Болезни Военный билет Призыв

Закон фарадея химия электролиз. Первый и второй закон фарадея. История развития и опыты Фарадея

    Батарейки используются в системе сигнализации, фонарях, часах, калькуляторах, аудиосистемах, игрушках, радио, автооборудовании, пультах дистанционного управления.

    Аккумуляторы используются для запуска двигателей машин, возможно так же и применение в качестве временных источников электроэнергии в местах, удаленных от населенных пунктов.

    Топливные элементы применяются в производстве электрической энергии (на электрических станциях), аварийных источниках энергии, автономном электроснабжении, транспорте, бортовом питании, мобильных устройствах.

Электролиз

Электро́лиз - физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор, либо расплав электролита .

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами - проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом - отрицательный . Положительные ионы - катионы - (ионы металлов, водородные ионы, ионы аммония и др.) - движутся к катоду, отрицательные ионы - анионы - (ионы кислотных остатков и гидроксильной группы) - движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений [ источник не указан 1854 дня ] , диоксида марганца , пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция, электрорафинирование). Также, электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации). Применяется для получения многих веществ (металлов, водорода, хлора и др.), при нанесении металлических покрытий (гальваностегия), воспроизведении формы предметов (гальванопластика).

Первый закон Фарадея

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит: если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональностиназываетсяэлектрохимическим эквивалентом вещества . Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Второй закон Фарадея

Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты .

Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

где F - постоянная Фарадея .

Второй закон Фарадея записывается в следующем виде

где М(г/моль) - молярная масса данного вещества, образовавшегося в результате электролиза; I(A) - сила тока, пропущенного через вещество или смесь веществ; дельта t(c)- время, в течение которого проводился электролиз; F (Кл·моль −1) - постоянная Фарадея; n - число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного).

Возникновение электродвижущей силы индукции было важнейшим открытием в области физики. Оно явилось основополагающим для развития технического применения этого явления.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-24.jpg 765w" sizes="(max-width: 600px) 100vw, 600px">

Майкл Фарадей

История

В 20-е годы 19-го века датчанин Эрстед наблюдал за отклонением магнитной стрелки при расположении ее рядом с проводником, по которому протекал электроток.

Это явление захотел исследовать ближе Майкл Фарадей. С большим упорством он преследовал свою цель – преобразовать магнетизм в электричество.

Первые опыты Фарадея принесли ему ряд неудач, так как он изначально считал, что значительный постоянный ток в одном контуре может сгенерировать ток в рядом находящемся контуре при условии отсутствия электрической связи между ними.

Исследователь видоизменил эксперименты, и в 1831 году они увенчались успехом. Опыты Фарадея начинались с наматывания медной проволоки вокруг бумажной трубки и соединения ее концов с гальванометром. Затем ученый погружал магнит внутрь катушки и замечал, что стрелка гальванометра давала мгновенное отклонение, показывая, что в катушке был индуцирован ток. После вынимания магнита наблюдалось отклонение стрелки в противоположном направлении. Вскоре в ходе других экспериментов он заметил, что в момент подачи и снятия напряжения с одной катушки появляется ток в рядом находящейся катушке. Обе катушки имели общий магнитопровод.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-21-120x74..jpg 706w" sizes="(max-width: 600px) 100vw, 600px">

Опыты Фарадея

Многочисленные опыты Фарадея с другими катушками и магнитами были продолжены, и исследователь установил, что сила индуцированного тока зависит от:

  • количества витков в катушке;
  • силы магнита;
  • скорости, с которой магнит погружался в катушку.

Термин «электромагнитная индукция» (эми) относится к явлению, что ЭДС генерируется в проводнике переменным внешним магнитным полем.

Формулирование закона электромагнитной индукции

Словесная формулировка закона электромагнитной индукции: индуцированная электродвижущая сила в любом замкнутом контуре равна отрицательной временной скорости изменения магнитного потока, заключенного в цепь.

Это определение математически выражает формула:

Е = — ΔΦ/ Δt,

где Ф = В х S, с плотностью магнитного потока В и площадью S, которую пересекает перпендикулярно магнитный поток.

