Болезни Военный билет Призыв

Явление обратимости световых лучей. Закон обратимости световых лучей. Закон отражения света

УРОК 19/ III-2 Отражение света. Законы отражения.

Отражение света. Законы отражения света.

Объяснение нового материала

Благодаря отражению света все живые организмы могут видеть окружающие предметы. Черные поверхности мы видим благодаря тому, что эти поверхности поглощают все лучи, падающие на эту поверхность, красные – отражают красные лучи, а остальные – поглощают.

Ученых давно интересовало, как происходит отражение света и законы отражения были открыты очень давно.

Проведем следующий опыт. (Демонстрируется отражение от плоского зеркала с помощью оптического диска). В результате учащиеся должны прийти к выводы, что падающий луч, отражаясь от зеркала, возвращается в туже среду. Это явление и называется отражением света.

Опытным путем устанавливаются законы отражения света.

Первый закон отражения света

Луч света направляют на поверхность зеркала так, чтобы луч лежал в плоскости зеркала. Закрывая четверть диска, где проходит световой луч, листом плотной бумаги устанавливают, что отраженный луч является видимым только тогда, когда бумага плотно прижата к диску и плоскость бумаги совпадает с плоскостью диска. В результате наблюдения учащиеся должны убедиться, что падающий и отраженный лучи лежат в одной плоскости с перпендикуляром к поверхности отражения, проведенным из точки падения луча.

Второй закон отражения света

Передвигая источник света по краю диска, изменяют направление падающего луча. При этом каждый раз изменяется направление отраженного луча. Необходимо обратить внимание, что углы падения и отражения при этом всегда остаются равными. Для установления связи между падающим и отраженным лучами, учащиеся чертят в тетради схему опыта и записывают определения падающего луча, отраженного и их равенство между собой.

Обратимость световых лучей

Из законов отражения света вытекает, что падающий и отраженные лучи обратимы. Если в результате с опытов с оптическим диском световой луч будет падать вдоль прямой, по которой распространялся падающий луч, то после отражения он будет распространяться вдоль прямой по которой проходил падающий луч.

Это свойство называется обратимостью световых лучей.

Построение изображения в плоском зеркале

Зеркало – очень привычная вещь в жизни каждого человека. Наиболее часто используется в жизни человека плоское зеркало.

Зеркало, поверхность которого является плоской, называют плоским зеркалом.

Если перед плоским зеркалом разместить предмет, например, свечу, то кажется, что за зеркалом размещен такой же предмет, который мы называем изображением в плоском зеркале.

Известно, что человек видит светящуюся точку, если лучи, выходящие из нее, непосредственно попадаю в глаз. Лучи света (при отражении от зеркала, см. рис.) не попадают непосредственно в глаз человека. Вместе с тем,

12-Д. Отражение света

Проделаем опыт. На зеркало, лежащее на столе, поставим полуоткрытую книгу. Сверху направим пучок света так, чтобы он отражался от зеркала, но на книгу не попадал. В темноте мы увидим падающий и отраженный пучки света. Накроем теперь зеркало бумагой. В этом случае мы будем видеть падающий пучок, а отраженного пучка не будет. Выходит, что свет от бумаги не отражается?

Приглядимся к рисункам внимательнее. Заметьте, когда свет падает на зеркало, текст книги практически нельзя прочесть из-за слабого освещения. Но когда свет падает на лист бумаги, текст книги становится видимым гораздо отчетливее, особенно в нижней своей части. Следовательно, книга освещается сильнее. Но что же ее освещает?

При падении света на разные поверхности возможны два варианта. Первый. Пучок света, падающий на поверхность, отражается ею также в виде пучка. Такое отражение света называется зеркальным отражением. Второй. Пучок света, падающий на поверхность, отражается ею во всех направлениях. Такое отражение света называют рассеянным отражением или просто рассеянием света.

Зеркальное отражение возникает на очень гладких (полированных) поверхностях. Если же поверхность шероховата, то она обязательно будет рассеивть свет. Именно это мы и наблюдали, когда накрывали зеркало листом бумаги. Она отражала свет, рассеивая его по всевозможным направлениям, в том числе и на книгу, освещая ее.

