Болезни Военный билет Призыв

Ядра дейтерия и трития. Изотопы водорода: свойства, характеристика и применение. Тритий в природе

Ри делении тяжелых ядер в реакторе выделяется энергия. Где же источник этой энергии? Почему она освобож­дается в тот момент, когда ядро раскалывается на две части?

Ядро урана-235 состоит из 92 протонов и 143 нейтронов. Это не простая механическая смесь элементарных частиц, подобно, скажем, смеси железных опилок и порошка серы. Частицы, составляющие ядро атома, очень прочно связаны друг с другом так называемыми ядерными силами. Эта связь частиц в ядре во много миллионов раз крепче, чем связь, существующая между атомами в молекуле любого химического соединения. Прокалите те же железные опил­ки, смешанные с серой, получится химическое соединение - сернистое железо. Чтобы разрушить все молекулы серни­стого железа до атомов железа и серы, содержащиеся в од­ном грамме, необходима энергия в количестве примерно одной большой калории. А чтобы разрушить до элементар­ных частиц все ядра, находящиеся в кусочке урана весом один грамм, понадобилась бы энергия порядка 170 мил­лионов больших калорий. Такое количество энергии вы­деляется при сжигании почти 20 тонн бензина.

Нейтроны и протоны в ядрах различных химических элементов связаны друг с другом по-разному: в одних прочнее, в других - слабее. При делении ядра урана, как уже говорилось, образуются два «осколка», представляю­щие собой ядра атомов середины периодической таблицы элементов Менделеева, например ядра атомов бария и крип­тона. Протоны и нейтроны в этих ядрах связаны между собой более прочно, чем они были связаны в ядрах урана или других тяжелых элементах конца таблицы Менделеева. Для разрушения одного ядра бария и одного ядра криптона до элементарных частиц (на протоны и нейтроны) потребова­лось бы энергии на десять процентов больше, чем для раз­рушения одного ядра урана.

Если для расщепления ядра на отдельные элементарные частицы необходима некоторая определенная энергия, то при образовании ядер из этих частиц, согласно закону сохранения энергии, должна выделяться такая же энергия.

Расчленим мысленно процесс деления ядра урана на две стадии. Первая стадия - разрушение ядра урана на про­тоны и нейтроны; при этом затрачивается энергия в ко­личестве 170 миллионов больших калорий на один грамм чистого урана. Вторая стадия - образование ядер бария и криптона из элементарных частиц, образовавшихся при разрушении ядер урана. Этот процесс сопровождается вы­делением энергии в количестве уже около 190 миллионов больших калорий. В результате проведения обеих стадий реакции получается выигрыш энергии в 20 миллионов больших калорий. Для получения такого количества энер­гии надо сжечь примерно две тонны бензина. Таким обра­зом, «теплотворная способность» у урана при его делении оказывается в два миллиона раз выше, чем при горении бензина.

Поясним наши рассуждения следующим примером. До­пустим, вы стоите на склоне горы и из колодца глубиной два метра черпаете воду. На поднятие каждого килограм­ма воды вы затрачиваете работу в два килограмм-метра. За­тем вы эту воду льете по желобу на колесо турбины, распо­ложенной на пять метров ниже. Если пренебречь всевоз­можного рода потерями энергии, то турбина совершит ра­боту, равную уже пяти килограмм-метрам. В результате мы получаем работы на три килограмм-метра больше, чем за­трачиваем.

При делении ядер тяжелых элементов они не распада­ются до отдельных элементарных частиц, они только раска­лываются на две части - осколки. Внутри полученных осколков мгновенно происходит перегруппировка элемен­тарных частиц; они более плотно «упаковываются», и этот процесс сопровождается выделением энергии, причем вы­деляется энергии больше, чем ее расходуется на разруше­ние тяжелого ядра.

Расчеты показывают, что при делении тяжелых ядер выделяется только часть энергии, запасенной в ядре. Значи­тельно больше энергии получается, если те же самые ядра ба­рия и криптона синтезировать (составлять) непосредственно из протонов и нейтронов. Тогда не придется затрачивать энер­гию в 170 миллионов больших калорий на разрушение тяже­лых ядер. В примере с водой это соответствовало бы тому, что не надо вытягивать ее из колодца наверх, а пользовать­ся бассейном, вода в котором находится на уровне верхнего края желоба.

Но для синтеза атомных ядер из нейтронов и протонов необходимо прежде всего иметь в своем распоряжении эти элементарные частицы. В готовом виде в природе их нет. Их можно получить только искусственным путем. Однако выделенные в свободном состоянии нейтроны и протоны нельзя запасать впрок. Протоны - это атомы протия, ли­шенные единственного электрона, в обычных условиях они долго существовать не могут. Протоны найдут для себя по­терянные электроны и вновь превратятся в электрически нейтральные атомы протия.

Нейтроны легко проникают внутрь ядер атомов и захва­тываются ими. Кроме того, нейтроны радиоактивны. Про­должительность жизни нейтронов в свободном состоянии - считанные минуты. Если нейтрону удалось избежать захва­та ядром, то он самопроизвольно превращается в протон и электрон. Откуда при радиоактивном превращении ней­трона появился электрон? Дело в том, что и нейтрон и протон по сути одна и та же элементарная частица, только находится она в разных энергетических состояниях. Чтобы подчеркнуть общность этих частиц, когда они составляют в совокупности какое-нибудь ядро атома, их даже называют одним именем - нуклоны. Так и говорят, например, ядро изотопа хлор-35 состоит из 35 нуклонов, не подразделяя их на протоны и нейтроны. Процесс перехода нейтрона в протон, это - самопроизвольный переход с более высокого энергетического уровня на более низкий; при этом и «рож­дается» электрон. Самопроизвольный же переход протона в нейтрон невозможен, это соответствовало бы переходу с низкого уровня энергии на более высокий, что противоре­чит закону сохранения энергии. Камень, лежащий на земле, никогда сам собою, без вмешательства внешней силы, не поднимется вверх. Если же протону сообщить извне необходимое количество энергии, он может превратиться в нейтрон, причем этот акт сопровожается появлением частички, подобной электрону, но положительно заряженной. Ее называют, как мы уже знаем, позитрон. Вот так и полу­чается, что хотя в нейтронах и нет электронов, а в прото­нах - позитронов, но при взаимном их превращении части­цы эти выделяются.

Итак, если удается получить в свободном виде нейтро­ны и протоны, то их необходимо тотчас же пустить для син­теза атомных ядер.

Разрушение тяжелых ядер типа урана на элементарные частицы (нуклоны) сопряжено с затратой большого коли­чества энергии. А нет ли в природе таких ядер, в которых протоны и нейтроны связаны не так прочно между собой, как в ядре урана? Если такие ядра имеются, то первая мыс­ленная стадия реакции - разрушение ядра - потребо­вала бы меньшей затраты энергии. Возвращаясь к приме­ру с колодцем и желобом,- надо искать по возможности мелкий колодец.

Здесь-то и выходит на сцену водород со своими тяжелыми изотопами и теперь уже не одним, а двумя.

Какую роль играл дейтерий в работе ядерного реактора? Его роль была вспомогательная - замедлять быстрые ней­троны до тепловых скоростей. Прямого участия в высвобож­дении ядерной энергии он не принимал. Во многих реакто­рах, как вы уже знаете, в качестве замедлителей нейтро­нов успешно используются углерод в виде графитовых бло­ков, или обыкновенная вода. Имеются реакторы и вовсе без замедлителя - это реакторы, работающие на быстрых нейтронах. В процессах же, с которыми мы теперь позна­комимся, изотопы водорода имеют решающее значение в освобождении ядерной энергии.

Кроме тяжелого изотопа водорода - дейтерия, имеет­ся еще сверхтяжелый изотоп - тритий; его обозначают буквой Т. В ядро трития кроме протона входит не один ней­трон, как у дейтерия, а два (рис. 13). В отличие от дейтерия

(белыми кружками обозначены протоны, черными - ней­троны, составляющие ядра).

Половина всех имеющихся в наличии атомов трития рас­падается за 12,2 года. Этот срок не велйк, но вполне до­статочный, чтобы всегда иметь тритий в запасе в нужном ко­личестве.

Тритий является более сложно устроенным изотопом водорода. По своим свойствам он отличается от протия силь­нее, чем дейтерий.

Как и первые два изотопа, тритий может быть сконденси­рован в жидкость. Температура кипения жидкого трития уже на 4,65 градуса выше температуры кипения протия. Теплота испарения у него еще выше, чем у дейтерия. При соединении трития с кислородом образуется вода, которую называют тритиевой или сверхтяжелой водой. Подобно дей­терию тритий в сочетании с протаем, дейтерием и изотопа­ми кислорода дает воду различного изотопного состава. К тем девяти разновидностям воды, которые дал дейтерий, теперь добавляется столько же новых, в состав молекул которых входят атомы трития. Формулы этих молекул можно записать так:

ТБО16, ТОО17 и ТОО18.

Рассуждая таким же образом, как и в случае деления ядер урана (см. стр. 50), мысленно расчленим процесс на две стадии: первая-разрушение ядер дейтерия и трития до отдельных нуклонов, вторая - синтез из них ядер гелия. Нейтроны и протоны связаны между собой в ядрах дейтерия и трития значительно менее прочно, чем в ядрах гелия. Поэтому на разрушение ядер двух изотопов водорода сум­марно затрачивается меньше энергии, чем ее выделяется при синтезе одного ядра гелия из полученных элементар­ных частиц. Расчет показывает, что при образовании все­го лишь одного грамма атомов изотопа гелия-4 из ядер дейтерия и трития высвобождается энергии около ста миллионов больших калорий. Это в пять раз больше энергии, выделяемой при делении одного грамма урана под действием нейтронов.

