Болезни Военный билет Призыв

Вселе нная. Видим ли мы вселенную? Современное представление о размере наблюдаемой Вселенной

Наш мир, родившийся в процессе Большого взрыва, и поныне расширяется, а объем разделяющего галактики пространства стремительно увеличивается. Скопления галактик, удаляясь друг от друга, тем не менее остаются устойчивыми образованиями с определенными размерами и стабильной структурой. Да и атомы вовсе не набухают в процессе расширения Вселенной, в отличие от свободно летающих фотонов, увеличивающих свою длину волны в процессе перемещения по расширяющемуся пространству. Куда же ушла энергия реликтовых фотонов? Почему мы можем видеть квазары, удаляющиеся от нас со сверхсветовой скоростью? Что такое темная энергия? Почему доступная нам часть Вселенной все время сокращается? Это лишь часть вопросов, над которыми думают сегодня космологи, стараясь согласовать общую теорию относительности с картиной Мира, наблюдаемой астрономами.

Сфера Хаббла

Согласно закону Хаббла, описывающего расширение Вселенной, радиальные скорости галактик пропорциональны расстоянию до них с коэффициентом Н 0 , который сегодня называется постоянной Хаббла .

Значение Н 0 определяется по наблюдениям галактических объектов, расстояния до которых измерены, главным образом, по ярчайшим звёздам или цефеидам.

Большинство независимых оценок Н 0 дают для этого параметра в настоящее время значение приблизительно около 70 км/с на мегапарсек.

Это означает, что галактики, находящиеся на расстоянии 100 мегапарсек, удаляются от нас со скоростью примерно 7000 км/с.

В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова.

Величина, обратная постоянной Хаббла, имеет смысл характерного времени расширения Вселенной на текущий момент. Для современного значения постоянной Хаббла, возраст Вселенной оценивается приблизительно в 13,8 млрд лет.

Относительно центра сферы Хаббла скорость расширения пространства внутри нее меньше световой, а вне ее – больше. На самой сфере Хаббла световые кванты как бы вморожены в пространство, которое расширяется там со световой скоростью, и поэтому она становится еще одним горизонтом – горизонтом фотонов .

Если расширение вселенной замедляется, то радиус сферы Хаббла возрастает, поскольку он обратно пропорционален уменьшающемуся хаббловскому параметру. В таком случае по мере старения вселенной эта сфера охватывает все новые и новые области пространства и впускает все новые и новые световые кванты. С течением времени наблюдатель увидит галактики и внутригалактические события, которые ранее находились вне его фотонного горизонта. Если же расширение вселенной ускоряется, то радиус хаббловской сферы, напротив, сокращается.

В космологии говорят о трех важных поверхностях: горизонте событий, горизонте частиц и сфере Хаббла. Две последние являются поверхностями в пространстве, а первая – в пространстве - времени. Со сферой Хаббла мы уже познакомились, поговорим теперь о горизонтах.

Горизонт частиц

Горизонт частиц отделяет наблюдаемые в настоящий момент объекты от ненаблюдаемых.

Из-за конечности скорости света наблюдатель видит небесные объекты такими, какими они были в более или менее отдаленном прошлом. За пределами горизонта частиц лежат галактики, которые в данный момент не наблюдаются ни на едином этапе их предшествующей эволюции. Это означает, что их мировые линии в пространстве-времени нигде не пересекают поверхность, по которой распространяется свет, приходящий к наблюдателю с момента рождения Вселенной. Внутри горизонта частиц расположены галактики, чьи мировые линии в прошлом пересеклись с этой поверхностью. Именно эти галактики и составляют часть Вселенной, в принципе доступную наблюдению в данный момент времени.

Для нерасширяющейся Вселенной размер горизонта частиц растет с возрастом, и рано или поздно все области Вселенной окажутся доступными для изучения. Но в расширяющейся Вселенной это не так. Более того, в зависимости от скорости расширения размер горизонта частиц может зависеть от времени, прошедшего с момента начала расширения, по более сложному закону, чем простая пропорциональность. В частности, в ускоренно расширяющейся Вселенной размер горизонта частиц может стремиться к постоянной величине. Это означает, что есть области принципиально ненаблюдаемые, есть процессы принципиально непознаваемые.

Кроме того, размер горизонта частиц ограничивает размер причинно-связанных областей. Действительно, две пространственные точки, разделенные расстоянием больше размера горизонта, никогда не взаимодействовали в прошлом. Поскольку самое быстрое взаимодействие (обмен лучами света) еще не произошло, то и любое другое взаимодействие исключено. Поэтому никакое событие в одной точке не может иметь в качестве своей причины событие, произошедшее в другой точке. В случае, когда размер горизонта частиц стремится к постоянной величине, Вселенная разбивается на причинно-несвязанные области, эволюция в которых протекает независимо.