Дополнительная информация. Существуют два разных подхода к индукции. Первый – объясняет индукцию с помощью силы Лоренца и ее действия на движущийся электрозаряд. Однако в определенных ситуациях, таких как магнитное экранирование или униполярная индукция, могут возникнуть проблемы в понимании физического процесса. Вторая теория использует методы теории поля и объясняет процесс индукции с помощью переменных магнитных потоков и связанных с ними плотностей этих потоков.

Физический смысл закона электромагнитной индукции формулируется в трех положениях:

  1. Изменение внешнего МП в катушке провода индуцирует в ней напряжение. При замкнутой проводящей электроцепи индуцированный ток начинает циркулировать по проводнику;
  2. Величина индуцированного напряжения соответствует скорости изменения магнитного потока, связанного с катушкой;
  3. Направление индукционной ЭДС всегда противоположно причине, ее вызвавшей.

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/3-18-600x367.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-18-768x470..jpg 120w, https://elquanta.ru/wp-content/uploads/2018/03/3-18.jpg 900w" sizes="(max-width: 600px) 100vw, 600px">

Закон электромагнитной индукции

Важно! Формула для закона электромагнитной индукции применяется в общем случае. Не существует известной формы индукции, которая не может быть объяснена изменением магнитного потока.

ЭДС индукции в проводнике

Для расчета индукционного напряжения в проводнике, который движется в МП, применяют другую формулу:

E = — B x l x v х sin α, где:

  • В – индукция;
  • l – протяженность проводника;
  • v – скорость его движения;
  • α – угол, образованный направлением перемещения и векторным направлением магнитной индукции.

Важно! Способ определения, куда направлен индукционный ток, создающийся в проводнике: располагая правую руку ладонью перпендикулярно вхождению силовых линий МП и, отведенным большим пальцем указывая направление перемещения проводника, узнаем направление тока в нем по распрямленным четырем пальцам.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-17-210x140.jpg 210w" sizes="(max-width: 600px) 100vw, 600px">

Правило правой руки

Законы электролиза

Исторические опыты Фарадея в 1833 году были связаны и с электролизом. Он брал пробирку с двумя платиновыми электродами, погруженными в растворенный хлорид олова, нагретый спиртовой лампой. Хлор выделялся на положительном электроде, а олово – на отрицательном. Затем он взвешивал выделившееся олово.

В других опытах исследователь соединял емкости с разными электролитами последовательно и замерял количество осаждающегося вещества.

На основании этих экспериментов формулируются два закона электролиза:

  1. Первый из них: масса вещества, выделяемого на электроде, прямо пропорциональна количеству электричества, пропускаемого через электролит. Математически это записывают так:

m = K x q, где К – константа пропорциональности, называемая электрохимическим эквивалентом.

Сформулируйте его определение, как масса вещества в г, высвобождаемая на электроде при прохождении тока в 1 А за 1 с либо при прохождении 1 Кл электричества;

Data-lazy-type="image" data-src="http://elquanta.ru/wp-content/uploads/2018/03/5-13-600x342.jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-13-768x438..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Первый закон электролиза

  1. Второй закон Фарадея гласит: если одинаковое количество электричества пропускается через разные электролиты, то количество веществ, высвобождаемых на соответствующих электродах, прямо пропорционально их химическому эквиваленту (химический эквивалент металла получается путем деления его молярной массы на валентность – M/z).

Для второго закона электролиза используется запись:

Здесь F постоянная Фарадея, которая определяется зарядом 1 моля электронов:

F = Na (число Авогадро) х e (элементарный электрозаряд) = 96485 Кл/моль.

Запишите другое выражение для второго закона Фарадея:

m1/m2 = К1/К2.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/6-7-768x528..jpg 800w" sizes="(max-width: 600px) 100vw, 600px">

Второй закон электролиза

Например, если взять две соединенных последовательно электролитических емкости, содержащие раствор AgNO 3 и CuSO 4, и пропустить через них одинаковое количество электричества, то соотношение массы осажденной меди на катоде одной емкости к массе осажденного серебра на катоде другой емкости будет равно отношению их химических эквивалентов. Для меди это Оцените статью:

Как уже известно, при электролизе на электродах происходит выделение вещества. Попробуем выяснить, от чего будет зависеть масса это вещества. Масса выделившегося вещества m будет равна произведению массы одного иона m0i на число ионов Ni, которые достигли электрода за промежуток времени равный ∆t: m = m0i*Ni. Масса иона m0i будет вычисляться по следующей формуле:

  • m0i = M/Na,

где М - молярная масса вещества, а Na - постоянная Авогадро.