ражающей поверхности в точке излома луча (угол b).

При отражении света всегда выполняются две закономерности: Первая. Луч падающий, луч отраженный и перпендикуляр к отражающей поверхности в точке излома луча всегда лежат в одной плоскости. Вторая. Угол падения равен углу отражения. Эти два утверждения выражают суть закона отражения света.

На левом рисунке лучи и перпендикуляр к зеркалу не лежат в одной плоскости. На правом рисунке угол отражения не равен углу падения. Поэтому такое отражение лучей нельзя получить на опыте.

Закон отражения является справедливым как для случая зеркального, так и для случая рассеянного отражения света. Обратимся еще раз к чертежам на предыдущей странице. Несмотря на кажущуюся беспорядочность в отражении лучей на правом чертеже, все они расположены так, что углы отражения равны углам падения. Взгляните, шероховатую поверхность правого чертежа мы "разрезали" на отдельные элементы и провели перпендикуляры в точках излома лучей:

Решение качественных задач

    Угол между падающим лучом и зеркальной поверхностью составляет 50 0 . Чему равен угол падения, угол отражения, угол между падающим и отраженными лучами. Во сколько раз угол между падающим и отраженными лучами больше, чем угол падения? (Ответ: 40 0 , 40 0 , 80 0 , в два раза).

    Чему равен угол падения, если световой луч падает перпендикулярно к зеркальной поверхности? (Ответ: 0 0).

    Угол падения увеличился на 20 0 . На сколько увеличится угол между падающи и отраженными лучами? (Ответ: 40 0).

    Угал падения вдвое больше, чем угол между отраженным лучом и зеркальном поверхностью. Чему равен угол падения? (Ответ: 30 0).

ПРОВЕРЬ СЕБЯ - Закрепление нового материала

    Сформулируйте закон отражения света.

    В чем заключается закон явления отражения света?

    Какой угол называется углом падения; отражения?

    Какое свойство падающего и отраженного луча называют обратимым?

    Почему иногда днем окна домов нам кажутся темными, а иногда – светлыми?

    Какими темными или светлыми мы видим дорогу и лужи на ней, если ночью при отсутствии внешнего освещения включить фары автомобиля?

ОТРАЖЕНИЕ СВЕТА. (записать в тетрадь)

1.Что происходит при падении световых лучей при попадании на границу раздела двух сред?

Попадая на границу раздела двух сред свет частично возвращается в первую среду (т.е. отражается) и частично проникает во вторую среду, меняя при этом направление своего распространения (т.е. преломляется).

2.Что называют отражением?

Явление, при котором свет, попадая на границу раздела двух сред, возвращается в первую среду, называется отражением.

  -это угол падения, т.е. угол между падающим лучом и перпендикуляром, восстановленным в точке падения луча.

 -это угол отражения, т.е. угол между перпендикуляром, восстановленным в точке падения луча и отраженным лучом.

Графическое изображение явления

отражения:

перпендикуляр

падающий отраженный

луч   луч

граница раздела двух сред

3.Законы отражения.

1.Падающий и отраженный лучи лежат в

одной плоскости с перпендикуляром, проведенным в точку падения луча.

Этот закон позволяет строить изображения

при помощи световых лучей в плоскости листа.

2.Угол падения луча равен углу

отражения . Этот закон указывает на то, что

световые лучи обратимы.

4.Виды отражения.

1.зеркальное - т.е. отражение от поверхности, размеры шероховатостей которой меньше длины световой волны. Если свет отражается от зеркальной поверхности, то лучи, падающие параллельно, остаются параллельными и при отражении.

Зеркальных поверхностей очень много – тихая водная гладь озера, стекло, полированная мебель и т. п. Самые известные и широко применяемые зеркальные поверхности – это зеркала.

2. диффузное (рассеянное) отражение, т.е.