Таким образом, нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Некоторые теории ранней Вселенной утверждают, что очень далеко за этим горизонтом она совсем не похожа на то, что мы видим. Этот тезис вполне научен, поскольку он вытекает из вполне разумных вычислений, однако его нельзя ни опровергнуть, ни подтвердить с помощью астрономических наблюдений, доступных в наше время, Более того, если пространство и дальше будет расширяться с ускорением, его нельзя будет проверить и в сколь угодно отдаленном будущем.

Источники на горизонте частиц имеют бесконечное красное смещение. Это самые древние фотоны, которые хотя бы теоретически можно сейчас «увидеть». Они были излучены практически в момент Большого взрыва. Тогда размер видимой сегодня части Вселенной был крайне мал, а значит, с тех пор все расстояния очень сильно выросли. Отсюда и возникает бесконечное красное смещение. Конечно, на самом деле мы не можем увидеть фотоны с самого горизонта частиц. Вселенная в годы своей молодости была непрозрачной для излучения. Поэтому фотоны с красным смещением больше 1 000 не наблюдаются. Если в будущем астрономы научатся регистрировать реликтовые нейтрино, то это позволит заглянуть в первые минуты жизни Вселенной, соответствующие красному смещению – Зх10 7 . Еще большего прогресса можно будет достичь при детектировании реликтовых гравитационных волн, добравшись до «планковских времен» (10 -43 секунд с начала взрыва). С их помощью можно будет заглянуть в прошлое настолько далеко, насколько это в принципе возможно с помощью известных на сегодня законов природы. Вблизи начального момента большого взрыва общая теория относительности уже неприменима.

Горизонт событий

Горизонт событий – это поверхность в пространстве-времени . Такой горизонт возникает не во всякой космологической модели. Например, в замедляющейся Вселенной горизонта событий нет – любое событие из жизни удаленных галактик можно увидеть, если достаточно долго подождать. Смысл введения этого горизонта в том, что он отделяет события, которые могут повлиять на нас хотя бы в будущем, от тех, которые никак повлиять на нас не смогут. Если даже световой сигнал о событии не доходит до нас, то и само событие не может оказать на нас влияние. Почему такое возможно? Причин может быть несколько. Самая простая – модель с «концом света». Если будущее ограничено во времени, то ясно, что свет от каких-то далеких галактик дойти до нас просто не сумеет. Большинство современных моделей такой возможности не предусматривают. Есть, правда, версия грядущего Большого разрыва (Big Rip), но она не очень популярна в научных кругах. Зато есть другой вариант – расширение с ускорением.

Недавнее открытие того факта, что Вселенная сейчас расширяется с ускорением, буквально взбудоражило космологов. Причин такого необычного поведения нашего мира может быть две: либо основным «наполнителем» нашей Вселенной является не обычное вещество, а неведомая материя с необычными свойствами (так называемая темная энергия), либо (еще страшнее подумать!) нужно изменять уравнения общей теории относительности. Да еще почему-то человечеству довелось жить в тот краткий по космологическим масштабам период, когда замедленное расширение только-только сменилось ускоренным. Все эти вопросы еще очень далеки от своего разрешения, но уже сегодня можно обсудить то, как ускоренное расширение (если оно будет продолжаться вечно) изменит нашу Вселенную и создаст горизонт событий . Оказывается, что жизнь далеких галактик, начиная с того момента, как они наберут достаточно большую скорость убегания, для нас остановится и их будущее станет нам неизвестно – свет от целого ряда событий просто никогда до нас не дойдет. Со временем, в достаточно далеком будущем, все галактики, не входящие в наше локальное сверхскопление размером 100 мегапарсек, скроются за горизонтом событий.

Прошлое и будущее

«Над проблемами горизонта я задумался еще в аспирантуре, причем даже не по собственной инициативе, - рассказывает профессор Вольфганг Риндлер, который до сих пор преподает физику в Техасском университете в Далласе. - Тогда была в большой моде теория Вселенной, известная как космология стабильного состояния - Steady State Cosmology. Мой научный руководитель ввязался в ожесточенный спор с авторами этой теории и предложил мне разобраться в существе разногласий. Я не стал отказываться от предложенной задачи, и в результате появилась моя работа о космологических горизонтах.

По словам профессора Риндлера, существует очень понятная интерпретация обоих горизонтов нашего мира: «Горизонт событий образован световым фронтом, который в пределе сойдется на нашей Галактике, когда возраст Вселенной возрастет до бесконечности. Напротив, горизонт частиц соответствует световому фронту, испущенному в момент Большого взрыва. Фигурально выражаясь, горизонт событий очерчивается самым последним из световых фронтов, достигающих нашей Галактики, а горизонт частиц - самым первым. Из такого определения становится понятным, что

горизонт частиц задает максимальное расстояние, с которого в нашу нынешнюю эпоху можно наблюдать произошедшее в прошлом. Горизонт событий, напротив, фиксирует максимальную дистанцию, откуда можно получить информацию о бесконечно отдаленном будущем.