Число ионов, которые достигнут электрода, вычисляется по следующей формуле:

  • Ni = ∆q/q0i,

где ∆q = I*∆t - заряд, прошедший через электролит за время, равное ∆t, q0i - заряд иона.

Для того, чтобы определить заряд иона, используется следующая формула:

  • q0i = n*e,

где n - валентность, e - элементарный заряд.

Собирая воедино все представленные формулы, получаем формулу для вычисления массы выделившегося на электроде вещества:

  • m = (M*I*∆t)/(n*e*Na).

Теперь обозначим через k коэффициент пропорциональности между массой вещества и зарядом ∆q.

  • k = M/(e*n*Na).

Этот коэффициент k будет зависеть от природы вещества. Тогда формулу массы вещества можно переписать в следующем виде:

  • m = k*I*∆t.

Второй закон Фарадея

Масса вещества, выделившегося на электроде за время, равное ∆t, при прохождении электрического тока пропорциональна силе тока и времени. Коэффициент k называют электрохимическим эквивалентом данного вещества. Единицей измерения служит кг/Кл. Разберемся с физическим смыслом электрохимического эквивалента. Так как:

  • M/Na = m0i,
  • e*n = qi,

то формулу электрохимического эквивалента можно переписать в следующем виде:

  • k = m0i/q0i.

Таким образом, k - отношение массы иона к заряду этого иона.

Для того, чтобы удостовериться в справедливости закона Фарадея, можно провести опыт. Лабораторная установка, необходимая для него, показана на следующем рисунке.

Все три емкости заполнены одинаковым электролитическим раствором. Через них будут протекать различные электрические токи, причем I1 = I2+I3. После включения установки в цепь подождем некоторое время. Потом отключим её и измерим массы веществ, выделившихся на электродах в каждом из сосудов m1, m2, m3. Можно будет убедиться, что массы веществ будут пропорциональны силам тока, которые проходили через соответствующий сосуд.

Из формулы

  • m = (M*I*∆t)/(n*e*Na)

можно выразить значение заряда электрона

  • e = (M*I*∆t)/(n*m*Na).

Электролиты

Определение 1

Явление выделения электрическим током химических составных частей проводника при прохождении тока называется электролизом.

Электролиз может протекать не во всех проводниках. К числу проводников, в которых электролиз не протекает, относят металлы, уголь и другие соединения (Это проводники первого рода). Проводники, в которых электролиз возможен, называют проводниками второго рода или электролитами. К электролитам относят большое количество водных растворов кислот, солей, некоторые жидкие и твердые соединения.

Явление электролиза часто сопровождается химическими реакциями (вторичные реакции), которые не связаны с прохождением тока. В ходе электролиза на отрицательном полюсе (катоде) всегда выделяются металлы и водород, на положительном полюсе (аноде) - остаток химического соединения. Составные части электролита выделяются только на электродах. Явление выделения составных частей электролита на электродах при прохождении электрического тока было исследовано М. Фарадеем.

Законы электролиза Фарадея не стоит путать с законом электромагнитной индукции Фарадея, рассматривающим электрический контур и силы в нём. В этом законе говорится о зависимости ЭДС от скорости изменения магнитного потока.

Явление электролиза отражает тот факт, что молекулы растворенного вещества в электролите существуют как две части: ион с положительным знаком и ион с отрицательным знаком. Под воздействием внешнего электрического поля эти ионы движутся: положительные ионы в сторону катода, отрицательные ионы в сторону анода. Таким образом, когда отрицательный ион достигнет анода, то он отдает свой заряд электроду, что ведёт к изменению его заряда. Следовательно, некоторое количество электронов проходят по внешней цепи. Ион становится нейтральным и выделяется на аноде, как атом или молекула. Положительный ион забирает у катода некоторое количество электронов (столько, сколько ему требуется для нейтрализации), что порождает его выделение на катоде.

Замечание 1

Ионы, знак заряда при которых отрицательный, выделяются на аноде, они были названы Фарадеем анионами, а положительно заряженные ионы получили название катионов.