отражение от поверхности, размеры

шероховатостей у которой сравнимы с длиной волны источника света. Если свет отражается от шероховатой поверхности, то лучи, падающие параллельно, при отражении уже

не будут параллельными.

Диффузное отражение заставляет каждый участок поверхности действовать подобно точечному излучателю, мы можем видеть освещаемые тела под любыми углами. Кроме этого, отраженный свет даёт нам информацию о поверхности тела. нам информацию о поверхности тела.

5.Построение изображения светящейся точки в плоском зеркале .

Плоское зеркало – это плоская отражающая поверхность . Для построения изображения светящейся точки в плоском зеркале из множества лучей, исходящих от неё, обычно выделяют только два.

1)Это луч, перпендикулярный зеркалу (он отразится в обратном направлении), и

2) луч, падающий под углом (он отразится под таким же углом).

Продолжения отраженных лучей (изображенных пунктиром) пересекаются в точке S | , которая является изображением светящейся точки S.

Поэтому для нахождения изображения источника света S достаточно опустить на зеркало или на его продолжение из точки, где находится источник света, перпендикуляр и продолжить его на расстояние OS = OS 1 за зеркало.

6.Построение изображения предмета в плоском зеркале

Для построения изображения предметы в плоском зеркале применяют те же приёмы, только строят изображения крайних точек предмета(см рис).

Нужно помнить, что плоское зеркало даёт мнимое, прямое и равное по размеру изображение, которое расположено на таком же расстоянии от зеркала, что и предмет, т. е. изображение симметрично самому предмету.

Примечание: Если два плоских зеркала расположены под углом друг к другу, то количество

изображений предметов (обозначим их N) зависит от угла между ними. Количество

изображений находят по формуле:

N = , где φ - угол между зеркалами.

7.Типичная задача на построение и анализ изображения предмета в плоском зеркале.

Перечерти рисунок и ответь на следующие вопросы:

1. На каком расстоянии расположен

глаз? Масштаб: в 1 клеточке – 10 см.

2.Построй изображение предмета

(стрелки) в плоском зеркале.

3.Покажи зону видения в этом зеркале.

4.Какова видимая часть изображения? Для этого проведи луч через глаз наблюдателя и край зеркала. Зарисуй красным цветом видимую часть.

5. Где нужно расположить глаз наблюдателя, чтобы изображение стрелки было видно полностью?

ДОМАШНЕЕ ЗАДАНИЕ

ОТРАЖЕНИЕ СВЕТА

(выполнить задания:

с 1 по 16 записать только ответ,

В предыдущих параграфах мы изучили явление отражения света. Познакомимся теперь со вторым явлением, при котором лучи меняют направление своего распространения. Это явление – преломление света на границе раздела двух сред. Взгляните на чертежи с лучами и аквариумом в § 14-б. Луч, выходящий из лазера, был прямолинейным, но, дойдя до стеклянной стенки аквариума, луч изменил направление – преломился.

Преломлением света называют изменение направления луча на границе раздела двух сред, при котором свет переходит во вторую среду (сравните с отражением). Например, на рисунке мы изобразили примеры преломления светового луча на границах воздуха и воды, воздуха и стекла, воды и стекла.

Из сравнения левых чертежей следует, что пара сред «воздух-стекло» преломляет свет сильнее, чем пара сред «воздух-вода». Из сравнения правых чертежей видно, что при переходе из воздуха в стекло свет преломляется сильнее, чем при переходе из воды в стекло. То есть, пары сред, прозрачные для оптических излучений, обладают различной преломляющей способностью, характеризующейся относительным показателем преломления. Он вычисляется по формуле, указанной на следующей странице, поэтому может быть измерен экспериментально. Если в качестве первой среды выбран вакуум, то получаются значения:

Вакуум 1 Вода 1,33
Воздух 1,0003 Глицерин 1,47
Лёд 1,31 Стекло 1,5 – 2,0

Эти значения измерены при 20 °С для жёлтого света. При другой температуре или другом цвете света показатели будут иными (см. § 14-з). При качественном рассмотрении таблицы отметим: чем больше показатель преломления отличается от единицы, тем больше угол, на который отклоняется луч, переходя из вакуума в среду. Поскольку показатель преломления воздуха почти не отличается от единицы, влияние воздуха на распространение света практически незаметно.

