Болезни Военный билет Призыв

Взаимодействие не относящееся к фундаментальным взаимодействием. Создание единой теории фундаментальных взаимодействий. Что такое фундаментальные силы

1.1. Гравитация.

1.2. Электромагнетизм.

1.3. Слабое взаимодействие.

1.4. Проблема единства физики.

2. Классификация элементарных частиц.

2.1. характеристика субатомных частиц.

2.2. лептоны.

2.3. Адроны.

2.4. Частицы – переносчики взаимодействий.

3. Теории элементарных частиц.

3.1. Квантовая электродинамика.

3.2. Теория кварков.

3.3. Теория электрослабого взаимодействия.

3.4. Квантовая хромодинамика.

3.5. На пути к великому объединению.

Список литературы.

Введение.

В середине и второй половине ХХ века в тех разделах физики, которые заняты изучением фундаментальной структуры материи, были получены поистине удивительные результаты. Прежде всего это проявилось в открытии целого множества новых субатомных частиц. Их обычно называют элементарными частицами, но далеко не все из них действительно элементарны. Многие из них в свою очередь состоят из еще более элементарных частичек. Мир субатомных частиц поистине многообразен. К ним относятся протоны и нейтроны, составляющие атомные ядра, а также обращающиеся вокруг ядер электроны. Но есть и такие частицы, которые в окружающем нас веществе практически не встречаются. Время их жизни чрезвычайно мало, оно составляет мельчайшие доли секунды. По истечении этого чрезвычайно короткого времени они распадаются на обычные частицы. Таких нестабильных короткоживущих частиц поразительно много: их известно уже несколько сотен. В 60-70-е годы физики были совершенно сбиты с толку многочисленностью, разнообразием и необычностью вновь открытых субатомных частиц. Казалось, им не будет конца. Совершенно непонятно, для чего столько частиц. Являются ли эти элементарные частицы хаотическими и случайными осколками материи? Или, возможно, они таят в себе ключ к познанию структуры Вселенной? Развитие физики в последующие десятилетия показало, что в существовании такой структуры нет никаких сомнений. В конце ХХ в. физика начинает понимать, каково значение каждой из элементарных частиц. Миру субатомных частиц присущ глубокий и рациональный порядок. В основе этого порядка - фундаментальные физические взаимодействия.

1.Фундаментальные физические взаимодействия.

В свой повседневной жизни человек сталкивается с множеством сил, действующих на тела. Здесь и сила ветра или набегающего потока воды, давление воздуха, мощный выброс взрывающихся химических веществ, мускульная сила человека, вес тяжелых объектов, давление квантов света, притяжение и отталкивание электрических зарядов, сейсмические волны, вызывающие подчас катастрофические разрушения, и вулканические извержения, приводившие к гибели цивилизации, и т. д. Одни силы действуют непосредственно при контакте с телом, другие, например, гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития теоретического естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести всего лишь к четырем фундаментальным взаимодействиям. Именно эти взаимодействия в конечном счете отвечают за все изменения в мире, именно они являются источником всех преобразований тел и процессов. Изучение свойств фундаментальных взаимодействий составляет главную задачу современной физики.

      Гравитация.

В истории физики гравитация (тяготение) стала первым из четырех фундаментальных взаимодействий предметом научного исследования. После появления в ХVII в. ньютоновской теории гравитации - закона всемирного тяготения - удалось впервые осознать истинную роль гравитации как силы природы. Гравитация обладает рядом особенностей, отличающих ее от других фундаментальных взаимодействий. Наиболее удивительной особенностью гравитации является ее малая интенсивность. Величина гравитационного взаимодействия между компонентами атома водорода составляет 10n , где n = - 3 9 , от силы взаимодействия электрических зарядов. (Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то низшая (самая близкая к ядру) орбита электрона по размерам превосходила бы доступную наблюдению часть Вселенной!) (Если бы размеры атома водорода определялись гравитацией, а не взаимодействием между электрическими зарядами, то низшая (самая близкая к ядру) орбита электрона по размерам превосходила бы доступную наблюдению часть Вселенной!). Может показаться удивительным, что мы вообще ощущаем гравитацию, коль скоро она так слаба. Как она может оказаться господствующей силой во Вселенной? Все дело во второй удивительной черте гравитации - ее универсальности. Ничто во Вселенной не избавлено от гравитации. Каждая частица испытывает на себе действие гравитации и сама является источником гравитации. Поскольку каждая частица вещества вызывает гравитационное притяжение, гравитация возрастает по мере образования все больших скоплений вещества. Мы ощущаем гравитацию в повседневной жизни потому, что все атомы Земли сообща притягивают нас. И хотя действие гравитационного притяжения одного атома пренебрежимо мало, но результирующая сила притяжения со стороны всех атомов может быть значительной. Гравитация - дальнодействующая сила природы. Это означает, что, хотя интенсивность гравитационного взаимодействия убывает с расстоянием, оно распространяется в пространстве и может сказываться на весьма удаленных от источника телах. В астрономическом масштабе гравитационное взаимодействие, как правило, играет главную роль. Благодаря дальнодействию гравитация не позволяет Вселенной развалиться на части: она удерживает планеты на орбитах, звезды в галактиках, галактики в скоплениях, скопления в Метагалактике. Сила гравитации, действующая между частицами, всегда представляет собой силу притяжения: она стремится сблизить частицы. Гравитационное отталкивание никогда еще не наблюдалось (Хотя в традициях квазинаучной мифологии есть целая область, которая называется левитация - поиск "фактов" антигравитации). Поскольку энергия, запасенная в любой частице, всегда положительна и наделяет ее положительной массой, частицы под действием гравитации всегда стремятся сблизиться. Чем является гравитация, неким полем или проявлением искривления пространства-времени, - на этот вопрос пока еще однозначного ответа нет. Как уже отмечалось нами, существуют разные мнения и концепции физиков на сей счет.

      Электромагнетизм.

По величине электрические силы намного превосходят гравитационные. В отличие от слабого гравитационного взаимодействия, электрические силы, действующие между телами обычных размеров, можно легко наблюдать. Электромагнетизм известен людям с незапамятных времен (полярные сияния, вспышки молнии и др.). В течение долгого времени электрические и магнитные процессы изучались независимо друг от друга. Как мы уже знаем, решающий шаг в познании электромагнетизма сделал в середине XIX в. Дж. К. Максвелл, объединивший электричество и магнетизм в единой теории электромагнетизма - первой единой теории поля. Существование электрона было твердо установлено в 90-e годы прошлого столетия. Ныне известно, что электрический заряд любой частицы вещества всегда кратен фундаментальной единице заряда - своего рода "атому" заряда. Почему это так - чрезвычайно интересный вопрос. Однако не все материальные частицы являются носителями электрического заряда. Например, фотон и нейтрино электрически нейтральны. В этом отношении электричество отличается от гравитации. Все материальные частицы создают гравитационное поле, тогда как с электромагнитным полем связаны только заряженные частицы. Как и электрические заряды, одноименные магнитные полюса отталкиваются, а разноименные - притягиваются. Однако в отличие от электрических зарядов магнитные полюса встречаются не по отдельности, а только парами - северный полюс и южный полюс. Еще с древнейших времен известны попытки получить посредством разделения магнита лишь один изолированный магнитный полюс - монополь. Но все они заканчивались неудачей. Может быть, существование изолированных магнитных полюсов в природе исключено? Определенного ответа на этот вопрос пока не существует. Некоторые теоретические концепции допускают возможность существования монополя. Как электрическое и гравитационное взаимодействия, взаимодействие магнитных полюсов подчиняется закону обратных квадратов. Следовательно, электрическая и магнитная силы "дальнодействующие", и их действие ощутимо на больших расстояниях от источника. Так, магнитное поле Земли простирается далеко в космическое пространство. Мощное магнитное поле Солнца заполняет всю Солнечную систему. Существуют и галактические магнитные поля. Электромагнитное взаимодействие определяет структуру атомов и отвечает за подавляющее большинство физических и химических явлений и процессов (за исключением ядерных).