Чтобы осуществить реакцию синтеза ядер гелия, надо привести к столкновению ядра дейтерия и трития друг с другом. В этом состоит основная трудность в проведении реакции синтеза ядер гелия. Ведь оба сталкивающихся ядра положительно заряжены, а электрически, одноименно за­ряженные тела отталкиваются друг от друга. Для преодо­ления электрических сил отталкивания надо к ядрам при­
ложить большие силы. Как же это сделать? Видимо, надо сообщить ядрам такую энергию движения, которой хватило бы на преодоление сил отталкивания, действующих между ними.

Средняя скорость беспорядочного движения частиц, а следовательно, и их энергия определяются температурой. Чем выше температура тела, тем больше средняя энергия частиц, тем быстрее они движутся. Значит, надо наши изо­топы нагреть и нагреть до очень высокой температуры, порядка миллиона градусов и даже выше. Только при та­ких температурах энергия частиц будет достаточной для преодоления электрических сил отталкивания между ядра­ми. Если вспомнить, что даже на поверхности Солнца тем­пература составляет всего лишь 6000 градусов, то трудность нагревания тел до миллиона градусов становится очевид­ной. Единственный известный в наше время источник, с помощью которого можно достигнуть таких температур, это взрыв атомной бомбы, то есть цепной процесс деления ядер урана или плутония. В зоне такого взрыва дейтерий и тритий будут существовать в форме плазмы - среды, состоящей из «голых» атомных ядер, лишенных электрон­ных оболочек. В таких условиях ядра изотопов водорода получают возможность при встрече соединяться в ядра ге­лия, осуществляется так называемая термоядерная реакция. Такой или подобный ему процесс и происходит при взрыве водородной бомбы.

Чтобы использовать энергию, выделяющуюся при тер­моядерных реакциях, для мирных целей, необходимо на­учиться управлять такими реакциями. Разрешением этой очень трудной задачи заняты теперь ученые многих стран мира. Большие исследования в этом направлении прово­дятся у нас, в Советском Союзе. Удачное решение этой за­дачи снимет с человечества заботу о поисках новых источ­ников энергии и приведет к невиданному расцвету науки и техники.

Всего два с половиной десятилетия отделяют нас от мо­мента открытия тяжелой воды и того времени, когда она получалась в количествах, умещающихся на дне малень­кой пробирки. За это короткое время тяжелая вода завое­вала себе прочное место в ядерной энергетике. Она оказа­лась лучшим замедлителем для атомных реакторов, работа­

Ющих на тепловых нейтронах. Однако это еще не самое главное. Основное значение тяжелая вода приобретает при осуществлении термоядерных реакций. Для этих реакций прежде всего необходимо иметь в достаточном количестве сырье, то есть дейтерий и тритий. Атомы дейтерия являют­ся составной частью молекул тяжелой воды. Атомы трития могут быть получены, как мы видели, из атомов дейтерия. Следовательно, тяжелая вода - вот тот источник, который поставляет необходимые элементы для осуществления реак­ции синтеза ядер гелия. Поэтому теперь получение тяжелой воды во многих странах мира ведется в крупных завод­ских масштабах.

Думаю, те дети, которые сегодня только учатся ползать, достигнут осмысленного возраста, чтобы восхищенно смотреть трансляции с первых запусков ИТЭР. А сегодня мы поговорим о топливе, что требуется для термоядерных реакторов, футуристическом будущем России и нашей лунной программе.

Какая связь? Давайте разбираться.

Вспомним

В термоядерном реакторе происходит реакция синтеза, т.е. легкие атомные ядра в результате нагрева разгоняются и соединяются в более тяжелое ядро атома. Во время соединения высвобождается море энергии, ради которой все и затевается.

В задаче конструирования термоядерного реактора есть множество сложностей, однако они решаются. Во Франции совместными силами нескольких стран, в том числе и России, уже приступили к строительству упомянутого ИТЭР. Но о нем я уже писал.

Одна из сложностей промышленного запуска термоядерного реактора - это топливо. Планируется использовать различные варианты.

Дейтерий + тритий

Это самый легкий вариант с точки зрения обеспечения протекания реакции. Дейтерий - это тяжелый водород. Добыть его не проблема. Только в воде его десятки миллиардов тонн. Берем воду. Получаем из нее тяжелую воду, а затем уже дейтерий. Его производство на земле в настоящий момент - десятки тысяч тонн в год. Мы это умеем.

С тритием сложнее. Тритий - это сверхтяжелый водород. Он образуется в высоких слоях атмосферы при соударении частиц космического излучения с ядрами атомов. Как вы понимаете, его там образуется совсем не много, и ловить его в высоте не представляется возможным.

Поэтому тритий производят на земле на атомных реакторах. Представляете, всего с 1955 года по 1999 год, например в США, было получено 225 кг.

Наши реакторы этим тоже умеют заниматься. Стоит один килограмм этой радости почти 2 миллиарда рублей. Отличные вложения? Да не тут-то было.

Проблема тут еще в том, что период полураспада трития -12 с небольшим лет. Это значит, что через 12 лет от 1 кг. трития останется всего полкило. Не самый лучший способ хранить свои деньги. Только на один запуск ИТЭР понадобится 3 кг. Для запуска термоядерного реактора следующего поколения DEMO - 4-10 кг. А в мире сейчас имеется всего 18 кг. этого добра.

Да, и спешу обрадовать: рабочий термоядерный реактор с электростанцией, вырабатывающей гигаватты электричества, будет потреблять на каждый этот самый гигаватт*год 56 кг (!) трития.

Где столько взять? Да, термоядерная энергетика недешевое занятие.

Изящное решение

Уже термоядерная установка DEMO должна будет вырабатывать тритий для своих потребностей самостоятельно и даже больше -для других реакторов. Собственно это одно из предназначений DEMO - доказать, что тритием реактор может обеспечивать себя сам и производить излишки. Как же так?

Во время термоядерного синтеза из дейтерия и трития получается ядро гелия и высокоэнергетический нейтрон. Этот самый нейтрон, мчась быстрее ветра, должен покинуть электромагнитную камеру и стукнуться о метровую оболочку из лития. При столкновении нейтрона и ядра лития и появится тритий.

Ну а с литием у нас проблем никогда не было. Кому интересно, как его добывают, может посмотреть .

Ну а если не будет?

Если тритий не получится вырабатывать в больших количествах, чем это нужно самой станции? Если объем выработки будет очень мал? Термоядерная станция - это ведь не волшебная палочка: одну построили и все, проблема энергопотребления решена. Их нужно будет строить много по всей планете.

Однако, не тритием единым сыты, можно вместо него использовать гелий-3.

Дейтерий + гелий-3

Крайне сложная, на пределе возможного реакция. А все из-за невообразимо высоких температур плазмы, которых нужно достичь. Но кто сказал, что будет легко?

На выходе, при соединении атомов дейтерия и Гелия 3 получается гелий 4, протон и 18,4 МэВ.

Вопрос с дейтерием мы разобрали. А вот с Гелием 3 проблемы. В природе он находится в мантии, он там еще от сотворения земли завалялся. В атмосферу попадает через вулканы и всякие разломы. Из мантии мы добывать пока ничего не умеем, а в атмосфере Гелия 3 настолько мало, что гиблая это задача. Приходится получать его искусственно, например, при распаде трития.

И тут тритий?! Да не, если бы это был единственный вариант, Гелий 3 не стоил бы 65 тыс. рублей за литр. Есть еще вариант бомбардировать литий альфа-частицами.

Но в любом случае, дело достаточно затратное и сложное, и это речь идет о килограммах, не говоря уж о промышленном производстве.

Где взять Гелий-3?

Наши сейчас запускают спутник для картографирования лунной поверхности.

Строится космический корабль для полета на орбиту Земли. Этим занимаются многие - и мы в том числе. Но наши инженеры, хоть и отстают по срокам запуска испытаний, однако планируют отправлять корабль подальше земной орбиты - на Луну! Планируется постройка лунной базы. Какого рожна нам нужно от этого куска камня?

Дело в том, что в лунном грунте накоплено 10 миллионов тонн Гелия-3 - такого нужного и полезного вещества.

А вы думали, мы на луну ради любопытства летим? Мы же не тщеславные американцы. Они замутили пиар-компанию на полете на Луну, а мы замутим Гелий-3 в промышленных масштабах. У нас даже план есть.

План

До 2025 года мы отправим к спутнику Земли 4 межпланетных станции. Их задачами будет разведка полярного реголита с водяным льдом, а также поиск в районе Южного полюса хорошего местечка для базы.

До начала 30-х годов на Луну отправятся пилотируемые экспедиции без высадки на поверхность. В 30-40-х годах будут произведены первые посадки на поверхность Луны и первые закладки будущей инфраструктуры базы.

К 2050 году базе быть!

А там мы увидим и первые автоматические машины, оставившие свои следы на лунном грунте. Роботы-бульдозеры будут формировать из сырья новые лунные горы, а обогатительный комбинат будет трудиться круглые сутки, вырабатывая Гелий-3. И только старты межпланетных грузовых кораблей будут нарушать молчаливую рутинность этих работ.

А на земле мы будем все так же ругать правительство в комментах, совсем не задумываясь о том, какой путь проходит электричество от термоядерного реактора до нашего гаджета.

