещаться в обоих направлениях в зависимости от размера трубы, высоты и других факторов.

Принцип Бернулли работает, когда летит самолет или искривляется траектория полета вращающегося мяча. Этот принцип также справедлив для кораблей в море – корабли не должны проходить слишком близко друг от друга, так как повышенная скорость потока воды между ними создает зону с низким давлением, которая может привести к бортовому столкновению. По этой причине в больших доках стремятся устанавливать сваи, а не сплошные стенки. Наконец, существует эффект «занавески для ванной» (когда занавеска для ванной притягивается водой, текущей из душа).

В следующей статье мы изучим некую аналогичную работу, выполненную Джованни Вентури и Эванджелиста Торричелли, и увидим, как она расширила наше понимание гидравлики. Мы проиллюстрируем важность учета скоростного напора при испытаниях насосов в месте установки.

Материал подготовил Алексей Циммер


Возьмём трубу, через которую протекает жидкость. Наша труба не одинакова по всей длине, а имеет различный диаметр сечения. Закон Бернулли выражается в том, что несмотря на различный диаметр, через любое сечение в этой трубе за одно и тоже время протекает одинаковый объём жидкости.

Т.е. сколько жидкости проходит через одно сечение трубы за некоторое время, столько же ее должно пройти за такое же время через любое другое сечение. А так как объём жидкости не изменяется, а сама жидкость практически не сжимается, то изменяется что-то другое.

В более узкой части трубы скорость движения жидкости выше, а давление ниже. И наоборот, в широких частях трубы скорость ниже, а давление выше.



Изменяется давление жидкости и её скорость. Если трубу, по которой течет жидкость, снабдить впаянными в нее открытыми трубками-манометрами (рис. 209), то можно будет наблюдать распределение давления вдоль трубы.

Все сказанное о движении жидкости по трубам относится и к движению газа. Если скорость течения газа не слишком велика и газ не сжимается настолько, чтобы изменялся его объем, и если, кроме того, пренебречь трением, то закон Бернулли верен и для газовых потоков. В узких частях труб, где газ движется быстрее, давление его меньше, чем в широких частях.


Применительно аэродинамике закон Бернулли выражается в том, что набегающий на крыло воздушный поток имеет различную скорость и давление под крылом и над крылом, ввиду чего возникает подъёмная сила крыла

Проведём простой эксперимент. Возьмём небольшой листок бумаги и разместим его прямо перед собой таким образом:

А затем подуем над его поверхностью, то листок бумаги, попреки ожиданиям, вместо того, чтобы прогнуться ещё больше по направлению к Земле, наоборот выпрямится. Всё дело в том, что выдувая воздух над поверхностью листка мы уменьшаем его давление, в то время как давление воздуха под листком остаётся прежним. Получается, что над листком область пониженного давления, а под листком повышенного. Воздушные массы пытаются «перебраться» из области высокого давления в область низкого, и это приводит к тому, что листок выпрямляется.

Можно провести и другой опыт. Взяв 2 листка бумаги и разместив их перед собой следующим образом:

А затем подув в область между ними, листки бумаги, вопреки нашим ожиданиям, вместо того, чтобы отодвинуться друг от друга, наоборот приблизятся. Здесь мы наблюдаем тот же самый эффект. Воздушные массы с внешних сторон листком имеют большее давление, нежели ускоренный нами воздух между листками. Это и приводит к тому, что листки бумаги притягиваются к друг другу.



Этот же принцип используют для осуществления своих полётов парапланы, дельтапланы, самолёты, планёры, вертолёты и др. летательные аппараты. Именно это позволяет взлететь вверх многотонному пассажирскому самолёту.

Очень многое из окружающего нас мира подчиняется законам физики. Этому не стоит удивляться, ведь термин «физика» происходит от греческого слова, в переводе означающего «природа». И одним из таких законов, постоянно работающих вокруг нас, является закон Бернулли.

Сам по себе закон выступает как следствие принципа сохранения энергии. Такая его трактовка позволяет придать новое понимание многим ранее хорошо известным явлениям. Для понимания сути закона просто достаточно вспомнить протекающий ручеек. Вот он течет, бежит между камней, веток и корней. В каких-то местах делается шире, где-то уже. Можно заметить, что там, где ручеек шире, вода течет медленнее, где уже, вода течет быстрее. Вот это и есть принцип Бернулли, который устанавливает зависимость между давлением в потоке жидкости и скоростью движения такого потока.

Правда, учебники физики его формулируют несколько по-другому, и имеет он отношение к гидродинамике, а не к протекающему ручью. В достаточно популярном Бернулли можно изложить в таком варианте - давление жидкости, протекающей в трубе, выше там, где скорость ее движения меньше, и наоборот: там, где скорость больше, давление меньше.

Для подтверждения достаточно провести простейший опыт. Надо взять лист бумаги и подуть вдоль него. Бумага поднимется вверх, в ту сторону, вдоль которой проходит поток воздуха.

Все очень просто. Как говорит закон Бернулли, там, где скорость выше, давление меньше. Значит, вдоль поверхности листа, где проходит поток меньше, а снизу листа, где потока воздуха нет, давление больше. Вот лист и поднимается в ту сторону, где давление меньше, т.е. туда, где проходит поток воздуха.

Описанный эффект находит широкое применение в быту и в технике. Как пример можно рассмотреть краскопульт или аэрограф. В них используются две трубки, одна большего сечения, другая меньшего. Та, которая большего диаметра, присоединена к емкости с краской, по той, что меньшего сечения, проходит с большой скоростью воздух. Благодаря возникающей разности давлений краска попадает в поток воздуха и переносится этим потоком на поверхность, которая должна быть окрашена.

По этому же принципу может работать и насос. Фактически то, что описано выше, и есть насос.