      Слабое взаимодействие.

К выявлению существования слабого взаимодействия физика продвигалась медленно. Слабое взаимодействие ответственно за распады частиц; и поэтому с его проявлением столкнулись с открытием радиоактивности и исследованием бета-распада. У бета-распада обнаружилась в высшей степени странная особенность. Исследования приводили к выводу, что в этом распаде нарушается один из фундаментальных законов физики - закон сохранения энергии. Казалось, что в этом распаде часть энергии куда-то исчезала. Чтобы "спасти" закон сохранения энергии, В. Паули предположил, что вместе с электроном при бета -распаде вылетает еще одна частица. Она - нейтральная и обладающая необычайно высокой проникающей способностью, вследствие чего ее не удавалось наблюдать. Э. Ферми назвал частицу-невидимку "нейтрино". Но предсказание и обнаружение нейтрино - это только начало проблемы, ее постановка. Нужно было объяснить природу нейтрино, но здесь оставалось много загадочного. Дело в том, что и электроны и нейтрино испускались нестабильными ядрами. Но было неопровержимо доказано, что внутри ядер таких частиц нет. Как же они возникали? Было высказано предположение, что электроны и нейтрино не существуют в ядре в "готовом виде", а каким-то образом образуются из энергии радиоактивного ядра. Дальнейшие исследования показали, что входящие в состав ядра нейтроны, предоставленные самим себе, через несколько минут распадаются на протон, электрон и нейтрино, т.е. вместо одной частицы появляются три новые. Анализ приводил к выводу, что известные силы не могут вызвать такой распад. Он, видимо, порождался какой-то иной, неизвестной силой. Исследования показали, что этой силе соответствует некоторое слабое взаимодействие. Оно гораздо слабее электромагнитного, хотя и сильнее гравитационного. Оно распространяется на очень незначительных расстояниях. Радиус слабого взаимодействия очень мал. Слабое взаимодействие прекращается на расстоянии, большем 10n см (где n = - 1 6) от источника и потому не может влиять на макроскопические объекты, а ограничивается отдельными субатомными частицами. Впоследствии выяснилось, что большинство нестабильных элементарных частиц участвует в слабом взаимодействии. Теория слабого взаимодействия была создана в конце б0-х годов С. Вайнбергом и А. Саламом. С момента построения Максвеллом теории электромагнитного поля создание этой теории явилось самым крупным шагом на пути к единству физики. 10.

      Сильное взаимодействие.

Последнее в ряду фундаментальных взаимодействий - сильное взаимодействие, которое является источником огромной энергии. Наиболее характерный пример энергии, высвобождаемой сильным взаимодействием, - это наше Солнце. В недрах Солнца и звезд, начиная с определенного времени, непрерывно протекают термоядерные реакции, вызываемые сильным взаимодействием. Но и человек научился высвобождать сильное взаимодействие: создана водородная бомба, сконструированы и совершенствуются технологии управляемой термоядерной реакции. К представлению о существовании сильного взаимодействия физика шла в ходе изучения структуры атомного ядра. Какая-то сила должна удерживать протоны в ядре, не позволяя им разлетаться под действием электростатического отталкивания. Гравитация для этого слишком слаба; очевидно, необходимо какое-то новое взаимодействие, причем, более сильное, чем электромагнитное. Впоследствии оно было обнаружено. Выяснилось, что хотя по своей величине сильное взаимодействие существенно превосходит все остальные фундаментальные взаимодействия, но за пределами ядра оно не ощущается. Радиус действия новой силы оказался очень малым. Сильное взаимодействие резко падает на расстоянии от протона или нейтрона, превышающем примерно 10n см (где n = - 13). Кроме того, выяснилось, что сильное взаимодействие испытывают не все частицы. Его испытывают протоны и нейтроны, но электроны, нейтрино и фотоны не подвластны ему. В сильном взаимодействии участвуют только более тяжелые частицы. Теоретическое объяснение природы сильного взаимодействия развивалось трудно. Прорыв наметился в начале 60-х годов, когда была предложена кварковая модель. В этой теории нейтроны и протоны рассматриваются не как элементарные частицы, а как составные системы, построенные из кварков. Таким образом, в фундаментальных физических взаимодействиях четко прослеживается различие сил дальнодействующих и близкодействующих. С одной стороны, имеют место взаимодействия неограниченного радиуса действия (гравитация, электромагнетизм), а с другой - взаимодействия малого радиуса действия (сильное и слабое). Мир физических элементов в целом развертывается в единстве этих двух полярностей и является воплощением единства предельно малого и предельно большого - близкодействия в микромире и дальнодействия во всей Вселенной.

      Проблема единства физики.

Познание есть обобщение действительности, и поэтому цель науки - поиск единства в природе, связывание разрозненных фрагментов знания в единую картину. Для того чтобы создать единую систему, нужно открыть связующее звено между различными отраслями знания, некоторое фундаментальное отношение. Поиск таких связей и отношений - одна из главных задач научного исследования. Всякий раз, когда удается установить такие новые связи, значительно углубляется понимание окружающего мира, формируются новые способы познания, которые указывают путь к не известным ранее явлениям. Установление глубинных связей между различными областями природы - это одновременно и синтез знания, и метод, направляющий научные исследования по новым, непроторенным дорогам. Выявление Ньютоном связи между притяжением тел в земных условиях и движением планет ознаменовало собой рождение классической механики, на основе которой построена технологическая база современной цивилизации. Установление связи термодинамических свойств газа с хаотическим движением молекул поставило на прочную основу атомно-молекулярную теорию вещества. В середине прошлого столетия Максвелл создал единую электромагнитную теорию, охватившую как электрические, так и магнитные явления. Затем в 20-х г. нашего века Эйнштейн предпринимал попытки объединить в единой теории электромагнетизм и гравитацию. Но к середине ХХ в. положение в физике радикально изменилось: были открыты два новых фундаментальных взаимодействия - сильное и слабое, т.е. при создании единой физики приходится считаться уже не с двумя, а с четырьмя фундаментальными взаимодействиями. Это несколько охладило пыл тех, кто надеялся на быстрое решение данной проблемы. Но сам замысел под сомнение всерьез не ставился, и увлеченность идеей единого описания не прошла. Существует точка зрения, что все четыре (или хотя бы три) взаимодействия представляют собой явления одной природы и должно быть найдено их единое теоретическое описание. Перспектива создания единой теории мира физических элементов на основе одного-единственного фундаментального взаимодействия остается весьма привлекательной. Это главная мечта физиков ХХ в. Но долгое время она оставалась лишь мечтой, и очень неопределенной. Однако во второй половине ХХ в. появились предпосылки осуществления этой мечты и уверенность, что это дело отнюдь не отдаленного будущего. Похоже, что вскоре она вполне может стать реальностью. Решающий шаг на пути к единой теории был сделан в 6О-70-х гг. с созданием сначала теории кварков, а затем и теории электрослабого взаимодействия. Есть основания для мнения, что мы стоим на пороге более могущественного и глубокого объединения, чем когда-либо ранее. Среди физиков усиливается убеждение, что начинают вырисовываться контуры единой теории всех фундаментальных взаимодействий - Великого объединения.

2 . Классификация элементарных частиц.

В посвседневной жизни мы сталкиваемся с разнообразными силами, возникающими при столкновении тел, трении, взрыве, натяжении нити, сжатии пружины и т.д. Однако все перечисленные силы являются результатом электромагнитного взаимодействия атомов друг с другом. Теория электромагнитного взаимодействия была создана Максвеллом в 1863 г.

Другим давно известным взаимодействием является гравитационное взаимодействие между телами, обладающими массой. В 1915 г. Эйнштейн создал общую теорию относительности, связавшую гравитационное поле с искривлением пространства-времени.