Известны ли вам установки для приготовления талой воды, которые на 100 проц. нейтрализуют (или ближе к этому) содержания дейтерии и тритий? Еще меня заинтересовал установка Муратова, к сожалению его координаты на сайте у вас не указаны.

С ув.Сергей

Здравствуйте, Сергей!

Таких технологий глубокой 100%-ной очистки воды от дейтерия и трития пока не существуют. Существующие технологии очистки воды от тяжёлых изотопов позволяют очистить её на 70-90% от дейтерия и трития. Сама обычная питьевая вода только на 99,7% состоит из легкой воды, молекулы которой образованы легкими атомами водорода и кислорода. В виде примеси в любой природной воде присутствует и тяжёлая вода, которая в чистом виде является ядом для всего живого.

Тяжёлая вода (оксид дейтерия) - имеет ту же химическую формулу, что и обычная вода, но вместо атомов водорода содержит два тяжёлых изотопа водорода - атомы дейтерия. Формула тяжёловодородной воды обычно записывается как: D 2 O или 2 H 2 O. Внешне тяжёлая вода выглядит как обычная - бесцветная жидкость без вкуса и запаха, а вот по своим физико-химическим свойствам и негативному воздействию на организм тяжёлая вода сильно отличается от лёгкой воды.

Лёгкая вода – это вода, очищенная от тяжёлой воды. Изотоп водорода, дейтерий, отличающийся наличием в ядре «лишнего» нейтрона, может образовывать с кислородом молекулу воды. Такая вода, в молекуле которой атом водорода замещён атомом дейтерия, называется тяжёлой. Содержание дейтерия в различных природных водах очень неравномерно. Оно может меняться от 0,03 % (относительно общего количества атомов водорода) – это вода из Антарктического льда, - самая лёгкая природная вода – в ней дейтерия в 1,5 раза меньше, чем в морской воде. Талая снеговая и ледниковая воды в горах и некоторых других регионах Земли также содержат меньше тяжелой воды, чем та, которую мы обычно пьем.

В тонне речной воды содержится 15 г тяжелой воды из расчёта 0,015%. За 70 лет потребления 3 л питьевой воды в день через организм человека пройдет около 80 тонн воды, содержащей 10-12 кг дейтерия и значительное количество коррелирующих с ним изотопов водорода – трития 3 Н и кислорода 18 О.

Тритий – бета-радиоактивный элемент с периодом полураспада 12,26 лет. Он образуется под действием жёсткого радиои нейтронного излучения в реакторах. В земных условиях тритий зарождается в высоких слоях атмосферы, где идут природные ядерные реакции. Он является одним из продуктов бомбардировки атомов азота нейтронами космического излучения. Ежеминутно на каждый квадратный сантиметр земной поверхности падают 8-9 атомов трития.

В небольших количествах сверхтяжелая (тритиевая) вода попадает на Землю в составе осадков. Во всей гидросфере одновременно насчитывается лишь около 20 кг Т 2 0.

Тритиевая вода распределена неравномерно: в материковых водоемах ее больше, чем в океанах; в полярных океанских водах ее больше, чем в экваториальных. По своим свойствам сверхтяжелая вода еще заметнее отличается от обычной: кипит при 104°С, замерзает при 4...9°С, имеет плотность 1,33 г/см 3 .

Перечень изотопов водорода не кончается тритием. Искусственно получены и более тяжелые изотопы 4 H и 5 H,тоже радиоактивные.

Н 2 6 O, Н 2 17 O, Н 2 18 O, HD 16 O, HD 17 O, HD 18 O, D 2 16 O, D 2 17 O, D 2 18 O.

Таким образом, возможно существование молекул воды, в которых содержатся любые из пяти водородных изотопов в любом сочетании.

Этим не исчерпывается сложность изотопного состава воды. Существуют также изотопы кислорода. В периодической системе химических элементов Д.И. Менделеева значится всем известный кислород 16 O. Существуют еще два природных изотопа кислорода – 17 O и 18 O. В природных водах в среднем на каждые 10 тысяч атомов изотопа 16 O приходится 4 атома изотопа 17 O и 20 атомов изотопа 18 O.

По физическим свойствам тяжелокислородная вода 1 Н 2 18 О меньше отличается от обычной, чем тяжеловодородная. Она содержится в обычной питьевой воде в гораздо большей концентрации, чем тяжёлая вода - примерно 0,1%. Получают ее в основном перегонкой природной воды и используют используют для изотопных исследований обмена веществ.

Помимо природных, существуют и шесть искусственно созданных изотопов кислорода. Как и искусственные изотопы водорода, они недолговечны и радиоактивны. Из них: 13 O, 14 O и 15 O – легкие, 19 O и 20 O – тяжелые, а сверхтяжелый изотоп – 24 O получен в 1970 году.

Существование пяти водородных и девяти кислородных изотопов говорит о том, что изотопных разновидностей воды может быть 135. Наиболее распространены в природе 9 устойчивых разновидностей воды. Основную массу природной воды – свыше 99% – составляет протиевая вода – 1 H 2 16 O. Тяжелокислородных вод намного меньше: 1 H 2 18 O – десятые доли процента. 1 H 2 17 O – сотые доли от общего количества природных вод. Только миллионные доли процента составляет тяжелая вода D 2 O, зато в форме 1 HDO тяжелой воды в природных водах содержится уже заметное количество.

Еще реже, чем D 2 O, встречаются и девять радиоактивных естественных видов воды, содержащих тритий.

Классической водой следует считать протиевую воду 1 H 2 16 O в чистом виде, то есть без малейших примесей остальных 134 изотопных разновидностей. И хотя содержание протиевой воды в природе значительно превосходит содержание всех остальных вместе взятых видов, чистой 1 H 2 16 O в естественных условиях не существует. Во всем мире такую воду можно отыскать лишь в немногих специальных лабораториях. Ее получают очень сложным путем и хранят с величайшими предосторожностями. Для получения чистой 1 H 2 16 O ведут очень тонкую, многостадийную очистку природных вод или синтезируют воду из исходных элементов 1 H 2 и 16 O, которые предварительно тщательно очищают от изотопных примесей. Такую воду применяют в экспериментах и процессах, требующих исключительной чистоты химических реактивов.

Учёные считают, что гравитационное поле Земли – недостаточно сильно для удержания 1 Н, и наша планета постепенно теряет протий в результате его диссоциации в межпланетное пространство. Протий улетучивается быстрее тяжелого дейтерия. По мнению некоторых исследований, в течение геологического времени должно происходить накопление дейтерия в атмосфере и в поверхностных водах.

На нашей планете осуществляется гигантский испарительно-конденсационный процесс получения протиевой воды и обогащения его туч и облаков. В горах из них на одних склонах проливается преимущественно дейтерированая вода, на других – вода, обогащенная протием. В организме животных изотопный состав воды близок к составу дождевых вод в местах обитания. Для человека существенные коррективы в эту зависимость вносят овощи и фрукты, выращенные в других климато-географических условиях. Так, тропические фрукты, выращенные близко к экватору, имеют более низкие величины 2 Н и 18 О. Весь дейтерий в обычной воде находится в форме НDО, а не D 2 О. Этиловый спирт также хороший накопитель дейтерия.

Теперь понятно, почему так важно очищать воду от тяжёлых изотопов и, в первую очередь от дейтерия, трития и 18 О. Однако, эффективной очистки отработанной тяжёлой воды, загрязнённой тритием и другими тяжёлыми изотопами до последнего времени не существовало. Поэтому утилизация отработанной тяжёлой воды в атомной промышленности представляла серьёзную экологическую проблему, сдерживающую внедрение новых более эффективных типов ядерных реакторов.

Раннее на нашем сайте уже сообщалось о методах промышленного получения воды со сниженным содержанием дейтерия методам вакуумного замораживания-испарения и электролиза…..

Такое значительное количество тяжелых и радиоактивных изотопов водорода и кислорода в составе воды, являющейся матрицей жизни, уже к наступлению половой зрелости человека повреждает его гены, вызывает различные болезни, рак, инициирует старение организма.

Массивное повреждение генофонда радиоактивными и тяжелыми изотопами водорода и кислорода воды может вызвать вымирание видов растений, животных и человека. По мнению многих учёных, человеку даже грозит вымирание, если он не перейдет на употребление лёгкой воды, обедненной радиоактивными и тяжелыми изотопами 18 О и 2 Н. Именно поэтому в начале XXI-го века среди учёных раздались голоса о полном исключении тяжёлых изотопов дейтерия 2 Н и кислорода 18 О из потребляемой питьевой воды.

Удаление тяжёлых изотопов дейтерия и кислорода из обычной питьевой воды – задача непростая. Она достигается различными физико-химическими методами – изотопным обменом, электролизом, вакуумной заморозкой с последующим оттаиванием, ректификацией, центрифугированием. Об этих методах неоднократно говорилось на нашем сайте.

Первая промышленная установка для производства легкой воды с пониженным на 30-35% содержанием дейтерия и трития была создана украинскими учёными Г. Д. Бердышевым и И.Н. Варнавским совместно с институтом экспериментальной патологии, онкологии и радиобиологии им. Р. Кавецкого РАН Украины. В этой уникальной установке предусмотрено получение из исходной воды льда путем замораживания холодного пара, извлеченного из исходной воды, с последующим плавлением этого льда в среде инфракрасного и ультрафиолетового излучения, микронасыщения талой воды специальными газами и минералами.