Законы Фарадея

Фарадей установил экспериментальным путем два основных закона электролиза. В соответствии с первым законом, масса вещества $(m)$, которая выделяется на одном из электродов, прямо пропорциональна заряду $(q)$, который прошел через электролит:

$m=Kq\left(1\right),$

где $K$ - электрохимический эквивалент, который отличается для разных электролитов. $K$ равен массе электролита, которая выделяется при прохождении заряда $q=1Kл$. Основной единицей измерения электрохимического коэффициента является $\frac{кг}{Кл}$.

Кроме того, Фарадей заметил, что электрохимический эквивалент всегда пропорционален молярной массе вещества ($\mu $) и обратно пропорционален валентности $(Z)$. Отношение $\frac{\mu }{Z}$ называют химическим эквивалентом вещества.

В соответствии со вторым законом Фарадея: электрохимический эквивалент прямо пропорционален химическому эквиваленту для избранного вещества:

$K=\frac{C\mu }{Z}=\frac{\mu }{FZ}\left(2\right),$, где:

  • $C=\frac{1}{F}$ - величина постоянная для всех веществ,
  • $F$ - постоянная Фарадея.

Первый и второй законы электролиза Фарадея часто выражают одной формулой, а именно:

$m=\frac{\mu }{Z}\frac{q}{F}\left(3\right).$

Эмпирическим путем получено, что в СИ $F=9,65{\cdot 10}^4\frac{Кл}{моль}$ - фундаментальная физическая постоянная, отражающая отношение электрохимических и физических свойств вещества. Причем известно, что:

$F=q_eN_A\left(4\right),$ где:

  • $q_e$ - заряд электрона,
  • $N_A$ - постоянная Авогадро.

Объяснить законы Фарадея можно с точки зрения ионной проводимости. Допустим, что количество ионов, которое выделяется на одном из электродов при электролизе равно $\nu $, заряд одного из ионов равен $q_1$. Следовательно, суммарный заряд, который прошел через электролит, на который действовало внешнее электрическое поле, равен:

$q=q_1\nu \left(5\right).$

Пусть масса одного иона равна $m_1$, тогда масса вещества, которая выделяется на электроде, равна:

$m=m_1\nu \left(6\right).$

Выразим из (5) $\nu $, получим:

$\nu =\frac{q}{q_1}\left(7\right).$

Подставим (7) в (6), имеем:

$m=\frac{m_1}{q_1}q\left(8\right).$

Выражение (8) не что иное как первый закон Фарадея, где:

$K=\frac{m_1}{q_1}=\frac{m_1N_A}{q_1N_A}=\frac{\mu }{q_1N_A}\left(9\right).$

Сравним выражения (2) и (9), получим, что:

$q_1=\frac{ZF}{N_A}\left(10\right).$

В выражении (10) мы получили, что заряд иона в электролите пропорционален валентности вещества $(Z)$. Этот результат показывает, что величины электрических зарядов ионов кратны между собой. Минимальный заряд, равный заряду электрона, имеют ионы одновалентных веществ.

Пример 1

Задание: Найдите скорость $v,$ с которой увеличивается слой вещества, являющегося проводником второго рода на плоской поверхности электрода в процессе электролиза при прохождении тока, плотность которого равна $j$. Считать, что электролит имеет валентность равную $Z$, плотность $\rho ,\ молярную\ массу\ \mu .$

Решение:

В качестве основы решения задачи применим объединенный закон Фарадея:

$m=\frac{\mu }{Z}\frac{q}{F}\left(1.1\right),$

где $q=It$, $I$ - сила тока, текущего через электролит, $t$ - время, которое тек ток. Если считать, что осаждение никеля идет равномерно по поверхности металла, то массу выделившегося вещества запишем как:

$m=\rho Sh\ \left(1.2\right),$

где $\rho $ - плотность никеля, $S$ - площадь поверхности металла, $h$ - толщина слоя никеля. Силу тока, выразим через его плотность:

$I=jS\left(1.3\right).$

Подставим в выражение (1.1) силу тока из (1.3) и массу из (1.2), получим:

$\rho Sh=\frac{\mu}{Z}\frac{jSt}{F}\to \rho h=\frac{\mu}{Z}\frac{jt}{F}\left(1.4\right).$