В 1930-е гг. было обнаружено, что ядра атомов состоят из нуклонов, причем ни электромагнитные, ни гравитационные взаимодействия не могут объяснить, что удерживает нуклоны в ядре. Для описания взаимодействия нуклонов в ядре было предложено сильное взаимодействие.

При продолжении изучения микромира выяснилось, что некоторые явления не описываются тремя типами взаимодействия. Поэтому для описания распада нейтрона и других подобных процессов было предложено слабое взаимодействие.

Сегодня все известные в природе силы являются продуктом четырех фундаментальных взаимодействий , которые можно расположить по убыванию интенсивности в следующем порядке:

  • 1) сильное взаимодействие;
  • 2) электромагнитное взаимодействие;
  • 3) слабое взаимодействие;
  • 4) гравитационное взаимодействие.

Фундаментальные взаимодействия переносятся элементарными частицами - переносчиками фундаментальных взаимодействий. Эти частицы называют калибровочными бозонами. Процесс фундаментальных взаимодействий тел можно представить следующим образом. Каждое из тел испускает частицы - переносчики взаимодействий, которые поглощаются другим телом. При этом тела испытывают взаимное влияние.

Сильное взаимодействие может возникать между протонами, нейтронами и прочими адронами (см. ниже). Оно является короткодействующим и характеризуется радиусом действия сил порядка 10 15 м. Переносчиком сильного взаимодействия между адронами являются пионы , причем длительность протекания взаимодействия составляет порядка 10 23 с.

Электромагнитное взаимодействие имеет на четыре порядка меньшую интенсивность по сравнению с сильным взаимодействием. Оно возникает между заряженными частицами. Электромагнитное взаимодействие является длиннодействующим и характеризуется бесконечным радиусом действия сил. Переносчиком электромагнитного взаимодействия являются фотоны , причем длительность протекания взаимодействия составляет порядка 10“ 20 с.

Слабое взаимодействие имеет на 20 порядков меньшую интенсивность по сравнению с сильным взаимодействием. Оно может возникать между адронами и лептонами (см. ниже). В число лептонов входят, в частности, электрон и нейтрино. Примером слабого взаимодействия является рассмотренный выше p-распад нейтрона. Слабое взаимодействие является короткодействующим и характеризуется радиусом действия сил порядка 10 18 м. Переносчиком слабого взаимодействия являются векторные бозоны , причем длительность протекания взаимодействия составляет порядка 10 10 с.

Гравитационное взаимодействие имеет на 40 порядков меньшую интенсивность по сравнению с сильным взаимодействием. Оно возникает между всеми частицами. Гравитационное взаимодействие является длиннодействующим и характеризуется бесконечным радиусом действия сил. Переносчиком гравитационного взаимодействия, возможно, являются гравитоны. Эти частицы пока не найдены, что может быть связано с малой интенсивностью гравитационного взаимодействия. С ней связано и то, что из-за малости масс элементарных частиц данное взаимодействие в процессах ядер- ной физики несущественно.

В 1967 г. А. Саламом и С. Вайнбергом была предложена теория элект- рослабого взаимодействия , объединившая электромагнетное и слабое взаимодействия. В 1973 г. была создана теория сильного взаимодействия квантовая хромодинамика. Все это позволило создать стандартную модель элементарных частиц, описывающую электромагнитное, слабое и сильное взаимодействия. Все три рассматриваемые здесь типа взаимодействия возникают как следствие постулата, что наш мир симметричен относительно трех типов калибровочных преобразований.

    • 2.2 Слабое взаимодействие
  • 5 Фундаментальные взаимодействия в природе - Итог

Под фундаментальными взаимодействиями (англ. Fundamental interactions) в микромире понимают качественно различающиеся типы взаимодействия элементарных частиц.

1 Фундаментальные взаимодействия существующие в природе

Изучая строение вещества, наличие и взаимодействия физических полей, физика экспериментально установила существование в природе следующих двух типов фундаментальных взаимодействий и их физических полей :

  • Электромагнитные фундаментальные взаимодействия (электромагнитные поля)
  • Гравитационные фундаментальные взаимодействия (гравитационные поля элементарных частиц)

У данных фундаментальных взаимодействий есть соответствующие им физические поля, поэтому их существование невозможно оспаривать. Все иные взаимодействия, действительно существующие в природе, должны сводиться к этим двум типам фундаментальных взаимодействий.

Утверждения некоторых абстрактных теоретических построений о том, что «сегодня достоверно известно существование четырёх фундаментальных взаимодействий (не считая поля Хиггса)» не имеют доказательств – нам выдают желаемое за наблюдаемое. Выдумать модно любую красивую "теорию", нарисовать на компьютере восхитительные картинки, будоражащие воображение, но пока не будет экспериментальных доказательств - это будет оставаться математической гипотезой, или математической сказкой. А поля Хиггса также в природе НЕТ, и масса элементарных частиц вещества Вселенной не создается этим сказочным полем.

1.1 Электромагнитные фундаментальные взаимодействия

Электромагнитные фундаментальные взаимодействия - один из существующих в природе двух типов фундаментальных взаимодействий. Электромагнитные фундаментальные взаимодействия существуют между частицами, обладающими электрическими полями или магнитными полями, как постоянными, так и переменными, как постоянными полями электрических зарядов и магнитных моментов, так и дипольными. Электромагнитные фундаментальные взаимодействия между участвующими частицами осуществляется только посредством электромагнитных полей. У электромагнитных фундаментальных взаимодействий можно выделить следующие компоненты:

Электрическое взаимодействие электрических полей заряженных частиц отличается своим дальнодействующим характером - сила взаимодействия между двумя зарядами спадает как вторая степень расстояния. По такому же закону спадает с расстоянием гравитационное взаимодействие. Это единственная дальнодействующая составляющая у электромагнитных фундаментальных взаимодействий. В ближней зоне электрическое поле заряженной элементарной частицы имеет дипольную структуру.

Магнитное взаимодействие магнитных полей элементарных частиц, обладающих магнитным моментом, отличается своим короткодействующим характером - сила взаимодействия между двумя магнитными моментами в дальней зоне (на расстояниях, значительно превышающих размеры элементарной частицы) спадает как третья степень расстояния.

Электрическое взаимодействие электрических полей нейтральных элементарных частиц, не обладающих электрическим зарядом, но обладающих дипольным электрическим полем, отличается своим короткодействующим характером - сила взаимодействия между двумя дипольными электрическими моментами в дальней зоне (на расстояниях, значительно превышающих размеры элементарной частицы) спадает как третья степень расстояния. По такому же закону спадает с расстоянием магнитное взаимодействие.

Магнитное взаимодействие магнитных дипольных полей нейтральных элементарных частиц, обладающих магнитным дипольным моментом, отличается своим особо короткодействующим характером - сила взаимодействия между двумя дипольными магнитными моментами в дальней зоне (на расстояниях, значительно превышающих размеры элементарной частицы) спадает как четвертая степень расстояния.

Электромагнитные фундаментальные взаимодействия элементарных частиц намного сильнее гравитационных фундаментальных взаимодействий, но их интенсивность зависит не только от величин зарядов и токов, но и от размеров участвующих частиц.

Электромагнитные фундаментальные взаимодействия описываются классической электродинамикой.

В электромагнитных фундаментальных взаимодействиях могут принимать участие объекты, обладающие хотя бы одной из следующих составляющих:

  • электрическим зарядом,
  • электрическим дипольным полем,
  • магнитным моментом,
  • магнитным дипольным полем,
  • переменным электромагнитным полем.

Таковыми являются все из известных элементарных частиц, поэтому утверждение, что электронное нейтрино не участвует в электромагнитных фундаментальных взаимодействиях - НЕ соответствует действительности .