Исследователи установили, что при температуре в пределах 0-1,8°С молекулы воды с дейтерием и тритием в отличие от протиевой воды находятся в метастабильно-твердом неактивном состоянии. Это свойство лежит в основе фракционного разделения легкой и тяжелой воды путем создания разряжения воздуха над поверхностью воды при этой температуре. Протиевая вода интенсивно испаряется, а затем улавливается при помощи морозильного устройства, превращаясь в снег и лед. Тяжелая же вода, находясь в неактивном твердом состоянии и имея значительно меньшее парциальное давление, остаётся в испарительной емкости исходной воды вместе с растворенными в воде солями тяжелых металлов, нефтепродуктами, моющими средствами и другими вредными и ядовитыми веществами.

Известна зависимость давления пара над открытой поверхностью (зеркалом) воды от температуры при нормальном давлении. Так, при 0°С давление пара составляет 4,6 мм рт.ст. С повышением температуры воды до +10 °С давление пара возрастает до 9,2 мм рт.ст., то есть в два раза, а при 100°С оно соответствует 760 мм.рт.ст. Подсчет показывает, что с увеличением температуры от 0°С до 40°С давление пара над зеркалом воды возрастает в 10 раз, а при 100°С - в 160 раз. Интенсивность испарения легкой и тяжелой воды коррелируется в зависимости от температуры и разряжения над поверхностью воды. Данные, полученные в лабораторных условиях, свидетельствуют о существенном влиянии температуры воды перед ее испарением на содержание дейтерия в талой воде, полученной из замороженного холодного пара.

Известно, что вода из снега или льда с пониженным содержанием дейтерия обладает биологически активными свойствами, благотворно влияющими на все живое - на растения, животных и человека. Биологическую активность талой воды можно еще заметно повысить при сочетании определенных воздействий на нее, например, потоком ультрафиолетовых лучей. В предлагаемом решении осуществляется ультрафиолетовое и инфракрасное облучение льда в процессе его таяния. Это позволяет получить талую воду по свойствам аналогичным талой воде, например, при солнечном облучении льда на вершинах гор.

На рисунке ниже показано изображение установки ВИН-4 "Надія" для получения целебной талой питьевой воды с пониженным содержанием дейтерия и трития. В корпусе 1 установлена испарительная емкость 2 для исходной воды с закрепленными на ней устройством для нагрева 3 и устройством для охлаждения воды 4. Здесь же имеется вентиль 5 для подачи воды в испаритель и вентиль б для слива отработанного остатка, обогащенного тяжелыми изотопами водорода.

Схематическое изображение установки ВИН-4 “Надія” в двух проекции: вдоль - фиг.1 и поперек - фиг.2.

В корпусе 1 имеется устройство 7 для конденсации и замораживания холодного пара в виде набора тонкостенных трубчатых элементов, которые соединены с насосом для прокачивания через них хладагента. Устройство 7 совместно с источниками ультрафиолетового 8 и инфракрасного 9 излучений размещены над емкостью 10 для сбора талой воды. Внутренняя полость корпуса 1 патрубком 11 соединена с источником разряжения воздуха, например, с форвакуумным насосом типа ВН-1МГ. Кроме того, корпус 1 снабжен устройством 12 для подачи в его внутреннюю полость очищенного воздуха или смеси специальных газов.

Установка ВИН-4 оборудована системой терморегулирования в полости испарительной емкости 2 для контроля заданной температуры процесса испарения исходной обрабатываемой воды. В корпусе 1 имеются иллюминаторы для наблюдения за процессами испарения, замораживания холодного пара и таяния льда -13 и 14. Емкость 10 снабжена вентилями 15 для слива талой воды и патрубком 16 для соединения с блоком формирования структуры и свойств талой воды 17. Блок 17 включает внутреннюю коническую емкость 18 с минералами. На выходе емкости 19 установлен фильтр 20 и сливной вентиль 21.

Принцип работы установки таков. Из водопровода испарительную емкость 2 наполняют водой и через устройство 4 прокачивают хладагент. При достижении заданной температуры, не превышающей +10°С, процесс охлаждения воды прекращают. Герметизируют корпус 1 и через патрубок П начинают откачивать воздух -создавать разряжение во внутреннем объеме корпуса установки. Создание разряжения сопровождается сначала интенсивным выделением из всего объема исходной воды растворенных в ней газов и их удаление, а затем интенсивным парообразованием вплоть до кипения воды, за которым наблюдают через иллюминаторы 13 и 14. Образующийся холодный пар конденсируется и намерзает на поверхности фигурных элементов морозильника 7. Когда толщина льда достигает заранее заданной величины, процесс испарения прекращают. Выключают форвакуумный насос, включают источники ультрафиолетового 8 и инфракрасного 9 излучений, а через устройство 12 вводят в полость корпуса 1 очищенный воздух или специально подготовленный состав активированных газов; доводят давление в корпусе 1 до уровня или выше атмосферного. Остаток воды емкости 2, обогащенный тяжелыми изотопами, через вентиль 6 сливают в отдельные емкости или выливают вон. По мере облучения и таяния льда талая вода поступает в емкость 10, затем в блок 17 формирования структуры и свойств талой воды. Проходя через минералы внутренней 18 и наружной 19 конических емкостей и далее через фильтр 20, талая вода завершает свой путь, приобретая особые живительные и целебные свойства.

Аналогичное устройство по получению биологически питьевой активной воды с пониженным содержанием дейтерия сконструировали в 2000 году российские учёные Синяк Ю.Е.; Гайдадымов В.Б. и Григорьев А.И. из Института медико-биологических проблем. Конденсат атмосферной влаги или дистиллят разлагают в электролизере с твердым ионообменным электролитом. Полученные электролизные газы преобразуют воду и конденсируют. Электролиз осуществляют при температуре 60-80 o С. Электролизный водород подвергают изотопному обмену с парами воды в водороде на катализаторе на носителе из активного угля, содержащем 4-10% фторопласта и 2-4% палладия или платины. Из полученных электролизных водорода и кислорода удаляют пары воды пропусканием их через ионообменные мембраны, преобразуют очищенные от дейтерия электролизные газы в воду, проводят доочистку последней и последующую ее минерализацию контактом с кальций-магнийсодержащими карбонатными материалами, преимущественно доломитом.

В реакторе изотопного обмена D 2 /H 2 O используют активный уголь ПАУ-СВ, промотированный 2-4% палладия и 4-10% фторопласта при температуре электролиза. Через катализатор пропускают электролизный водород, изотопный обмен D 2 /H 2 O происходит с парами воды, находящимися в водороде, образующимися при температуре проведения электролиза (60-80 o С). Это позволяет повысить степень изотопного обмена D 2 /H 2 O, который повышается при снижении температуры изотопного обмена и исключить дополнительные затраты энергии на парообразование воды.

Устройство содержит электролизер с твердым ионообменным электролитом, зажатым между пористым анодом и катодом, преобразователь электролизных газов в воду, конденсатор последних и сборник бездейтериевой воды. Кроме того, устройство дополнительно снабжено осушителем кислорода, реактором изотопного обмена D 2 /H 2 O и кондиционером для воды. Внешние стенки реактора и осушителя образованы из ионообменных мембран, кроме того, осушитель кислорода содержит ионообменный катионит, а кондиционер для воды образован из фильтра с зажатыми смешанными слоями ионообменных материалов, адсорбента и минерализатора, содержащего гранулированные кальций-магний карбонатные материалы. При этом получается питьевая вода, глубоко обеднённая дейтерием, обладающая большой биологической активностью.

Работает эта сконструированная российскими учёными установка так. Очищенный конденсат атмосферной влаги или дистиллят поступает в анодную камеру электролизера с твердым ионообменным электролитом, где осуществляют процесс электролиза при температуре 60-80 o С. Образующиеся в результате электролиза обедненные дейтерием кислород и водород с парами воды подают в осушитель кислорода и в реактор изотопного обмена, внешние боковые стенки которых образованы из ионообменных мембран. Гидратная вода ионов водорода переносилась через твердый катионообменный электролит и под давлением она поступает в сборник католита. В каталитическом реакторе изотопного обмена, заполненным активным углем, содержащим 4-10% фторопласта и 2-4% палладия или платины по массе, проходит реакция изотопного обмена D 2 /H 2 O.

После изотопного обмена водород осушают от паров воды, которые сорбируются и удаляются через ионообменники реактора, размещенные на его внешних боковых стенках. Осушенные газы поступают в преобразователь электролизных газов, в каталитическую горелку. Пламя факела направляют в конденсатор, охлаждаемый в протоке водопроводной водой, где пары воды конденсируются и поступают в кондиционер для доочистки на сорбционном фильтре. Затем вода поступает в сборник воды, обедненной дейтерием. Охлаждение устройства и работа ионообменных мембран по осушке электролизных газов от паров воды осуществляют вентилятором.

Конденсированная биологически активная вода с пониженным содержанием дейтерия подвергалась сорбционной доочистке на фильтре со смешанным слоем ионообменных материалов (ионитов) и адсорбентом - активным углем. В качестве ионитов использовали катионит КУ-13 Пч и анионит АВ-17-1. При сорбционной доочистке воды поддерживали постоянной объемную скорость фильтрования, равной 1 объему сорбционного фильтра в час. После сорбционной доочистки вода минерализовалась на доломите. Результат очистки в табл.1 и 2.

Производительность установки по воде со сниженными концентрациями дейтерия составляет 50 мл в час. В условиях невесомости на космическом корабле целесообразно преобразование электролизных газов в воду проводить в топливном элементе, что исключает процессы газожидкостной сепарации и позволяет возвращать энергию, образующуюся в топливном элементе, в систему энергоснабжения корабля.