В том случае, если плотность тока постоянна, то скорость ($v=\frac{h}{t}$) увеличения слоя никеля так же постоянна. Разделим обе части выражения (1.4) на время, имеем:

$\rho \frac{h}{t}=\frac{\mu }{Z}\frac{j}{F}\to v=\frac{\mu }{Z}\frac{j}{\rho F}.$

Ответ: $v=\frac{\mu }{Z}\frac{j}{\rho F}.$

Пример 2

Задание: Через раствор электролита ток силой $I$ тек в течение времени $t$. Какое количество вещества $(\nu)$ выделится на катоде, каково число атомов $(N)$ вещества при этом, если металл имеет валентность $Z$.

Решение:

За основу решения задачи примем объединенный закон Фарадея:

$m=\frac{\mu }{Z}\frac{q}{F}\left(2.1\right),$

где $q=It$, $I$ - сила тока, текущего через электролит, $t$ - время, которое тек ток. При этом нам известно, что:

$\nu =\frac{m}{\mu }\left(2.2\right).$

Разделим правую и левую части выражения (2.1) на молярную массу ($\mu $) вещества электролита, получим:

$\nu =\frac{1}{Z}\frac{q}{F}=\frac{It}{ZF}\left(2.3\right),$

где $q=It.$ Количество атомов осадка найдем, используя формулу:

$N=\nu \cdot N_A=\frac{It}{ZF}N_A.$

Ответ: $\nu =\frac{It}{ZF},\ N=\frac{It}{ZF}N_A.$

Окислительно-восстановительный процесс, принудительно протекающий под действием электрического тока, называется электролизом.

Электролиз проводят в электролизере, заполненном электролитом, в который погружены электроды, подсоединенные к внешнему источнику тока.

Электрод, подсоединенный к отрицательному полюсу внешнего источника тока, называется катодом . На катоде протекают процессы восстановления частиц электролита. Электрод, подсоединенный к положительному полюсу источника тока, называется анодом . На аноде протекают процессы окисления частиц электролита или материала электрода.

Анодные процессы зависят от природы электролита и материала анода. В связи с этим различают электролиз с инертным и растворимым анодом.

Инертным называется анод, материал которого не окисляется в ходе электролиза. К инертным электродам относятся, например, графитовый (угольный) и платиновый.

Растворимым называется анод, материал которого может окисляться в ходе электролиза. Большинство металлических электродов являются растворимыми.

В качестве электролита могут быть использованы растворы или расплавы. В растворе или расплаве электролита ионы находятся в хаотичном движении. Под действием электрического тока ионы приобретают направленное движение: катионы движутся к катоду, а анионы - к аноду и, соответственно, на электродах они могут разряжаться.

При электролизе расплавов с инертными электродами на катоде возможно восстановление только катионов металла, а на аноде − окисление анионов.

При электролизе водных растворов на катоде кроме катионов металла, могут восстанавливаться молекулы воды, а в кислых растворах - ионы водорода Н + . Таким образом, на катоде возможны следующие конкурирующие реакции:

(-) К: Ме n + + n ē → Me

2H 2 O + 2 ē → H 2 + 2 OH -

2Н + + 2 ē → Н 2

На катоде в первую очередь протекает реакция с наибольшим значением электродного потенциала.

При электролизе водных растворов с растворимым анодом , кроме окисления анионов, возможны реакции окисления самого электрода, молекул воды и в щелочных растворах гидроксид-ионов (ОН -):

(+) А: Me - n ē → Ме n +

окисление аниона Е 0

2H 2 O – 4 ē O 2 + 4 H +

4OH – - 4 ē = O 2 +2H 2 O

На аноде в первую очередь протекает реакция с наименьшим значением электродного потенциала.

Для электродных реакций приведены равновесные потенциалы в отсутствии электрического тока.

Электролиз - процесс неравновесный, поэтому потенциалы электродных реакций под током отличаются от своих равновесных значений. Смещение потенциала электрода от его равновесного значения под влиянием внешнего тока называется электродной поляризацией. Величина поляризации называется перенапряжением. На величину перенапряжения влияют многие факторы: природа материала электрода, плотность тока, температура, рН-среды и др.