1.2 Гравитационные фундаментальные взаимодействия

В 20 веке считалось, что Гравитационное взаимодействие - универсальное фундаментальное взаимодействие между всеми материальными телами. Но поскольку физика установила структуру материальных тел и природу гравитации, то наши знания о гравитации в начале 21 века существенно изменились.

Под гравитационными фундаментальными взаимодействиями понимаются взаимодействия векторных гравитационных полей элементарных частиц вещества Вселенной . Прежнее понимание гравитации и математические сказки 20 века, связанные с гравитацией, остаются в прошлом. В природе существует не гравитационное поле некоторого абстрактного вещества массой m, а суперпозиция векторных гравитационных полей, создаваемых элементарными частицами вещества, зависящих не только от величины массы элементарных частиц источников гравитации, но и от ориентации их спинов, а математика тут иная. Поэтому, всякое материальное вещество, тепловым движением своих атомов, создает в окружающем пространстве гравитационные волны.

Природа гравитационных свойств элементарных частиц и распространение гравитационных полей в пространстве описана в Теории гравитации элементарных частиц.

2 Вымышленные фундаментальные взаимодействия

Поскольку математическим моделям физики 20 века не хватило существующих в природе всего лишь двух типов фундаментальных взаимодействий, для описания поведения открытых элементарных частиц, им пришлось недостающие ВЫДУМАТЬ.

2.1 Сильное взаимодействие - сказочное фундаментальное взаимодействие сказочных кварков

Сначала цитата из мировой Википедии: "Сильное ядерное взаимодействие (цветовое взаимодействие, ядерное взаимодействие) - одно из четырёх фундаментальных взаимодействий в физике. В сильном взаимодействии участвуют кварки и глюоны и составленные из них частицы, называемые адронами (барионы и мезоны). Оно действует в масштабах порядка размера атомного ядра и менее, отвечая за связь между кварками в адронах и за притяжение между нуклонами (разновидность барионов - протоны и нейтроны) в ядрах. "

Налицо надувательство в физике . В природе существуют ядерные взаимодействия - это есть факт, а остальное - ВЫМЫСЕЛ. К действительно существующему в природе ядерному взаимодействию (которое можно свести к суперпозиции взаимодействий электромагнитных полей элементарных частиц) пристыковываются сказочные кварки со сказочными глюонами - нас пытаются надуть. В природе НЕ найдены кварки и НЕ найдены глюоны, а псевдонаучная сказочка под названием "конфайнмент" - это издевательство над законами природы. Никто НЕ доказал, что барионы состоят из сказочных кварков. За якобы наблюдаемые следы сказочных кварков, нам пытаются вдуть следствия волнового переменного электромагнитного поля элементарных частиц. Ну а сказочный обмен виртуальными частицами противоречит законам природы.

2.2 Слабое взаимодействие

Цитата из мировой Википедии "Слабое ядерное взаимодействие - фундаментальное взаимодействие, ответственное, в частности, за процессы бета-распада атомных ядер и слабые распады элементарных частиц, а также нарушения законов сохранения пространственной и комбинированной чётности в них. Это взаимодействие называется слабым, поскольку два других взаимодействия, значимые для ядерной физики и физики высоких энергий (сильное и электромагнитное), характеризуются значительно большей интенсивностью. Однако оно значительно сильнее четвёртого из фундаментальных взаимодействий, гравитационного.

Слабое взаимодействие является короткодействующим - оно проявляется на расстояниях, значительно меньших размера атомного ядра (характерный радиус взаимодействия 2·10 -18 м).

Переносчиками слабого взаимодействия являются векторные бозоны W + , W - и Z 0 . При этом различают взаимодействие так называемых заряженных слабых токов и нейтральных слабых токов. Взаимодействие заряженных токов (при участии заряженных бозонов W ±) приводит к изменению зарядов частиц и превращению одних лептонов и кварков в другие лептоны и кварки. Взаимодействие нейтральных токов (при участии нейтрального бозона Z 0) не меняет заряды частиц и переводит лептоны и кварки в те же самые частицы. "

А теперь, правда. Доказательствами существования в природе слабого фундаментального взаимодействия физика по-прежнему НЕ располагает - нам подсовывают математическую СКАЗКУ и хотят, чтобы мы ее приняли на веру.

Утверждение о том, что слабое взаимодействия якобы проявляется на расстояниях 2·10 -18 м – это сказка. Элементарные частицы не являются точечными объектами – для сжатия электромагнитных полей элементарных частиц потребуется энергия. Так линейные размеры нейтрона (якобы распадающегося по слабому взаимодействию) на два порядка выше характерного радиуса взаимодействия – это что: в одном крохотном участке нейтрона слабое взаимодействие действует, а в соседних участках уже нет? Известные физике элементарные частицы с ненулевой величиной массы покоя обладают линейными размерами, превосходящими характерный радиус слабого взаимодействия, многие значительно – тогда что и с чем так «взаимодействует».

Законы природы потому и являются законами, что они существуют объективно и работают. А если что-то нарушается, то значит это НЕ закон природы, а некоторая математическая абстракция, подсовываемая нам в качестве якобы закона природы.

Более точное название группы элементарных частиц W + , W - и Z 0 - не векторные бозоны, а векторные мезоны. В природе имеется группировка элементарных частиц с целым спином: векторных мезонов, часть из которых нам подсовывают в качестве переносчиков слабого взаимодействия. У данной искусственно выбранной группки векторных мезонов спин равен единице. Каждая элементарная частица из векторных мезонов, в том числе и нейтральная, обязательно имеет собственную античастицу, отличающуюся знаком электрического заряда (для заряженных частиц) и знаком магнитного момента (для нейтральных частиц). У W + векторного мезона имеется такая античастица: W - векторный мезон. Аналогично и Z 0 векторный мезон имеет собственную античастицу. Но если Z 0 векторный мезон переносит слабое взаимодействие, то за какое взаимодействие в природе отвечает его античастица - за Анти-слабое? Но ведь такого взаимодействия еще не выдумали. Ну а если античастица также отвечает за слабое, то зачем природе дублирование части "переносчиков" взаимодействия.

Переносчиков слабого взаимодействия в природе НЕТ - в природе имеется группировка элементарных частиц с целым спином: векторных мезонов, которые нам подсовывают в качестве этих переносчиков . Физика уже экспериментально открыла около 10 таких элементарных частиц, они обладают свойствами, характерными для векторных мезонов. Согласно полевой теории элементарных частиц, потенциальное число векторных мезонов бесконечно - нас ждут новые интересные открытия, вне рамок Стандартной модели.

Кварков в природе НЕТ , а что касается бета-распадов, то согласно полевой теории элементарных частиц, в основе механизма распада элементарных частиц лежит стремление каждой элементарной частицы, перейти на более низкий энергетический уровень (аналогичное наблюдаем в атоме и атомном ядре) или точнее уровни. Оно ограничено законами природы, наличием других элементарных частиц и их энергетическими уровнями, но это уже из научных открытий физики 21 века.

2.3 Электромагнитное взаимодействие

Цитата из мировой Википедии "Электромагнитное взаимодействие - одно из четырёх фундаментальных взаимодействий. Электромагнитное взаимодействие существует между частицами, обладающими электрическим зарядом. С современной точки зрения электромагнитное взаимодействие между заряженными частицами осуществляется не прямо, а только посредством электромагнитного поля.

С точки зрения квантовой теории поля электромагнитное взаимодействие переносится безмассовым бозоном - фотоном (частицей, которую можно представить как квантовое возбуждение электромагнитного поля). Сам фотон электрическим зарядом не обладает, но может взаимодействовать с другими фотонами путём обмена виртуальными электрон-позитронными парами.

Из фундаментальных частиц в электромагнитном взаимодействии участвуют также имеющие электрический заряд частицы: кварки, электрон, мюон и тау-лептон (из фермионов), а также заряженные калибровочные W ± -бозоны. Остальные фундаментальные частицы Стандартной Модели (все типы нейтрино, бозон Хиггса и переносчики взаимодействий: калибровочный Z 0 -бозон, фотон, глюоны) электрически нейтральны. "

А теперь, правда.