продолжение - на следующей странице

На рисунке ниже схематически показано устройство для получения биологически активной питьевой воды с пониженным содержанием дейтерия из конденсата атмосферной влаги или дистиллята. Устройство содержит емкость 1 с конденсатом атмосферной влаги или дистиллятом, которая соединена с анодной камерой 2 электролизера с ионообменным электролитом. Электролизер содержит пористые электроды (анод 2 и катод 3) из титана, покрытые платиной. Образующиеся в результате электролиза кислород и водород с парами воды через пористые электроды поступают в осушитель кислорода 4 и реактор изотопного обмена 5. Осушитель кислорода 4 заполнен ионообменным катионитом. Внешние стенки осушителя 4 образованы из ионообменных мембран 6. Поступающий кислород подвергается осушке за счет сорбции ионообменным наполнителем (катионитом) и испарения паров воды через ионообменные мембраны 6. Осушенные газы поступают в газовую горелку 9. Далее пары воды поступают в конденсатор 10, а затем в кондиционер 11 для доочистки и минерализации, после чего вода поступает в сборник воды, обеднённой дейтерием 12. Охлаждение аппарата и работа осушителей электролизных газов от воды осуществлялось вентилятором 7.

Проведенные исследования биологической активности бездейтериевой воды на высших растениях и животных показали, что бездейтериевая вода по одноступенчатой схеме переработки обладает положительно биологической активностью:

Отмечено возрастание количества биомассы и семян при культивировании арабидопсиса и брассики в течение полного цикла онтогенеза с использованием исследуемых образцов воды с измененным изотопным составом. Семенная продукция возрастала при этом в 2-6 раз;

Найдено, что содержание перепелов с 6-суточного возраста и до половозрелости на бездейтериевой воде приводит к ускоренному развитию половых органов (по размерам и весу) и опережению процесса сперматогенеза.

Три года учёные исследовали эту воду. Первые опыты проводили на линейных мышах с привитой карциномой легких Льюиса. Реликтовая вода задерживала развитие ракового процесса и повышает резистентность животных. Опыты проводили на 75 мышах в возрасте 3-3,5 месяца, которые были разбиты на пять групп по 15 особей в каждой, соответственно виду исследуемой воды.

Особого внимания заслуживают два показателя: задержка метастазирования и потеря веса животных за время эксперимента. Мощное стимулирующее действие реликтовой воды на иммунную систему животных привело к задержке развития метастазов на 40% (!) по сравнению с контрольной группой, а потеря массы у животных, которые пили реликтовую воду, к концу опыта была в два раза меньше.

Затем исследователи выясняли механизмы действия реликтовой воды на организм животных - на дыхание и окислительное фосфорилирование митохондрий печени мышей, а также на изменение состава периферической крови. Через четыре недели после начала эксперимента прирост числа эритроцитов в одном миллилитре крови у мышей, пивших реликтовую воду, составил 657000 клеток, показатель содержания гемоглобина возрос на 1,54 г%. Было отмечено также четкое положительное влияние воды на показатели кислородного насыщения тканей печени: увеличение рО2 составило 15%, в 1,3 раза увеличился ее дыхательный потенциал. О полезном действии реликтовой воды на здоровье мышей свидетельствовала их повышенная резистентность и увеличение веса по сравнению с контролем. Чтобы убедиться в благотворном действии реликтовой воды на все живое, требовалось еще испытать ее влияние на рост и развитие растений. В результате исследований, проведенных в Институте кукурузы УААЕ, установлено: стимулирующее действие реликтовой воды на проростки пшеницы, льна, кукурузы сравнимо с действием таких стимуляторов роста растений, как фумар и фумаран, на проростки же подсолнечника реликтовая вода оказывает более выраженное стимулирующее действие.

Исследования биологической активности реликтовой воды с различным содержанием дейтерия, полученной на установке ВИН-7 «Надія», на активность сперматозоидов, были проведены в 1998 году в Институте экогигиены и токсикологии им. Л.Медведя Минздрава Украины. В пробах реликтовой воды из установки ВНН-7 «Надія» сперматозоиды дольше сохраняют свою функциональную активность, и она повышается по мере снижения содержания дейтерия в воде. Если принять во внимание общеизвестный факт о том, что воспроизводство жизни связано с потенциалом жизнедеятельности половых клеток, то станет ясно значение реликтовой воды для будущих поколений.

Медико-биологические свойства реликтовой воды в 1995 г. исследовались на кафедре общей и молекулярной генетики Киевского национального университета им. Т. Шевченко. Дрозофила является общепризнанным в мировой науке живым модельным объектом для различных биологических и медицинских экспериментов. Предполагалось исследовать действие трех видов воды на весь цикл зарождения и развития Drosophila melanogaster линии Oregon - на яйцекладку, выход личинок из яйца, куколок из личинки и взрослых особей (имаго) из куколок.

Впервые были обнаружены геропротекторные (омолаживающие), радиозащитные и антимутагенные эффекты воздействия реликтовой воды с пониженным содержанием дейтерия на 5 % на дрозофилу в процессе ее развития.

Получив положительные результаты опытов на дрозофиле, ученые продолжили исследования на теплокровных животных. Этому также способствовала заинтересованность специалистов по жизнеобеспечению космонавтов (Институт медико-биологических проблем, г. Москва), которые передали для сравнительного исследования образцы воды с пониженным (на 60%) содержанием дейтерия.

В 1998 году было проведено исследование действия воды с пониженным содержанием дейтерия, полученной по электролизной технологии в Институте медико-биологических проблем, и воды, полученной по вакуумной технологии на установке ВИН-7 «Надія», на иммунную систему морских свинок.

Предполагалось определить, какая вода обладает более высокой биологической активностью, благотворно влияющей на иммунную систему - электролизная, очищенная от дейтерия на 60%, или реликтовая вода из «Надії» со сниженной концентрацией дейтерия всего на 9%?

При электролизном процессе у воды с пониженным на 60% содержанием дейтерия сохраняются негативные свойства дистиллированной воды (отсутствие минерализации, повышенное содержание растворенных газов, неупорядоченная молекулярная структура воды). Она является лишь исходным материалом для получения питьевой воды космонавтов.

Преимуществом электролизного процесса является потенциально возможное удаление дейтерия (до 90%), поэтому она используется для экспериментов на животных и растениях.

При вакуумной технологии производства воды с пониженным содержанием дейтерия получают микроминерализованную питьевую воду со сниженным содержанием растворенных в ней газов и с упорядоченной льдоподобной структурой.

Для опыта учёные взяли 12 половозрелых морских свинок. К культуре лимфоцитов контрольной 1-й группы добавляли воду, близкую по своим свойствам к физиологическому раствору. К лимфоцитам 2-й группы добавляли электролизную воду. В третьей группе использовали реликтовую воду из установки ВИН-7 «Надія». Четвертую группу составляла тяжелая вода с повышенным содержанием дейтерия на 40%.

Оценку иммунного состояния животных производили по четырем тестам, принятым в мировой иммунологии: Е-РОК - выявляет способность связывать чужеродные клетки; ФГ-НГ - характеризует способность нейтрофильных гранулоцитов (НГ) к фагоцитозу (ФГ); ФГ - МФ - определяет способность макрофагов (МФ) к фагоцитозу; четвертый тест представляет киллерную активность Т-лимфоцитов, их способность убивать все измененные в результате мутации клетки организма.

Был отмечен значительный иммуностимулирующий эффект, который оказала реликтовая вода из установки ВИН-7 «Надія» (№ 3). Несмотря на 9-процентный уровень снижения дейтерия, она показала наибольшее стимулирующее действие на иммунную систему морских свинок, превзойдя по всем показателям электролизную воду (№2) с пониженным содержанием дейтерия на 60%. Тяжелая вода оказала сильнейшее угнетающее влияние на иммунитет животных.

Как влияет вода с пониженным содержанием дейтерия на животных? Ответ на этот вопрос дал академик Украины В.И. Бадьин. Он провел измерения динамики снижения содержания дейтерия в организме 4-х месячных телят, которых поили водой с пониженным содержанием дейтерия.

Для эксперимента были отобраны три здоровых теленка 4-х месячного возраста. Каждый из них помещался в отдельное стойло. Перед началом эксперимента у животных были взяты пробы мочи, крови и волосяные покровы. Животных измеряли для определения веса. В течение эксперимента телят кормили сеном (1,5–2 кг/сут.) и комбикормом (2 кг/сут.). А поили их очищенной водой с добавкой тяжёлой воды с известным изотопным сдвигом протий/дейтерий.

Затем на второй, пятый и седьмой день эксперимента у животных отбирали мочу и кровь, в которых определяли содержание дейтерия, а также макрои микроэлементов. Каждый день у телят измеряли пульс, частоту дыхания и температуру тела. В течение всего эксперимента за телятами вели наблюдение ветеринарный врач и зоотехник.

Было установлено, что концентрация дейтерия в моче животных до начала эксперимента оказалась примерно равной концентрации дейтерия в воде Московского региона.

Учёные пришли к следующим выводам:

Потребление животными воды, обедненной дейтерием, приводит к изменению изотопного состава воды мочи.

Потребление животными очищенной воды, приводило к снижению концентрации кальция в моче.

Зарегистрировано уменьшение содержания кальция, магния и кадмия в волосяном покрове.