Перенапряжения катодного выделения металлов сравнительно невелики.

С высоким перенапряжением, как правило, протекает процесс образования газов, таких как водород и кислород. Минимальное перенапряжение водорода на катоде в кислых растворах наблюдается на Pt (=0,1 В), а максимальное −на свинце, цинке, кадмии и ртути. Перенапряжение изменяется при замене кислых растворов на щелочные. Например, на платине в щелочной среде перенапряжение водорода =0,31 В (см. приложение).

Анодное выделение кислорода также связано с перенапряжением. Минимальное перенапряжение выделения кислорода наблюдается на Pt-электродах (=0,7 В), а максимальное − на цинке, ртути и свинце (см. приложение).

Из вышеизложенного следует, что при электролизе водных растворов:

1) на катоде восстанавливаются ионы металлов, электродные потенциалы которых больше потенциала восстановления воды (-0,82В). Ионы металлов, имеющие более отрицательные электродные потенциалы чем -0,82В, не восстанавливаются. К ним относятся ионы щелочных и щелочноземельных металлов и алюминия.

2) на инертном аноде с учетом перенапряжения кислорода протекает окисление тех анионов, потенциал которых меньше потенциала окисления воды (+1,23В). К таким анионам относятся, например, I - , Br - , Cl - , NO 2 - , ОН - . Анионы СO 3 2- , РO 4 3- , NO 3 - , F - - не окисляемы.

3) при электролизе с растворимым анодом, в нейтральных и кислых средах растворяются электроды из тех металлов, электродный потенциал которых меньше +1,23В, а в щелочных – меньше, чем +0,413В.

Суммарными продуктами процессов на катоде и аноде являются электронейтральные вещества.

Для осуществления процесса электролиза на электроды необходимо подать напряжение. Напряжение электролиза U эл-за – это разность потенциалов, необходимая для протекания реакций на катоде и аноде. Теоретическое напряжение электролиза (U эл-за, теор) без учета перенапряжения, омического падения напряжения в проводниках первого рода и в электролите

U эл-за, теор = E а – E к, (7)

где E а, E к - потенциалы анодных и катодных реакций.

Связь между количеством выделившегося при электролизе вещества и количеством прошедшего через электролит тока выражается двумя законами Фарадея.

I закон Фарадея. Количество вещества, образовавшегося на электроде при электролизе, прямо пропорционально количеству электричества, прошедшему через раствор (расплав) электролита:

где k – электрохимический эквивалент, г/Кл или г/А·ч; Q – количество электричества, Кулон, Q =It ; t -время, с; I -ток, А; F = 96500 Кл/моль (А·с/моль) = 26,8 А·ч/моль – постоянная Фарадея; Э- эквивалентная масса вещества, г/моль.

В электрохимических реакциях эквивалентная масса вещества определяется:

n –число электронов, участвующих в электродной реакции образования этого вещества.

II закон Фарадея. При прохождении через разные электролиты одного и того же количества электричества массы веществ, выделившихся на электродах, пропорциональны их эквивалентным массам:

где m 1 и m 2 – массы веществ 1 и 2, Э 1 и Э 2, г/моль – эквивалентные массы веществ 1 и 2.

На практике часто вследствие протекания конкурирующих окислительно-восстановительных процессов на электродах образуется меньше вещества, чем соответствует прошедшему через раствор электричеству.

Для характеристики потерь электричества при электролизе введено понятие «Выход по току». Выходом по току В т называется выраженное в процентах отношение количества фактически полученного продукта электролиза m факт. к теоретически рассчитанному m теор:

Пример 10 . Какие процессы будут протекать при электролизе водного раствора сульфата натрия с угольным анодом? Какие вещества будут выделяться на электродах, если угольный электрод заменить на медный?

Решение: В растворе сульфата натрия в электродных процессах могут участвовать ионы натрия Na + , SO 4 2- и молекулы воды. Угольные электроды относятся к инертным электродам.

На катоде возможны следующие процессы восстановления:

(-) К: Na + + ē → Na

2H 2 O + 2 ē → H 2 + 2 OH -

На катоде в первую очередь протекает реакция с наибольшим значением электродного потенциала. Поэтому на катоде будет происходить восстановление молекул воды, сопровождающееся выделением водорода и образованием в прикатодном пространстве гидроксид- ионов ОН - . Имеющиеся у катода ионы натрия Na + совместно с ионами ОН - будут образовывать раствор щелочи NaOH.