Из существующих в природе электромагнитных фундаментальных взаимодействий (см. пункт 1.1) под разрабатываемые теоретические построения подходило только одно - электрическое взаимодействие электрических полей заряженных частиц, отличающееся своим дальнодействующим характером, у которого сила взаимодействия между двумя зарядами спадает как вторая степень расстояния (именно то, что требовалось квантовой "теории"). Его и выбрали, обозвав электромагнитным взаимодействием , а про остальные позабыли. При этом, начисто забыли о взаимодействиях магнитных полей элементарных частиц, и получилась Сказка для самых маленьких.

Почему взаимодействия электрических полей элементарных частиц обязательно должны переноситься, в нарушение законов природы. Потребность этого со стороны квантовой «теории» не является доказательством существования в природе такого механизма распространения фундаментальных взаимодействий. И утверждение о квантовом возбуждении электромагнитного поля – это очередная математическая сказка. И какую бы математическую сказку ни сочинили о фотоне – фотон все равно останется одиночной электромагнитной волной волнового переменного электромагнитного поля и остается электрически нейтральным . А за взаимодействия электрических полей заряженных элементарных частиц электрически нейтральный фотон никак отвечать не может.

2.4 Электрослабое взаимодействие - пятое сказочное фундаментальное взаимодействие

Цитаты из мировой Википедии "Стандартная модель физики элементарных частиц описывает электромагнитное взаимодействие и слабое взаимодействие как разные проявления единого электрослабого взаимодействия, теорию которого разработали около 1968 года Ш. Глэшоу, А. Салам и С. Вайнберг. За эту работу они получили Нобелевскую премию по физике за 1979 год.

В физике элементарных частиц электрослабое взаимодействие является общим описанием двух из четырёх фундаментальных взаимодействий: слабого взаимодействия и электромагнитного взаимодействия. Хотя эти два взаимодействия очень различаются на обычных низких энергиях, в теории они представляются как два разных проявления одного взаимодействия. При энергиях выше энергии объединения (порядка 100 ГэВ) они соединяются в единое электрослабое взаимодействие.

Теория электрослабого взаимодействия представляет собой созданную в конце 60-х годов 20-го века С. Вайнбергом, Ш. Глэшоу, А. Саламом единую (объединённую) теорию слабого и электромагнитного взаимодействий кварков и лептонов, осуществляемых посредством обмена четырьмя частицами - безмассовыми фотонами (электромагнитное взаимодействие) и тяжёлыми промежуточными векторными бозонами (слабое взаимодействие). Причём фотон и Z-бозон являются суперпозицией других двух частиц - B 0 и W 0 .

Математически объединение осуществляется при помощи калибровочной группы SU(2) × U(1). Соответствующие калибровочные бозоны - фотон (электромагнитное взаимодействие) и W- и Z-бозоны (слабое взаимодействие). В Стандартной модели калибровочные бозоны слабого взаимодействия получают массу из-за спонтанного нарушения электрослабой симметрии, вызванного механизмом Хиггса

После открытия бозона Хиггса, поле Хиггса стали называть пятым фундаментальным взаимодействием. В 2016 году появились предположения, что пятое взаимодействие может быть связано с новой частицей - протофобным X-бозоном, которая вступает в реакции только с электронами и нейтронами, а также входит в состав темного сектора природы. "

Действительность заключается в том, что в природе НЕТ электромагнитного взаимодействия, а есть электромагнитные фундаментальные взаимодействия, и это разные понятия. В природе также НЕТ слабого взаимодействия - физика НЕ установила существования соответствующего ему физического поля, нам просто подсовывают очередную математическую СКАЗКУ.

Сказочный бозон Хиггса никто не открыл. Нам под видом якобы открытого бозона Хиггса пытаются подсунуть вновь открытую обыкновенную элементарную частицу - векторный мезон. - На два фотона могут распадаться мезоны со спином 0 (такие, как π 0 и η 0) а также векторные мезоны со спином 2. Наличие у элементарной частицы канала двух-фотонного распада, не является доказательством, что перед нами "бозон Хиггса". Когда физики в 1950 году открыли π 0 мезон, обладающий двух-фотонным распадом, никому и в голову не приходило, что открыт очередной бозон Хиггса - "источник массы во Вселенной", поскольку тогда эту математическую сказку еще не выдумали.

Ошибочные решения нынешнего состава Нобелевского комитета по физике, к сожалению, стали обычным явлением. Это далеко не последний случай, когда Нобелевскую премию по физике присудили за математическую СКАЗКУ.

Утверждение о том, что элементарная частица ФОТОН является суперпозицией других двух частиц B 0 и W 0 - бозонов - это надувательство в физике. Математические СКАЗКИ допускают все на свете, а физика такого НЕ установила.

Ну а механизм Хиггса это другая математическая СКАЗКА, за которую также присудили Нобелевскую премию по "физике". Вот только Теория гравитации элементарных частиц установила природный источник массы у элементарных частиц и природный механизм ее образования, НЕ имеющий НИЧЕГО общего со сказкой о бозоне Хиггса. - Но это уже из научных открытий физики 21 века

3 Фундаментальные взаимодействия в рамках квантовой теории

Квантовая теория бездоказательно утверждает о наличии следующих фундаментальных взаимодействий:

  • Действительно существующие в природе, ядерные взаимодействия были приписаны не существующим в природе кваркам, осуществляющим виртуальный обмен (в нарушение законов природы) не существующими в природе глюонами.
  • Из электромагнитных фундаментальных взаимодействий квантовая теория учитывает только взаимодействия электрических полей заряженных частиц, называя их электромагнитным взаимодействием. Взаимодействия магнитных полей, наличие которых у элементарных частиц доказано экспериментально, попросту игнорируются.
  • Слабого взаимодействия в природе нет.
  • Такое понимание гравитации, существующей самой по себе, породило сказочку о черных дырах.

А ведь магнитные поля значительно сильнее электрических и обладают короткодействующим характером. - Но тогда для их учета придется начать использовать классическую электродинамику (вместо квантовой электродинамики) и квантовая теория будет вынуждена перейти на фундамент полевой теории элементарных частиц. А если к этому добавить еще главенство закона сохранения энергии и забыть об виртуальных частицах, то микромир увидится совсем по другому - это уже будет не квантовый мир.

4 Создание единой теории фундаментальных взаимодействий

Первой из теорий взаимодействий стал закон всемирного тяготения, выведенный Исааком Ньютоном и опубликованный в 1687 году в труде «Математические начала натуральной философии». Введение Пуассоном в 1813 году понятия гравитационного потенциала и уравнения Пуассона для гравитационного потенциала позволило исследовать гравитационное поле при произвольном распределении вещества. После этого закон всемирного тяготения стал рассматриваться как фундаментальный закон природы, а гравитационное взаимодействие (после 1863 года) как одно из фундаментальных взаимодействий природы. Но это было сделано задолго до открытия физикой строения вещества и элементарных частиц.

Второй из теорий взаимодействий стала теория электромагнетизма, созданная Максвеллом в 1863 году.

В 1915 году, Эйнштейн сформулировал общую теорию относительности (ОТО), описывающую гравитационное поле. В физике появилась идея построения единой теории двух фундаментальных взаимодействий, подобно тому, как Максвеллу удалось создать общее описание электрических и магнитных явлений. По мнению физиков, такая единая теория объединила бы гравитацию (ОТО) и электромагнетизм в качестве частных проявлений некоего единого взаимодействия.