Произошло увеличение концентрации креатенина в моче и сыворотке крови при сохранении соотношения концентраций кровь/моча.

Телята, пившие воду, обедненную дейтерием, отличались от обычных телят резвостью и высокой подвижностью.

Изотопный эффект дейтерия может активизировать или угнетать биохимические процессы в организме. Однако, до тех пор, пока не накоплены первичные сведения в области токсикологии дейтерия, исследовать его действие на человеке очень опасно. Первым шагом в практическом использовании обедненной дейтерием воды может быть применение облегчённой воды в рационе персонала на производстве тяжелой воды в качестве профилактического средства.

В России тоже выпускаются аналоги реликтовой воды – вода с низким содержанием дейтерия лёгкая вода “Лангвэй” и лёгкая вода «Протиус», где собрались ученые, работавшие в свое время в академических институтах, и энтузиасты, решившие вложить средства и силы в воду будущего. Они поставили перед собой цель - создать производство легкой воды, более эффективное, чем существующие западные аналоги.

Лёгкая вода является побочным продуктом производства тяжёлой воды, используемой в атомной промышленности в качестве замедлителя нейтронов. В последние годы в связи с исследованиями, доказывающими чрезвычайную полезность лёгкой воды (см., например, www.langvey.ru) для организма человека, особенно для профилактики и лечения онкологических заболеваний, на отечественном рынке появилась лёгкая вода, предназначенная для питья. Содержание в ней дейтерия, определяющее её качество и стоимость, изменяется от 25 ppm (миллионные доли) ступенями по 20-30 ppm. В связи с высокой трудоёмкостью производства, литр лёгкой воды на рынке стоит от нескольких десятков долларов США и выше.

Первая фирма использует оригинальную технологию центробежно-вихревого метода обработки воды, вторая фирма - технология глубокой очистки воды от дейтерия и трития методом колоночной ректификации. Ректификация воды – сложный массообменный процесс, который осуществляется в противоточных колонных аппаратах с контактными элементами – насадками или тарелками. В процессе ректификации воды происходит непрерывный обмен между движущимся относительно друг друга молекул жидкой и паровой фазы.

При этом жидкая фаза обогащается более высококипящим компонентом, а паровая фаза - более низкокипящим – тяжёлой водой и другими тяжёлыми изотопами трития 3 Н и кислорода 18 О. В большинстве случаев ректификацию осуществляют в противоточных колонных аппаратах с различными контактными элементами - насадками или тарелками. Процесс массообмена происходит по всей высоте колонны между стекающей вниз флегмой и поднимающимся вверх паром. Что интенсифицировать процесс массообмена применяют контактные элементы – насадки и тарелки, что позволяет увеличить поверхность массообмена. В случае применения насадки жидкость стекает тонкой пленкой по ее поверхности, в случае применения тарелок пар проходит через слой жидкости на поверхности тарелок.

Рис. слева - Схема ректификационной колонны

Рис. справа - Экспериментальная ректификационная установка по депротеинизации обычной воды, разработанная в Санкт-Петербургской лаборатории разделения изотопов водорода. Фото с сайта nrd.pnpi.spb.ru/lriv/home_rus.htm

Расчет ректификационной колонны производится по диаграмме кипения воды для заданных параметров ректификации - состава исходной воды, кубового остатка, дистиллята, производительности и рабочем давлении в колонне. Затем подбирается тип тарелок, определяется скорость пара, диаметр колонны, коэффициенты массопередачи, высота колонны, гидравлическое сопротивление тарелок. После этого проводится расчет эксплуатационных свойств, а также экономические показатели использования ректификационной колонны. На практике для более глубокой очистки воды от изотопов используется не одна ректификационная колонная, а целая серия – батарея колонн из 20 отдельных колонн.

Рис . Общий вид батареи колонн ректификации для разделения молекул воды на “лёгкие” и ”тяжёлые”. Фото с сайта www.langvey.ru

Лёгкая питьевая вода «Лангвей» производится с различным остаточным содержанием дейтерия (от 125 до 50 ppm). Она фасуется в бутылки ПЭТ емкостью 0,55 л и 1,5 л) и предназначена для питья и приготовления пищи. На основании клинических испытаний, проведенных в Российском Научном Центре восстановительной медицины и урортологии и в Институте красоты, легкая питьевая вода «Лангвей» рекомендована в качестве ежедневного напитка для нормализации углеводного и липидного обмена, артериального давления, коррекции веса, улучшения работы желудочно-кишечного тракта, увеличения скорости водообмена и выведения шлаков и токсинов из организма.

Таблица. Сравнительная характеристика легкой питьевой воды "Лангвей" и минеральных вод известных марок

Наимено-вание минераль-

воды

p Н

Концентрация основных ионов, мг/л

Концент-

рация

дейтерия,

ppm

Катионы

Анионы

Ca 2+

Mg 2+

Na +

K +

Fe 2+/3+

HCO 3 -

Cl -

F -

SO 4 2-

NO 3 -

Лангвей

Московия

Не регламен-тируется

Подобная технология позволяет произвести очистку природной воды от дейтерия до рекордных величин порядка 1-2 ppm. Это по-настоящему химически чистая лёгкая вода заданного изотопного состава. Кроме того, производительность очистки воды этим методом на порядок величин выше любого другого способа, что, соответственно, снижает ее стоимость. При широкомасштабном производстве лёгкой воды, в будущем она станет доступной любому человеку.

Сейчас работы по улучшению качества воды ведутся во всех странах мира. Однако существующие очистительные сооружения и технологии водоподготовки не справляются со своими задачами. Поэтому и возникли различные способы и устройства для изотопной очистки питьевой воды от дейтерия. В общих чертах все эти устройства, какой бы совершенной ни была очистка, ничего не могут поделать с генетической памятью воды, проявляющемся в способности воды сохранять след действия на ее молекулярную структуру всех примесных соединений, в том числе изотопов.

Это не простая задача. Тем не менее многолетний труд, огромное количество экспериментов и технологических построений привели учёных к цели: получению лёгкой воды кристальной чистоты с глубокой очисткой от дейтерия, оптимальным минеральным составом и природной структурой, полученной в результате глубокой ректификации.

В будущих экспериментах планируется, что космонавты в межпланетных полетах будут пить в Космосе "легкую воду" - воду, из которой удалены тяжелые изотопы водорода и кислорода и обладающую положительным биологическим эффектами, в частности, защищающие организм от радиации.

Как сообщил на конференции в Москве, посвященной разработке систем жизнеобеспечения для космических полетов, профессор Института медико-биологических проблем Юрий Синяк, исследования показали, что "легкая вода", где дейтерий и тяжелый кислород отсутствуют или их содержание значительно снижено, напротив, обладают целым рядом полезных биологических свойств.

В экспериментах в институте медико-биологических проблем было показано, что легкая вода защищает от радиации: мыши, получившие значительную дозу облучения, имели больший срок жизни, если они пили легкую воду.

Кроме того, было обнаружено противоопухолевые свойства легкой воды - эксперименты показали, что она замедляет рост некоторых типов опухолей.

Лёгкая вода – это сложный по своей структуре и составу продукт, оказывающий полифизиологическое действие на организм человека. В этой связи важно оценить, какое влияние на организм окажет очистка питьевой воды от тяжелых молекул при сохранении всех других компонентов воды на регламентируемых гигиеническими нормативами уровнях. Учитывая роль воды в организме и известные изотопные эффекты тяжелой воды, и результаты, полученные по легкой воде, можно ожидать, что наибольший эффект такая очистка может оказать на свойства биологических мембран, регуляторные системы и энергетический аппарат живой клетки. Хорошо известно, например, что под влиянием тяжелой воды ингибируется инициируемый глюкозой выход инсулина из ткани поджелудочной железы и островков Лангерганса, уменьшается скорость поглощения кислорода митохондриями клеток.

Легкая вода – это природная вода, частично или полностью очищенная от тяжелой воды и благодаря такой очистке, приобретающая уникальные свойства.

Основное действие, оказываемое легкой питьевой водой на человеческий организм – постепенное снижение содержания дейтерия в жидкостях тела за счёт реакций изотопного обмена. Анализ полученных результатов позволяет говорить о том, что очистка воды организма от тяжелой воды с помощью легкой питьевой воды позволяет улучшить работу важнейших систем организма.

Ежедневное употребление легкой питьевой воды позволяет естественным образом снизить содержание тяжелой воды в организме человека за счёт реакций изотопного обмена. Такая уникальная очистка нормализует работу клеточных мембран, улучшает общее самочувствие, повышает работоспособность, увеличивает энергетические ресурсы организма, способствует быстрому восстановлению организма после больших физических нагрузок.

Уникальные свойства легкой питьевой воды подтверждены исследованиями и клиническими испытаниями.

Легкая питьевая вода:

нормализует обмен веществ и артериальное давление;

снижает содержание сахара в крови у больных сахарным диабетом II типа;

эффективно очищает организм от токсинов и шлаков;

способствует быстрому заживлению и восстановлению костных и мышечных тканей после травм;

обладает противовоспалительным действием;

усиливает действие лекарственных препаратов;

способствует коррекции веса;

-защищает клетки от радиации;

быстро устраняет признаки посталкогольной абстиненции;

Основные свойства легкой воды

    Легкая вода обладает меньшей вязкостью, чем природная вода. Это позволяет ей легче проникать через клеточные мембраны и повысить скорость водообмена в организме

    Растворимость веществ в легкой воде выше, чем в природной, что дает ей возможность более полно и быстро выводить продукты метаболизма из организма, очищая его при этом от солей тяжелых металлов, токсинов и других вредных веществ

    Скорость ферментативных (каталитических) реакций в легкой воде выше, чем в обычной воде. Это позволяет интенсифицировать обменные процессы и помогает организму быстрее восстанавливаться после больших нагрузок

    Легкая вода позволяет естественным образом, без применения каких-либо фармацевтических средств, существенно повысить энергетические ресурсы организма. Как показали исследования лаборатории мембранологии Научного центра здоровья детей РАМН, в легкой воде значительно (на 30%) вырастает уровень АТФ в клетках. При этом клетки более активно сопротивляются воздействию на них различных ядов. Так, при действии на клетку химических веществ, подавляющих дыхание клеток, выживаемость клеток в легкой воде через час оказывается в 2 раза выше, чем в бидистилляте.