  1. К данному моменту, знакомясь с оптикой, ...
  2. Что общего у явлений отражения и преломления света?
  3. Каково полное название изучаемого нами явления?
  4. Схематичные рисунки с лучами и аквариумом в § 14-б позволяют сделать наблюдение:
  5. О преломлении можно говорить, только если...
  6. В левой части рисунка проиллюстрировано явление...
  7. На среднем рисунке преломлённый луч отклоняется сильнее, чем на левом. Какой мы делаем вывод?
  8. На правом рисунке преломлённый луч отклоняется меньше, чем на среднем. Чем это обусловлено?
  9. Проводя опыты или сравнивая чертежи, мы приходим к обобщению: ...
  10. Для характеристики преломляющей способности пары сред пользуются...
  11. Показатель преломления может быть измерен только косвенно, так как...
  12. Какой вывод мы делаем, сравнивая табличные значения показателей преломления?
  13. Мы утверждаем, что воздух почти не оказывает влияния на преломление света, ...

Все законы геометрической оптики следуют из закона сохранения энергии. Все эти законы не являются независимыми друг от друга.

4.3.1. Закон независимого распространения лучей

Если через точку пространства проходит несколько лучей, то каждый луч ведет себя так, как если бы других лучей не было

Это справедливо для линейной оптики, где показатель преломления не зависит от амплитуды и интенсивности проходящего света.

4.3.2. Закон обратимости

Траектория и длина хода лучей не зависят от направления распространения.

То есть, если луч, который распространяется от точки до точки , пустить в обратном ходе (от к ), то он будет иметь такую же траекторию, как и в прямом.

4.3.3. Закон прямолинейного распространения

В однородной среде лучи - прямые линии (см. параграф 4.2.1).

4.3.4. Закон преломления и отражения

Закон отражения и преломления подробно рассматривается в Главе 3. В рамках геометрической оптики формулировки законов преломления и отражения сохраняются.

4.3.5. Принцип таутохронизма


Рис.4.3.1. Принцип таутохронизма.

Рассмотрим распространение света, как распространение волновых фронтов (рис.4.3.1).

Оптическая длина любого луча между двумя волновыми фронтами одна и та же:

(4.3.1)

Волновые фронты - поверхности, которые оптически параллельны друг другу. Это справедливо и для распространения волновых фронтов в неоднородных средах

4.3.6. Принцип Ферма

Пусть имеются две точки и , расположенные, возможно, в различных средах. Эти точки можно соединить между собой различными линиями. Среди этих линий будет только одна, которая будет являться оптическим лучом, который распространяется в соответствии с законами геометрической оптики (рис.4.3.2).

Рис.4.3.2. Принцип Ферма.

Принцип Ферма:

Оптическая длина луча между двумя точками минимальна по сравнению со всеми другими линиями, соединяющими эти две точки:

(4.3.2)

Существует более полная формулировка:

Оптическая длина луча между двумя точками является стационарной по отношению к смещению этой линии.

Луч - кратчайшее расстояние между двумя точками. Если линия, вдоль которой мы измеряем расстояние между двумя точками, отличается от луча на величину 1-го порядка малости, то оптическая длина этой линии отличается от оптической длины луча на величину 2-го порядка малости.

Если оптическую длину луча, соединяющего две точки, поделить на скорость света, то получим время, необходимое на преодоление расстояния между двумя точками:

Еще одна формулировка принципа Ферма:

Луч, соединяющий две точки, идет по такому пути, который требует наименьшего времени (по самому быстрому пути).

Из этого принципа могут быть выведены законы преломления, отражения и т.д.

4.3.7 Закон Малюса-Дюпена

Нормальная конгруэнция сохраняет свойства нормальной конгруэнции в процессе прохождения через различные среды.