В течение первой половины XX века ряд физиков предприняли многочисленные попытки создания такой теории на фундаменте из ОТО и теории электромагнетизма Максвелла, но эти попытки не дали положительного результата, поскольку общая теория относительности и теория электромагнетизма различны по своей сути. Тяготение (в рамках ОТО) описывается искривлением пространства-времени, и в этом смысле гравитационное поле нематериально, в то время как электромагнитное поле проявляет все необходимые атрибуты материи. - Возможно они строили будущую теорию не на том фундаменте?

Во второй половине XX столетия задача построения единой теории фундаментальных взаимодействий значительно усложнилась введением не существующих в природе (но тогда об этом физика еще НЕ знала) гипотетических слабого и сильного взаимодействий, а также необходимостью квантования теории. – Физика стала развиваться в тупиковом направлении.

В 1967 году Салам и Вайнберг придумали теорию электрослабого взаимодействия, объединив (по их мнению) электромагнетизм и гипотетические слабые взаимодействия. Позднее в 1973 году была предложена теория гипотетического сильного взаимодействия (квантовая хромодинамика). На их основе была построена модель кварков, которая в последующем трансформировалась в Стандартную модель элементарных частиц (прихватив лептоны, не вписавшиеся в кварковую модель элементарных частиц), описывающую (по ее мнению) гипотетическое электромагнитное, гипотетическое слабое и гипотетическое сильное взаимодействия.

Таким образом, до последнего времени, фундаментальные взаимодействия описывались двумя общепринятыми теориями: общей теорией относительности и Стандартной моделью. Их объединения достичь не удалось из-за трудностей (как считалось) создания квантовой теории гравитации. – Физика окончательно зашла в квантовый ТУПИК, что и должно было произойти. Но быть общепринятой - это не значит быть ВЕРНОЙ. Последнее относится к Стандартной модели - модели сказочных кварков, сказочных глюонов и сказочных фундаментальных (сильного и слабого) взаимодействий. Попытка объединить научную теорию со СКАЗКАМИ ведет к вырождению самой НАУКИ. Подлинная НАУКА ограничена только ПРАВДОЙ, а математические СКАЗКИ могут утверждать все, что придет в голову их сторонникам и выдавать этот вымысел за действительность. Выдумать можно все, но где хотя-бы один найденный в природе кварк или глюон (сказки о якобы обнаруженных следах не предлагать), и как может создавать массу во Вселенной частица, живущая менее 0.000001 секунды, для создания которой не хватает энергии термоядерного синтеза звезд: значит звезды не могут массово поставлять в природу эту нестабильную частицу, неспособную даже долететь до ближайшей планеты (она способна пролететь лишь несколько метров до своего распада), массу которой она якобы создает, вместе с массой других планет, комет и астероидов. В природе существовала масса до создания из энергии на ускорителе частицы, названной "бозоном Хиггса", а когда созданная разумными существами на ускорителе частица очень быстро распалась (именно по двухфотонному распаду и обнаружили на ускорителе новую частицу), масса во Вселенной никуда не исчезла. Математика способна нарисовать любую, самую восхитительную математическую модель, но только природа и ее законы (такие нелюбимые математическими сказками) решают чему быть. Вот мы и наблюдаем непрекращающийся поток математических сказок, замалчивающий подлинные научные данные, и выдающий себя за высшее достижение науки. Но что-то я не помню, чтобы Альфред Нобель в своем завещании разрешил выдавать премии его именем за МАТЕМАТИЧЕСКИЕ СКАЗКИ.

Сегодня в 21 веке, физика знает значительно больше о строении вещества и элементарных частиц, из которых состоят атомы и молекулы, а также убедилась в ошибочности квантовой «теории» и в отсутствии в природе вымышленных сильного, слабого и электрослабого взаимодействий. Физика 21 века подтвердила один из постулатов ОТО, что гравитационные и инертные силы имеют одну и ту же природу и эта природа электромагнетизм (см. Теория гравитации элементарных частиц, часть 2), но она также установила, что гравитационное поле, для ОТО, не могут создавать элементарные частицы вещества Вселенной (гравитационное поле есть продукт электромагнетизма, а не некоторое самостоятельное абстрактное понятие, и гравитационное поле элементарной частицы не может сжать электромагнитное поле его породившее в сказочную "черную дыру" ), а в уравнениях электромагнетизма Максвелла еще чего-то не хватает - уравнения Максвелла не описывают одиночную электромагнитную волну: ФОТОН, а также вводят заряды и токи, которых внутри элементарных частиц НЕТ, поскольку постоянные электрические и магнитные поля элементарных частиц ДИПОЛЬНЫЕ.

Не менее пострадала и Квантовая механика, лишившаяся виртуальных частиц и Квантовой "теории" с множеством ее математических сказок. У физики 21 века имеются вопросы и к волновой функции квантовой механики, точнее, к ее физическому смыслу. Если в случае вращения электрона в атоме, квадрат модуля волновой функции (Ψ) определял вероятность (dP) пребывания электрона в данной точке (элементарном объеме dv) пространства, т.е.

    dP=|Ψ| 2 dv
то в случае пространства внутри самого электрона, или другой элементарной частицы с отличной от нуля массой покоя, это бессмысленно – элементарная частица в данной области пространства присутствует, и в соседних областях присутствует тоже и одновременно. В тех областях пространства, в которых напряженность электрического (E) или напряженность магнитного (H) полей (как постоянных, так и переменных) элементарной частицы отлична от нуля – во всех них присутствует элементарная частица. А поскольку постоянные электромагнитные поля элементарных частиц распространяются на бесконечность, то, следовательно: в каждом элементарном объеме пространства одновременно присутствуют электромагнитные поля огромного числа элементарных частиц, даже если их поблизости нет. Как видим, внутри элементарной частицы волновая функция утратила свой общепринятый физический смысл , чего нельзя сказать о классической электродинамике. Ведь именно Классическая электродинамика, совместно с формулой Эйнштейна, позволяют определить массу покоя элементарной частицы:
где определенный интеграл берется по всему пространству, занятому элементарной частицей.

Тогда что отражает волновая функция внутри электрона (или другой элементарной частицы)? - Внутри элементарной частицы (кроме фотона) вращается волновое переменное электромагнитное поле, уравнения которого физике еще предстоит найти, а также имеются постоянные дипольные электромагнитные поля. А причем тут волновая функция – возможно она могла бы как-то отражать волновые процессы, а насчет всего остального, это большой вопрос. Квадрат модуля волновой функции (несмотря на ее нормировку) не может указать, какая часть элементарной частицы сосредоточена в элементарном объеме, поскольку у элементарных частиц имеются и постоянные электромагнитные поля, выходящие за рамки волновых процессов. А вот сочинять математические сказки очень хорошо получается.

Зато у классической электродинамики аналогичная задача не вызвала затруднений. Введем, аналогично квантовой механике:

Соответственно:
Не правда ли интересно. Мы просто разделили плотность электромагнитной энергии элементарной частицы на всю ее электромагнитную энергию – осуществили нормировку, и получили: какая часть (ω) электромагнитной энергии элементарной частицы (а значит – какая часть элементарной частицы) сосредоточена в элементарном объеме пространства dV . И зачем тут квантовая механика c ее математическими абстракциями и волновой функцией, отражающей неизвестно что, когда классическая электродинамика прекрасно справилась самостоятельно, да и физика работает.

Сегодня утверждения Квантовой механики не могут рассматриваться физикой в качестве неоспоримой истины и нуждаются в экспериментальных доказательствах - тем самым Квантовая механика утратила в физике 21 века свое былое всемогущество .

5 Фундаментальные взаимодействия в природе - Итог

Физика, изучая природу, экспериментально установила существование в природе только двух типов фундаментальных взаимодействий, не четырех и не пяти, а всего лишь двух

  • электромагнитных фундаментальных взаимодействий электромагнитных полей элементарных частиц вещества Вселенной,
  • гравитационных фундаментальных взаимодействий - взаимодействий векторных гравитационных полей элементарных частиц вещества Вселенной .