    При действии на животных у-облучения в дозе LD50, было обнаружено, что выживаемость животных, употреблявших в течение 15 дней перед облучением легкую воду, в 2,5 раза выше, чем в контрольной группе, что указывает на сильные радиопротекторные свойства легкой воды. Это означает, что употребление «легкой» воды для жителей больших городов, в условиях повышенного фона радиации, является безусловно полезным.

Таким образом, спектр действия легкой воды очень широк. Дело в том, что при регулярном потреблении легкой воды происходит постепенная очистка всего организма от тяжелой воды. Это сопровождается увеличением функциональной активности клеток, органов и различных систем организма. Происходит нормализация обменных процессов, увеличиваются защитные силы и устойчивость организма к повреждающим воздействиям. Скорость очистки организма от тяжелой воды зависит от массы тела человека и количества потребляемой легкой воды.

С уважением,

К.х.н. О.В. Мосин

Слова «дейтерий» и «тритий» напоминают нам о том, что сегодня человек располагает мощнейшим источником энергии, высвобождающейся при реакции:

2 1 Н + 3 1 Н > 4 2 Не + 1 0 n + 17,6 МэВ.

Эта реакция начинается при 10 млн. градусов и протекает за ничтожные доли секунды при взрыве термоядерной бомбы, причем выделяется гигантское по масштабам Земли количество энергии.

Водородные бомбы иногда сравнивают с Солнцем. Однако мы уже видели, что на Солнце идут медленные и стабильные термоядерные процессы. Солнце дарует нам жизнь, а водородная бомба - сулит смерть…

Но когда-нибудь настанет время - и это время не за горами, - когда мерилом ценности станет не золото, а энергия. И тогда изотопы водорода спасут человечество от надвигающегося энергетического голода: в управляемых термоядерных процессах каждый литр природной воды будет давать столько же энергии, сколько ее дают сейчас 300 л бензина. И человечество будет с недоумением вспоминать, что было время, когда люди угрожали друг другу животворным источником тепла и света…

Протий, дейтерий, тритий…

Физические и химические свойства изотопов всех элементов, кроме водорода, практически одинаковы: ведь для атомов, ядра которых состоят из нескольких протонов и нейтронов, не так уж и важно - одним нейтроном меньше или одним нейтроном больше. А вот ядро атома водорода - это один-единственный протон, и если к нему присовокупить нейтрон, масса ядра возрастет почти вдвое, а если два нейтрона - втрое. Поэтому легкий водород (протий) кипит при минус 252,6 °C, а температура кипения его изотопов отличается от этой величины на 3,2° (дейтерий) и 4,5° (тритий). Для изотопов это очень большое различие!

Удивительные изотопы распространены в природе неодинаково: один атом дейтерия приходится примерно на 7000, а один атом бета радиоактивного трития - на миллиард миллиардов атомов протия. Искусственным путем получен еще один, крайне неустойчивый изотоп водорода - 4 Н.

Точность - прежде всего

Относительная масса легкого изотопа водорода определена прямо-таки с фантастической точностью: 1,007276470 (если принять массу изотопа углерода 12 С равной 12,0000000). Если бы с такой точностью была измерена, к примеру, длина экватора, то ошибка не превысила бы 4 см!

Но зачем нужна такая точность? Ведь каждая новая цифра требует от экспериментаторов все больших и больших усилий… Секрет раскрывается просто: ядра протия, протоны, принимают участие во многих ядерных реакциях. А если известны массы реагирующих ядер и массы продуктов реакции, то, пользуясь формулой Е = mc 2 , можно рассчитать ее энергетический эффект. А так как энергетические эффекты даже ядерных реакций сопровождаются лишь незначительным изменением массы, то и приходится эти массы измерять как можно точнее.

Водорода имеют собственные названия: H - протий (Н), H - дейтерий (D) и H - тритий (радиоактивен) (T).

Простое вещество водород - H 2 - лёгкий бесцветный газ . В смеси с воздухом или кислородом горюч и взрывоопасен . Нетоксичен . Растворим в этаноле и ряде металлов : железе , никеле , палладии , платине .

История

Еще средневековый ученый Парацельс заметил, что при действии кислот на железо выделяются пузырьки какого-то «воздуха». Но что это такое, он объяснить не мог. Теперь известно, что это был водород. «Водород представляет пример газа, – писал Д.И.Менделеев, – на первый взгляд не отличающегося от воздуха... Парацельс, открывший, что при действии некоторых металлов на серную кислоту получается воздухообразное вещество, не определил его отличия от воздуха. Действительно, водород бесцветен и не имеет запаха, так же, как и воздух; но, при ближайшем знакомстве с его свойствами, этот газ оказывается совершенно отличным от воздуха».

Английские химики 18 в., Генри Кавендиш и Джозеф Пристли, заново открывшие водород, первыми изучили его свойства. Они обнаружили, что это необычайно легкий газ – он в 14 раз легче воздуха. Если надуть им резиновый шарик, он взлетит ввысь. Это свойство водорода использовали раньше для наполнения воздушных шаров и дирижаблей. Правда, первый воздушный шар, построенный братьями Монгольфье, был наполнен не водородом, а дымом от горения шерсти и соломы. Такой странный способ получения горячего воздуха связан с тем, что братья, видимо, не были знакомы с законами физики; они наивно полагали, что эта смесь образует «электрический дым», способный поднять их легкий шар. Физик Шарль, знавший закон Архимеда, решил наполнить шар водородом; в отличие от монгольфьеров, наполненных горячим воздухом, шары с водородом французы называли шарльерами. Первый такой шар (он не нес никакого груза) поднялся с Марсова поля в Париже 27 августа 1783 и за 45 минут пролетел 20 км.

В декабре 1783 Шарль в сопровождении физика Франсуа Робера в присутствии 400 тысяч зрителей предприняли первый полёт на воздушном шаре, заполненном водородом. Гей-Люссак (также совместно с физиком Жаном Батистом Био) поставил в 1804 рекорд высоты, поднявшись на 7000 метров.

Но водород горюч. Более того, его смеси с воздухом взрываются, а смесь водорода с кислородом называют даже «гремучим газом». В мае 1937 пожар за несколько минут уничтожил гигантский немецкий дирижабль «Гинденбург» – в нем было 190 000 кубометров водорода. Тогда погибло 35 человек. После многих несчастных случаев водород в воздухоплавании больше не используют, его заменяют гелием или горячим воздухом.

При горении водорода образуется вода – соединение водорода и кислорода. Это доказал в конце 18 французский химик Лавуазье. Отсюда и название газа – «рождающий воду». Лавуазье также сумел получить водород из воды. Он пропускал водяные пары через раскаленную докрасна железную трубку с железными опилками. Кислород из воды прочно соединялся с железом, а водород выделялся в свободном виде. Сейчас водород тоже получают из воды, но другим способом – с помощью электролиза (см. ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ. ЭЛЕКТРОЛИТЫ)

Свойства водорода

Водород – самый распространенный химический элемент во Вселенной. Он составляет примерно половину массы Солнца и большинства звезд, является основным элементом в межзвездном пространстве и в газовых туманностях. Распространен водород и на Земле. Здесь он находится в связанном состоянии – в виде соединений. Так, вода содержит 11% водорода по массе, глина – 1,5%. В виде соединений с углеродом водород входит в состав нефти, природных газов, всех живых организмов. Немного свободного водорода содержится в воздухе , но его там совсем мало – всего 0,00005%. Он попадает в атмосферу из вулканов.

Водороду принадлежит много других «рекордов».
Жидкий водород – самая легкая жидкость (плотность 0,067 г/см 3 при температуре –250°С),
Твердый водород – самое легкое твердое вещество (плотность 0,076 г/см 3).
Атомы водорода – самые маленькие из всех атомов . Однако при поглощении энергии электромагнитного излучения внешний электрон атома может удаляться от ядра все дальше и дальше. Поэтому возбужденный атом водорода теоретически может иметь любые размеры. А практически? В книге Мировые рекорды в химии сказано, что в межзвездных облаках якобы обнаружены по их спектрам атомы водорода диаметром 0,4 мм (они зафиксированы по спектральному переходу с 253-й на 252-ю орбиталь). Атомы таких размеров вполне можно увидеть невооруженным глазом! При этом дается ссылка на статью, опубликованную в 1991 в самом известном в мире журнале, посвященном химическому образованию – Journal of Chemical Education (он издается в США). Однако автор статьи ошибся – он завысил все размеры ровно в 100 раз (об этом сообщил тот же журнал год спустя). Значит, обнаруженные атомы водорода имеют диаметр «всего лишь» 0,004 мм, и такие атомы , даже если бы они был «твердыми», невооруженным глазом увидеть нельзя – только в микроскоп. Конечно, по атомным меркам и 0,004 мм – величина огромная, в десятки тысяч раз больше диаметра невозбужденного атома водорода.