4.3.8 Инварианты

Инварианты (от слова неизменный) - это соотношения, выражения, которые сохраняют свой вид при изменении каких-либо условий, например, при прохождении света через различные среды или системы.

Интегральный инвариант Лагранжа

Пусть имеется некоторая нормальная конгруэнция (пучок лучей), и две произвольные точки в пространстве и (рис.4.3.4). Соединим эти две точки произвольной линией и найдем криволинейный интеграл.

(4.3.4)
Криволинейный интеграл (4.3.3), взятый между двумя любыми точками и не зависит от пути интегрирования.

Рис.4.3.3. Интегральный инвариант Лагранжа.

Дифференциальный инвариант Лагранжа

Луч в пространстве полностью описывается радиус-вектором , который содержит три линейные координаты , и оптическим вектором , который содержит три угловые координаты . Всего, таким образом, имеется 6 параметров для определения некоторого луча в пространстве. Однако из этих 6 параметров только 4 являются независимыми, так как можно получить два уравнения, которые связывают параметры луча друг с другом.

Первое уравнение определяется длину оптического вектора:

Где - показатель преломления среды.

Второе уравнение вытекает из условия ортогональности векторов и :

Из выражений (4.3.5) и (4.3.6), воспользовавшись аналитической геометрией, можно вывести следующее соотношение:

(4.3.7)
где и - это пара любых из 6-ти параметров луча.

Дифференциальный инвариант Лагранжа:
Величина сохраняет свое значение для данного луча при распространении пучка лучей через любую совокупность оптических сред.

Геометрический фактор остается инвариантным при распространении лучевой трубки через любую последовательность различных сред (рис.4.3.5).

Инвариант Штраубеля выражает закон сохранения энергии, так как он показывает неизменность лучистого потока.

Из определения яркости можно получить следующее равенство:

(4.3.9) где - приведенная яркость, которая инвариантна, как уже было сказано в главе 2.

«Дифракция света» - - нарушение закона прямолинейного распространения волн. Волновая оптика Дифракция света. Таким образом, волна после прохождения через щель и расширяется и деформируется. Дифракция на круглом отверстии. Спасибо за внимание! Дифракционные решетки используются для разложения электромагнитного излучения в спектр.

«Дисперсия света» - Описанный опыт является, по сути дела, древним. Если встать лицом к радуге, то Солнце окажется сзади. Радуга. Разноцветная полоска есть солнечный спектр. Открытие явления дисперсии. Представления о при­чинах возникновения цветов до Ньютона. Рассмотрим преломление луча в приз­ме. Дисперсия света. Радуга глазами внимательного наблюдателя.

«Законы света» - Задачи: Зеркало. Световые законы: Свет - видимое излучение. Цель: Презентацию подготовила Гильденбрандт Лилия Викторовна. Искусственное. Преломление света. Закон отражения света. "Информационные технологии в. Работа выполнена в рамках проекта.

«Отражение света» - Первый закон геометрической оптики гласит, что свет в однородной среде распространяется прямолинейно. Так с помощью световых лучей можно изобразить направление распространения световой энергии. Отражение света. 5.Законы отражения. Второй закон геометрической оптики гласит: угол падения равен углу отражения, т.е. ?? = ??.

«Дифракция и интерференция света» - От разности хода: ?мах = 2k . ?/2 – интерференционный максимум?мin = (2k+1) . ?/2 –интерференционный минимум. Сложение волн волн на поверхности жидкости. ?мin = (2k+1) . ?/2. ?мах = 2k . ?/2. Когерентные волны. Наблюдение интерференции в тонких плёнках. Результат сложения волн зависит. Интерференция света.

«Распространение света» - D - расстояние от предмета до линзы. Величины. Преломление света. Использовать при решении задач. Прямолинейное распространение света. Тестовые задания. Астрономический метод. Оптические приборы. Полное отражение. Фотоаппарат (1837) Проекционный аппарат Микроскоп Телескоп. Фотоаппарат. Дальше. Собирающей линзе (а) Рассеивающей линзе (б).