Физика не установила существования в природе слабого поля, и не пока - а вообще. Что касается сказочных переносчиков сказочного слабого взаимодействия: W + , W - и Z 0 -бозонов (или по научному векторных мезонов), в природе у каждого векторного мезона, даже с нулевым электрическим зарядом, обязательно существует своя античастица, в том числе и у Z 0 -векторного мезона, а W - -векторный мезон - это античастица W + -векторному мезону. Просто из найденных в природе векторных мезонов взяли кучку из трех элементарных частиц и навесили на них ярлыки переносчиков сказочного слабого взаимодействия.

Физика также не установила существования в природе глюонного поля, как и самих его сказочных переносчиков - глюонов, поскольку для подходящих под такую "теорию" частиц не оказалось места в спектре элементарных частиц природы. Не на кого было навесить ярлык переносчика сказочного сильного взаимодействия сказочных кварков.

Введение в 2016 году сказочного пятого фундаментального взаимодействия ничего общего с ФИЗИКОЙ-НАУКОЙ НЕ имеет.

Математические теории - СКАЗКИ попытались переписать действительно существующие в природе фундаментальные взаимодействия под себя и добавить недостающие, для подгонки под экспериментальные данные, но доказательствами их существования в природе физика НЕ располагает. Математических теорий можно сочинить столько, сколько есть авторов, желающих это сделать - а Вселенная существует одна, и ей нет дела до нас и литературного творчества авторов от науки.

Таким образом, как и в начале XX века, известные в природе силы по-прежнему сводятся только к двум типам фундаментальных взаимодействий . Существование в природе прочих типов фундаментальных взаимодействий требуется доказать - а не постулировать.


Владимир Горунович

Издавна человек стремился познать и понять окружающий его физический мир. Оказывается, все бесконечное разнообразие физических процессов, происходящих в нашем мире, можно объяснить существованием в природе очень малого количества фундаментальных взаимодействий. Взаимодействием их друг с другом объясняется упорядоченность расположения небесных тел во Вселенной. Именно они являются теми «стихиями», которые движут небесными телами, порождают свет и делают возможной саму жизнь (см. Приложение ).
Таким образом, все процессы и явления в природе, будь то падение яблока, взрыв сверхновой звезды, прыжок пингвина или радиоактивный распад веществ, происходят в результате этих взаимодействий.
Структура вещества этих тел стабильна благодаря связям между составляющими его частицами.

1. ВИДЫ ВЗАИМОДЕЙСТВИЙ

Несмотря на то, что в веществе содержится большое количество элементарных частиц, существует лишь четыре вида фундаментальных взаимодействий между ними: гравитационное, слабое, электромагнитное и сильное.
Самым всеобъемлющим является гравитационное взаимодействие . Ему подвержены все материальные взаимодействия без исключения – и микрочастицы, и макротела. Это значит, что в нем участвуют все элементарные частицы. Проявляется оно в виде всемирного тяготения. Гравитация (от лат. Gravitas – тяжесть) управляет наиболее глобальными процессами во Вселенной, в частности, обеспечивает строение и стабильность нашей Солнечной системы. Согласно современным представлениям, каждое из взаимодействий возникает в результате обмена частицами, называемыми переносчиками этого взаимодействия. Гравитационное взаимодействие осуществляется посредством обмена гравитонами .
, как и гравитационное, по своей природе дальнодействующее: соответствующие силы могут проявляться на очень значительных расстояниях. Электромагнитное взаимодействие описывается зарядами одного типа (электрическими), но эти заряды уже могут иметь два знака – положительный и отрицательный. В отличие от тяготения, электромагнитные силы способны быть как силами притяжения, так и силами отталкивания. Физические и химические свойства разнообразных веществ, материалов и самой живой ткани обусловлены именно этим взаимодействием. Оно же приводит в действие всю электрическую и электронную аппаратуру, т.е. связывает между собой только заряженные частицы. Теория электромагнитного взаимодействия в макромире называется классической электродинамикой.
Слабое взаимодействие менее известно за пределами узкого круга физиков и астрономов, но это нисколько не умаляет его значения. Достаточно сказать, что если бы его не было, погасли бы Солнце и другие звезды, ибо в реакциях, обеспечивающих их свечение, слабое взаимодействие играет очень важную роль. Слабое взаимодействие относится к короткодействующим: его радиус примерно в 1000 раз меньше, чем у ядерных сил.
Сильное взаимодействие – самое мощное из всех остальных. Оно определяет связи только между адронами. Ядерные силы, действующие между нуклонами в атомном ядре, – проявление этого вида взаимодействия. Оно примерно в 100 раз сильнее электромагнитного. В отличие от последнего (а также гравитационного) оно, во-первых, короткодействующее на расстоянии, большем 10–15м (порядка размера ядра), соответствующие силы между протонами и нейтронами, резко уменьшаясь, перестают их связывать друг с другом. Во-вторых, его удается удовлетворительно описать только посредством трех зарядов (цветов), образующих сложные комбинации.
В таблице 1 условно представлены важнейшие элементарные частицы, принадлежащие к основным группам (адроны, лептоны, переносчики взаимодействия).

Таблица 1

Участие основных элементарных частиц во взаимодействиях

Важнейшей характеристикой фундаментального взаимодействия является его радиус действия. Радиус действия – это максимальное расстояние между частицами, за пределами которого их взаимодействием можно пренебречь (Табл.2). При малом радиусе взаимодействие называют короткодействующим , при большом – дальнодействующим .

Таблица 2

Основные характеристики фундаментальных взаимодействий

Сильное и слабое взаимодействия являются короткодействующими . Их интенсивность быстро убывает при увеличении расстояния между частицами. Такие взаимодействия проявляются на небольшом расстоянии, недоступном для восприятия органами чувств. По этой причине эти взаимодействия были открыты позже других (лишь в XX веке) с помощью сложных экспериментальных установок. Электромагнитное и гравитационное взаимодействия являются дальнодействующими . Такие взаимодействия медленно убывают при увеличении расстояния между частицами и не имеют конечного радиуса действия.

2. ВЗАИМОДЕЙСТВИЕ, КАК СВЯЗЬ СТРУКТУР ВЕЩЕСТВА

В атомном ядре связь протонов и нейтронов обуславливает сильное взаимодействие . Оно обеспечивает исключительную прочность ядра, лежащую в основе стабильности вещества в земных условиях.

Слабое взаимодействие в миллион раз менее интенсивно, чем сильное. Оно действует между большинством элементарных частиц, находящихся друг от друга на расстоянии, меньшем 10–17 м. Слабым взаимодействием определяется радиоактивный распад урана, реакции термоядерного синтеза на Солнце. Как известно, именно излучение Солнца является основным источником жизни на Земле.

Электромагнитное взаимодействие , являясь дальнодействующим, определяет структуру вещества за пределами радиуса действия сильного взаимодействия. Электромагнитное взаимодействие связывает электроны и ядра в атомах и молекулах. Оно объединяет атомы и молекулы в различные вещества, определяет химические и биологические процессы. Это взаимодействие характеризуется силами упругости, трения, вязкости, магнитными силами. В частности, электромагнитное отталкивание молекул, находящихся на малых расстояниях, вызывает силу реакции опоры, в результате чего мы, например, не проваливаемся сквозь пол. Электромагнитное взаимодействие не оказывает существенного влияния на взаимное движение макроскопических тел большой массы, так как каждое тело электронейтрально, т.е. оно содержит примерно одинаковое число положительных и отрицательных зарядов.