Не менее интересно выглядит закон Бернулли в применении для осушения болот. Как всегда, все очень просто. Заболоченная местность соединяется канавами с рекой. Течение в реке есть, в болоте нет. Опять возникает разность давлений, и река начинает высасывать воду из заболоченной местности. Происходит в чистом виде демонстрация работы закона физики.

Воздействие этого эффекта может носить и разрушительный характер. Например, если два корабля пройдут близко друг от друга, то скорость движения воды между ними будет выше, чем с другой стороны. В результате возникнет дополнительная сила, которая притянет корабли друг к другу, и катастрофа будет неизбежна.

Можно все сказанное изложить в виде формул, но уравнения Бернулли писать совсем не обязательно для понимания физической сути этого явления.

Для лучшего понимания приведем еще один пример использования описываемого закона. Все представляют себе ракету. В специальной камере происходит сгорание топлива, и образуется реактивная струя. Для ее ускорения используется специально суженный участок - сопло. Здесь происходит ускорение струи газов и вследствие этого - рост

Существует еще множество различных вариантов использования закона Бернулли в технике, но все их рассмотреть в рамках настоящей статьи просто невозможно.

Итак, сформулирован закон Бернулли, дано объяснение физической сущности происходящих процессов, на примерах из природы и техники показаны возможные варианты применения этого закона.

Как мы упоминали, в трубах не очень длинных и достаточно широких трение настолько невелико, что им можно пренебречь. При этих условиях падение давления так мало, что в трубе постоянного сечения жидкость в манометрических трубках находится практически на одной высоте. Однако, если труба имеет в разных местах неодинаковое сечение, то даже в тех случаях, когда трением можно пренебречь, опыт обнаруживает, что статическое давление в разных местах различно.

Возьмем трубу неодинакового сечения (рис. 311) и будем пропускать через нее постоянный поток воды. По уровням в манометрических трубках мы увидим, что в суженных местах трубы статическое давление меньше, чем в широких. Значит, при переходе из широкой части трубы в более узкую степень сжатия жидкости уменьшается (давление уменьшается), а при переходе из более узкой части в широкую - увеличивается (давление увеличивается).

Рис. 311. В узких частях трубы статическое давление текущей жидкости меньше, чем в широких

Это объясняется тем, что в широких частях трубы жидкость должна течь медленнее, чем в узких, так как количество жидкости, протекающей за одинаковые промежутки времени, одинаково для всех сечений трубы. Поэтому при переходе из узкой части трубы в широкую скорость жидкости уменьшается: жидкость тормозится, как бы натекая на препятствие, и степень сжатия ее (а также ее давление) растет. Наоборот, при переходе из широкой части трубы в узкую скорость жидкости увеличивается и сжатие ее уменьшается: жидкость, ускоряясь, ведет себя подобно распрямляющейся пружине.

Итак, мы видим, что давление жидкости, текущей по трубе, больше там, где скорость движения жидкости меньше, и обратно: давление меньше там, где скорость движения жидкости больше. Эту зависимость между скоростью жидкости и ее давлением называют законом Бернулли по имени швейцарского физика и математика Даниила Бернулли (1700-1782).

Закон Бернулли имеет место и для жидкостей и для газов. Он остается в силе и для движения жидкости, не ограниченного стенками трубы, - в свободном потоке жидкости. В этом случае закон Бернулли нужно применять следующим образом.

Допустим, что движение жидкости или газа не изменяется с течением времени (установившееся течение). Тогда мы можем представить себе внутри потока линии, вдоль которых происходит движение жидкости. Эти линии называются линиями тока; они разбивают жидкость на отдельные струи, которые текут рядом, не смешиваясь. Линии тока можно сделать видимыми, вводя в поток воды жидкую краску через тонкие трубочки. Струйки краски располагаются вдоль линий тока. В воздухе для получения видимых линий тока можно воспользоваться струйками дыма. Можно показать, что закон Бернулли применим для каждой струи в отдельности: давление больше в тех местах струи, где скорость в ней меньше и, следовательно, где сечение струи больше, и обратно. Из рис. 311 видно, что сечение струи велико в тех местах, где линии тока расходятся; там же, где сечение струи меньше, линии тока сближаются. Поэтому закон Бернулли можно сформулировать еще так: в тех местах потока, где линии тока гуще, давление меньше, а в тех местах, где линии тока реже, давление больше.

Возьмем трубу, имеющую сужение, и будем пропускать по ней с большой скоростью воду. Согласно закону Бернулли, в суженной части давление будет понижено. Можно так подобрать форму трубы и скорость потока, что в суженной части давление воды будет меньше атмосферного. Если теперь присоединить к узкой части трубы отводную трубку (рис. 312), то наружный воздух будет засасываться в место с меньшим давлением: попадая в струю, воздух будет уноситься водой. Используя это явление, можно построить разрежающий насос - так называемый водоструйный насос. В изображенной на рис. 313 модели водоструйного насоса засасывание воздуха производится через кольцевую щель 1, вблизи которой вода движется с большой скоростью. Отросток 2 присоединяется к откачиваемому сосуду. Водоструйные насосы не имеют движущихся твердых частей (как, например, поршень в обычных насосах), что составляет одно из их преимуществ.

Рис. 312. Воздух засасывается в узкую часть трубы, где давление меньше атмосферного

Рис. 313. Схема водоструйного насоса

Будем продувать воздух по трубке с сужением (рис. 314). При достаточной скорости воздуха давление в суженной части трубки будет ниже атмосферного. Жидкость из сосуда будет засасываться в боковую трубку. Выходя из трубки, жидкость будет распыляться струей воздуха. Этот прибор называется пульверизатором - распылителем.

Рис. 314. Пульверизатор