(+)А: 2 SO 4 2- - 2 ē → S 2 O 8 2-

2 H 2 O - 4 ē → 4H + + O 2 .

На аноде в первую очередь протекает реакция с наименьшим значением электродного потенциала. Поэтому на аноде будет протекать окисление молекул воды с выделением кислорода, а в прианодном пространстве накапливаются ионы Н + . Имеющиеся у анода ионы SO 4 2- с ионами Н + будут образовывать раствор серной кислоты H 2 SO 4 .

Суммарная реакция электролиза выражается уравнением:

2 Na 2 SO 4 + 6H 2 O = 2H 2 + 4 NaOH + O 2 + 2H 2 SO 4 .

катодные продукты анодные продукты

При замене угольного (инертного) анода на медный на аноде становится возможным протекание еще одной реакции окисления – растворение меди:

Cu – 2 ē → Cu 2+

Этот процесс характеризуется меньшим значением потенциала, чем остальные возможные анодные процессы. Поэтому при электролизе Na 2 SO 4 с медным анодом на аноде пройдет окисление меди, а в анодном пространстве будет накапливаться сульфат меди CuSO 4 . Cуммарная реакция электролиза выразится уравнением:

Na 2 SO 4 + 2H 2 O + Cu = H 2 + 2 NaOH + CuSO 4 .

катодные продукты анодный продукт

Пример 11 . Составьте уравнение процессов, протекающих при электролизе водного раствора хлорида никеля NiCl 2 с инертным анодом.

Решение: В растворе хлорида никеля в электродных процессах могут участвовать ионы никеля Ni 2+ , Cl - и молекулы воды. В качестве инертного анода можно использовать графитовый электрод.

На катоде возможны следующие реакции:

(-) К: Ni 2+ + 2 ē → Ni

2H 2 O + 2 ē → H 2 + 2 OH -

Потенциал первой реакции выше, поэтому на катоде протекает восстановление ионов никеля.

На аноде возможны следующие реакции:

(+) А: 2 Cl - - 2 ē → Cl 2

2H 2 O – 4 ē O 2 + 4 H + .

Согласно величинам стандартных электродных потенциалов на аноде

должен выделяться кислород. В действительности, из-за высокого перенапряжения кислорода на электроде выделяется хлор. Величина перенапряжения зависит от материала, из которого изготовлен электрод. Для графита перенапряжение кислорода составляет 1,17 В при плотности тока равной 1а/см 2 , что повышает потенциал окисления воды до 2,4 В.

Следовательно, электролиз раствора хлорида никеля протекает с образованием никеля и хлора:

Ni 2+ + 2Cl - = Ni + Cl 2 .

на катоде на аноде

Пример 12 . Вычислить массу вещества и объем газа, выделившихся на инертных электродах при электролизе водного раствора нитрата серебра AgNO 3 , если время электролиза составляет 25 мин, а сила тока 3 А.

Решение. При электролизе водного раствора AgNO 3 в случае с нерастворимым анодом (например, графитовый) на электродах протекают процессы:

(-) К: Ag + + ē → Ag ,

2H 2 O + 2 ē → H 2 + 2OH - .

Потенциал первой реакции выше, поэтому на катоде протекает восстановление ионов серебра.

(+) A: 2H 2 O – 4 ē O 2 + 4 H + ,

анион NO 3 - не окисляем.

Анодные и катодные процессы связаны между собой: восстановление на катоде идет в той мере, в какой идет окисление на аноде. Другими словами, число электронов в анодной и катодной реакции должно быть одинаково, следовательно, катодную реакцию необходимо домножить на 4.

Суммарное уравнение электролиза нитрата серебра AgNO 3:

4 AgNO 3 + 2H 2 O = 4Ag + O 2 + 4HNO 3

на катоде анодные продукты

На катоде выделяется серебро. Эквивалентная масса cеребра г/моль. Массу серебра рассчитываем по первому закону Фарадея:. На аноде образуется кислород. Эквивалентная масса кислородаг/моль. Массу кислорода рассчитываем по второму закону Фарадея:, откудаг или в литрахл.