Молекулы водорода тоже очень маленькие. Поэтому этот газ легко проходит через самые тонкие щели. Резиновый шарик, надутый водородом, «худеет» намного быстрее шарика, надутого воздухом: молекулы водорода понемногу просачиваются через мельчайшие поры в резине.

Если вдохнуть водород и начать разговаривать, то частота издаваемых звуков будет втрое выше обычной. Этого достаточно, чтобы звук даже низкого мужского голоса оказался неестественно высоким, напоминающим голос Буратино. Происходит это потому, что высота звука , издаваемая свистком, органной трубой или голосовым аппаратом человека, зависит не только от их размеров и материала стенок, но и от газа, которым они наполнены. Чем больше скорость звука в газе, тем выше его тон. Скорость звука зависит от массы молекул газа. Молекулы водорода значительно легче молекул азота и кислорода , из которых состоит воздух , и звук в водороде распространяется почти вчетверо быстрее, чем в воздухе. Однако вдыхать водород рискованно: в легких он неминуемо смешается с остатками воздуха и образует гремучую смесь. И если при выдохе поблизости окажется огонь... Вот какая история произошла с французским химиком, директором Парижского музея науки Пилатром де Розье (1756–1785). Как-то он решил проверить, что будет, если вдохнуть водород; до него никто такого эксперимента не проводил. Не заметив никакого эффекта, ученый решил убедиться, проник ли водород в легкие. Он еще раз хорошо вдохнул этот газ, а затем выдохнул его на огонь свечи, ожидая увидеть вспышку пламени. Однако водород в легких смелого экспериментатора был смешан с воздухом и произошел сильный взрыв. «Я думал, что у меня вылетели все зубы вместе с корнями», – писал он впоследствии, очень довольный опытом, который чуть не стоил ему жизни.

История получения дейтерия и трития

Дейтерий

Помимо «обычного» водорода (протия, от греческого protos – первый), в природе присутствует также его тяжелый изотоп – дейтерий (от латинского deuteros – второй) и в ничтожных количествах сверхтяжелый водород – тритий. Долгие и драматические поиски этих изотопов вначале не давали результата из-за недостаточной чувствительности приборов. В конце 1931 группа американских физиков – Г.Юри со своими учениками, Ф.Брикведде и Дж.Мэрфи, взяли 4 л жидкого водорода и подвергли его фракционной перегонке, получив в остатке всего 1 мл, т.е. уменьшив объем в 4 тысячи раз. Этот последний миллилитр жидкости после ее испарения и был исследован спектроскопическим методом. Опытный спектроскопист Юри заметил на спектрограмме обогащенного водорода новые очень слабые линии, отсутствующие у обычного водорода. При этом положение линий в спектре точно соответствовало проведенному им квантово-механическому расчету нуклида 2H (см. ЭЛЕМЕНТЫ ХИМИЧЕСКИЕ).

После спектроскопического обнаружения дейтерия было предложено разделять изотопы водорода электролизом. Эксперименты показали, что при электролизе воды легкий водород действительно выделяется быстрее, чем тяжелый. Именно это открытие стало ключевым для получения тяжелого водорода. Статья, в которой сообщалось об открытии дейтерия, была напечатана весной 1932, а уже в июле были опубликованы результаты по электролитическому разделению изотопов. В 1934 за открытие тяжелого водорода Гарольд Клейтон Юри получил Нобелевскую премию по химии.

Тритий

17 марта 1934 в выходящем в Англии журнале «Nature» («Природа») была опубликована небольшая заметка, подписанная М.Л.Олифантом, П.Хартеком и Резерфордом (фамилия лорда Резерфорда не требовала при публикации инициалов!). Несмотря на скромное название заметки: Эффект трансмутации, полученный с тяжелым водородом, она сообщала миру о выдающемся результате – искусственном получении третьего изотопа водорода – трития. В 1946 известный авторитет в области ядерной физики, лауреат Нобелевской премии У.Ф.Либби предположил, что тритий непрерывно образуется в результате идущих в атмосфере ядерных реакций. Однако в природе трития так мало (1 атом 1Н на 1018 атомов 3Н), что обнаружить его удалось только по слабой радиоактивности (период полураспада 12,3 года).

Гидриды

Водород образует соединения – гидриды со многими элементами. В зависимости от второго элемента, гидриды очень сильно различаются по свойствам. Наиболее электроположительные элементы (щелочные и тяжелые щелочноземельные металлы) образуют так называемые солеобразные гидриды ионного характера. Они получаются в результате непосредственной реакции металла с водородом под давлением и при повышенной температуре (300–700°С), когда металл находится в расплавленном состоянии. Их кристаллическая решетка содержит катионы металлов и гидрид-анионы H– и построена аналогично решетке NaCl. При нагревании до температуры плавления солеобразные гидриды начинают проводить электрический ток , при этом, в отличие от электролиза водных растворов солей, водород выделяется не на катоде, а на положительно заряженном аноде. Солеобразные гидриды реагируют с водой с выделением водорода и образованием раствора щелочи, легко окисляются и кислородом и используются как сильные восстановители.

Ряд элементов образуют ковалентные гидриды, среди которых наиболее известны гидриды элементов IV–VI групп, например, метан CH 4 , аммиак NH 3 , сероводород H 2 S и т.п. Ковалентные гидриды обладают высокой реакционной способностью и являются восстановителями. Некоторые из этих гидридов малостабильны и разлагаются при нагревании или гидролизуются водой. Примером могут служить SiH 4 , GeH 4 , SnH 4 . С точки зрения строения интересны гидриды бора, например, В 2 Н 6 , В 6 Н 10 , В 10 Н 14 и др., в которых пара электронов связывает не два, как обычно, а три атома В–Н–В. К ковалентным относят и некоторые смешанные гидриды, например, литийалюминийгидрид LiAlH 4 , который нашел широкое применение в органической химии в качестве восстановителя. Гидриды германия, кремния , мышьяка используют для получения высокочистых полупроводниковых материалов.

Гидриды переходных металлов весьма разнообразны по свойствам и строению. Часто это соединения нестехиометрического состава, например, металлоподобные TiH 1,7 , LaH 2,87 и т.п. При образовании подобных гидридов водород сначала адсорбируется на поверхности металла, затем происходит его диссоциация на атомы, которые диффундируют вглубь кристаллической решетки металла, образуя соединения внедрения. Наибольший интерес представляют гидриды интерметаллических соединений, например, содержащие титан, никель, редкоземельные элементы. Число атомов водорода в единице объема такого гидрида может быть в пять раз больше, чем даже в чистом жидком водороде! Уже при комнатной температуре сплавы упомянутых металлов способны быстро поглощать значительные количества водорода, а при нагревании – выделять его. Таким образом получают обратимые «химические аккумуляторы» водорода, которые, в принципе, могут использоваться для создания двигателей, работающих на водородном топливе. Из других гидридов переходных металлов интересен гидрид урана постоянного состава UH 3 , который служит источником других соединений урана высокой чистоты.

Применение

Водород используют в основном для получения аммиака , который нужен для производства удобрений и многих других веществ. Из жидких растительных масел с помощью водорода получают твердые жиры, похожие на сливочное масло и другие животные жиры. Их используют в пищевой промышленности. При производстве изделий из кварцевого стекла требуется очень высокая температура . И здесь водород находит применение: горелка с водородно-кислородным пламенем дает температуру выше 2000 градусов, при которой кварц легко плавится.

В лабораториях и в промышленности широко используется реакция присоединения водорода к различным соединениям – гидрирование. Наиболее распространены реакции гидрирования кратных углерод-углеродных связей. Так, из ацетилена можно получить этилен или (при полном гидрировании) этан, из бензола – циклогексан, из жидкой непредельной олеиновой кислоты – твердую предельную стеариновую кислоту и т.д. Гидрированию подвергаются и другие классы органических соединений, при этом происходит их восстановление. Так, при гидрировании карбонильных соединений (альдегидов, кетонов, сложных эфиров) образуются соответствующие спирты; например, из ацетона получается изопропиловый спирт. При гидрировании нитросоединений образуются соответствующие амины.

Гидрирование молекулярным водородом часто проводят в присутствии катализаторов . В промышленности, как правило, используют гетерогенные катализаторы , к которым относятся металлы VIII группы периодической системы элементов – никель , платина , родий, палладий . Самый активный из этих катализаторов – платина ; с ее помощью можно гидрировать при комнатной температуре без давления даже ароматические соединения. Активность более дешевых катализаторов можно повысить, проводя реакцию гидрирования под давлением при повышенных температурах в специальных приборах – автоклавах. Так, для гидрирования ароматических соединений на никеле требуются давления до 200 атм и температура выше 150°С.

В лабораторной практике широко используют также различные способы некаталитического гидрирования. Один из них – действие водорода в момент выделения. Такой «активный водород» можно получить в реакции металлического натрия со спиртом или амальгамированного цинка с соляной кислотой. Значительное распространение в органическом синтезе получило гидрирование комплексными гидридами – борогидридом натрия NaBH 4 и алюмогидридом лития LiAlH 4 . Реакцию проводит в безводных средах, так как комплексные гидриды мгновенно гидролизуются.

Водород используют во многих химических лабораториях. Его хранят под давлением в стальных баллонах, которые для безопасности с помощью специальных хомутов прикрепляют к стене или даже выносят во двор, а газ поступает в лабораторию по тонкой трубке.