Гравитационное взаимодействие прямо пропорционально массе взаимодействующих тел. Из-за малости массы элементарных частиц гравитационное взаимодействие между частицами невелико по сравнению с другими видами взаимодействия, поэтому в процессах микромира это взаимодействие несущественно. При увеличении массы взаимодействующих тел (т.е. при увеличении числа содержащихся в них частиц) гравитационное взаимодействие между телами возрастает прямо пропорционально их массе. В связи с этим в макромире при рассмотрении движения планет, звезд, галактик, а также движения небольших макроскопических тел в их полях гравитационное взаимодействие становится определяющим. Оно удерживает атмосферу, моря и все живое и неживое на Земле, Землю, вращающуюся по орбите вокруг Солнца, Солнце в пределах Галактики. Гравитационное взаимодействие играет главную роль в процессах образования и эволюции звезд. Фундаментальные взаимодействия элементарных частиц изображаются с помощью специальных диаграмм, на которых реальной частице соответствует прямая линия, а ее взаимодействие с другой частицей изображается либо пунктиром, либо кривой (рис. 1).

Диаграммы взаимодействий элементарных частиц

Современные физические представления о фундаментальных взаимодействиях постоянно уточняются. В 1967 г. Шелдон Глэшоу , Абдус Салам и Стивен Вайнберг создали теорию, согласно которой электромагнитное и слабое взаимодействия представляют собой проявление единого электрослабого взаимодействия. Если расстояние от элементарной частицы меньше радиуса действия слабых сил (10–17 м), то различие между электромагнитным и слабым взаимодействиями исчезает. Таким образом, число фундаментальных взаимодействий сократилось до трех.

Теория «Великого объединения».
Некоторые физики, в частности, Г.Джорджи и Ш.Глэшоу, предположили, что при переходе к более высоким энергиям должно произойти еще одно слияние – объединение электрослабого взаимодействия с сильным. Соответствующие теоретические схемы получили название Теории «Великого объединения». И эта теория в настоящее время проходит экспериментальную проверку. Согласно этой теории, объединяющей сильное, слабое и электромагнитное взаимодействия, существует лишь два типа взаимодействий: объединенное и гравитационное. Не исключено, что все четыре взаимодействия являются лишь частными проявлениям единого взаимодействия. Предпосылки таких предположений рассматриваются при обсуждении теории возникновения Вселенной (теория Большого Взрыва). Теория «Большого Взрыва» объясняет, как комбинация вещества и энергии породила звезды и галактики.

Различают 4 вида фундаментальных взаимодействий, не сводящихся друг к другу.

Элементарные частицы участвуют во всех видах известных взаимодействий.

Рассмотрим их в порядке убывания интенсивности:

1) сильное,

2) электромагнитное,

3) слабое

4) гравитационное.

Сильное взаимодействие происходит на уровне атомных ядер и представляет собой взаимное притяжение их составных частей. Оно действует на расстоянии порядка 10 -13 см.

В результате сильное взаимодействие образуются материальные системы с высокой энергией связи - атомные ядра. Именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разрушить.

Электромагнитное взаимодействие примерно в тысячу раз слабее сильного, но действует на значительно больших расстояниях. Взаимодействие такого типа свойственно электрически заряженным частицам. В процессе электромагнитного взаимодействия электроны и атомные ядра соединяются в атомы, атомы - в молекулы. В определенном смысле это взаимодействие является основным в химии и биологии.

Слабое взаимодействие возможно между различными частицами. Оно простирается на расстояние порядка 10 -15 -10 -22 см и связано главным образом с распадом частиц. В соответствии с современным уровнем знаний большинство частиц нестабильны именно благодаря слабому взаимодействию. Как пример происходящие в атомном ядре превращения нейтрона, в протон, электрон и антинейтрино.

Гравитационное взаимодействие самое слабое и не учитывается в теории элементарных частиц, поскольку оно дает чрезвычайно малые эффекты. В космических же масштабах гравитационное взаимодействие имеет решающее значение. Радиус его действия не ограничен.

От силы взаимодействия зависит время, в течение которого совершается превращение элементарных частиц.

Ядерные реакции, связанные с сильными взаимодействиями, происходят в течение 10 -24 -10 -23 с.

Изменения, обусловленные электромагнитными взаимодействиями, осуществляются в течение 10 -19 -10 -21 с.

Распад элементарных частиц, связанный со слабым взаимодействием – в среднем за 10 -21 с.

Эти четыре взаимодействия необходимы и достаточны для построения разнообразного мира.

Без сильных взаимодействий не существовали бы атомные ядра, а звезды и Солнце не могли бы генерировать за счет ядерной энергии теплоту и свет.

Без электромагнитных взаимодействий не было бы ни атомов, ни молекул, ни макроскопических объектов, а также тепла и света.

Без слабых взаимодействий не были бы возможны ядерные реакции в недрах Солнца и звезд, не происходили бы вспышки сверхновых звезд, а необходимые для жизни тяжелые элементы не могли бы распространиться во Вселенной.

Без гравитационного взаимодействия не только не было бы галактик, звезд, планет, но и вся Вселенная не могла бы эволюционировать, поскольку гравитация является объединяющим фактором, обеспечивающим единство Вселенной как целого и ее эволюцию.

все четыре фундаментальных взаимодействия, необходимые для создания из элементарных частиц сложного и разнообразного материального мира, можно получить из одного фундаментального взаимодействия - суперсилы .

Теоретически доказано, что при очень высоких температурах (или энергиях) все четыре взаимодействия объединяются в одно.

    При энергии в 100 ГэВ объединяются электромагнитное и слабое взаимодействия. Такая температура соответствует температуре Вселенной через 10 -10 с. после Большого взрыва.

    При энергии 1015 ГэВ к ним присоединяется сильное взаимодействие.

    При энергии 1019 ГэВ происходит объединение всех четырех взаимодействий.

1 ГэВ = 1 млрд. электрон-вольт

Достижения в области исследования элементарных частиц способствовали дальнейшему развитию концепции атомизма.

В настоящее время считается, что среди множества элементарных частиц можно выделить 12 фундаментальных частиц и столько же античастиц .

Шесть частиц - это кварки с экзотическими названиями:

«верхний», «нижний», «очарованный», «странный», «истинный», «прелестный».

Остальные шесть – лептоны: электрон , мюон , тау-частица и соответствующие им нейтрино (электронное, мюонное, тау-нейтрино).

Обычное вещество состоит из частиц первого поколения.

Предполагается, что остальные поколения можно создать искусственно на ускорителях заряженных частиц.

На основе кварковой модели физики разработали модель строения атомов.

    Каждый атом состоит из тяжелого ядра (сильно связанных глюонными полями протонов и нейтронов) и электронной оболочки.

    Число протонов в ядре равно порядковому номеру элемента в Периодической таблице элементов Д.И. Менделеева.

    Протон имеет положительный электрический заряд, массу в 1836 раз больше массы электрона, размеры порядка 10 -13 см.

    Электрический заряд нейтрона равен нулю.

    Протон, согласно кварковой гипотезе, состоит из двух «верхних» кварков и одного «нижнего», а нейтрон - из одного «верхнего» и двух «нижних» кварков. Их нельзя представить в виде твердого шарика, скорее, они напоминают облако с размытыми границами, состоящее из рождающихся и исчезающих виртуальных частиц.

Остаются еще нерешенными вопросы о происхождении кварков и лептонов, о том, являются ли они основными «первокирпичиками» природы и насколько фундаментальны. Ответы на эти вопросы ищут в современной космологии.

Большое значение имеет исследование процессов рождения элементарных частиц из вакуума построение моделей первичного ядерного синтеза, породившего те или иные частицы в момент рождения Вселенной.

Частицы переносчики взаимодействий

Взаимодействие

Переносчик

Заряд

Масса, m e

Современная теория

Сильное

Глюон

0

0

Квантовая хромодинамика (1974)

Электромагнитное

Фотон

0

0

Квантовая электродинамика Фейнмана, Швингера, Томонаги, Дайсона (1940)

Слабое

W + - бозон

+1

157000

Теория электрослабого взаимодействия: Вайнберг, Глэшоу, Салам (1967)

W - бозон

-1

157000

Z 0 -бозон

0

178000

Гравитационное

Гравитон

0

0

ОТО: Эйнштейн (1915)