Это действительно два разных горизонта, которые необходимы для полного описания эволюции мироздания».

ВСЕЛЕННАЯ

ВСЕЛЕННАЯ

Философский энциклопедический словарь . 2010 .

В. бесконечно разнообразна по формам существования и движения материи. Материя не возникает и не уничтожается, а только переходит из одной формы в другую. Поэтому совершенно произвольной и идеалистич. является теория о постоянном творении материи из "ничего" (F. Hoyle, A new model for the expanding universe, в журн. "Monthly Notices of the Royal Astron. Soc", L., 1948, v. 108; H. Bondi, Cosmology, 1952).

Бесконечное разнообразие материальных форм в бесконечной В. приводит к выводу о том, что органич. , как одна из форм существования материи, не является достоянием только нашей планеты, а возникает повсюду, где складываются соответствующие .

Таковы осн. свойства В., имеющие не только физич., но и большое . значение. В своих наиболее общих выводах наука о строении В. теснейшим образом связана с философией. Отсюда и ожесточенная идеологич. , ведущаяся по вопросам структуры и развития В.

Отрицание бесконечности В. в пространстве и времени со стороны ряда ученых вызывается не только влиянием идеалистич. духовной атмосферы, в к-рой они находятся, но и безуспешными попытками построить непротиворечивую бесконечной В., опирающуюся на всю совокупность известных нам наблюдательных данных. Признание в той или иной форме конечности В. есть по существу отказ от решения важнейшей научной проблемы, переход с позиций науки на позиции религии. В этому диалектич. материализма, доказывая В. в пространстве и времени, стимулирует дальнейшее развитие науки, указывая принципиальные пути для развития теории.

Вопрос о конечности или бесконечности В. – это не только естествознания. Само по себе накопление эмпирич. материала и его математич. обработка только в рамках той или иной отд. науки еще не могут дать исчерпывающего и логически неуязвимого ответа на поставленный вопрос. Наиболее адекватным средством для решения поставленной задачи является филос. , опирающийся на достижения всего естествознания и прочную основу диалектико-материалистич. метода. На первый план здесь выдвигается диалектич. разработка понятия бесконечности, трудности оперирования к-рым ощущает не только , но и др. науки.

Т.о., общих свойств В., ее пространств.-временных характеристик вызывает большие трудности. Но все тысячелетнее развитие науки убеждает в том, что этой проблемы может быть только на путях признания бесконечности В. в пространстве и времени. В общем плане такое решение дано диалектическим материализмом. Однако создание рационального, непротиворечивого представления о В. в целом с учетом всех наблюдаемых процессов – дело будущего.

Лит.: Энгельс Ф., Диалектика природы, М., 1955 его же, Анти-Дюринг, М., 1957; Ленин В. И., Материализм и , Соч., 4 изд., т. 14; Блажко С. Н., Курс общей астрономии, М., 1947; Πолак И. Ф., Курс общей астрономии, 7 изд., М., 1955; Паренаго П. П., Курс звездной астрономии, 3 изд., М., 1954; Эйгенсон М. С, Большая Вселенная, М.–Л., 1936; Фесенков В. Г., Современные представления о Вселенной, М.–Л., 1949; Агекян Т. Α., Звездная Вселенная, М., 1955; Lyttlеton R. Α., The modern universe, L., ; Hоуle F., Frontiers of astronomy, Melb., ; Thomas O., Astronomie. Tatsachen und Probleme, 7 Aufl., Salzburg–Stuttgart, .

А. Бовин. Москва.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .

ВСЕЛЕННАЯ

ВСЕЛЕННАЯ (от греч. “ойкумена” - населенная, обитаемая земля) -“все существующее”, “всеобъемлющее мировое целое”, “тотальность всех вещей”; смысл этих терминов многозначен и определяется концептуальным контекстом. Можно выделить по крайней мере три уровня понятия “Вселенная”.

1. Вселенная как философская имеет смысл, близкий понятию “универсум”, или “мир”: “материальный мир”, “сотворенное бытие” и др. Она играет важную роль в европейской философии. Образы Вселенной в философских онтологиях включались в философские основания научных исследований Вселенной.

2. Вселенная в физической космологии, или Вселенная как целое, - объект космологических экстраполяции. В традиционном смысле - всеобъемлющая, неограниченная и принципиально единственная физическая система (“Вселенная издана в одном экземпляре” - А. Пуанкаре); мир, рассматриваемый с физико-астрономической точки зрения (А.Л.Зельманов). Разные теории и модели Вселенной рассматриваются с этой точки зрения как неэквивалентные друг другу одного и того же оригинала. Такое Вселенной как целого обосновывалось по-разному: 1) ссылкой на “презумпцию экстраполируемости”: космология претендует именно на репрезентацию в системе знания своими концептуальными средствами всеобъемлющего мирового целого, и, пока не доказано обратное, эти претензии должны приниматься в полном объеме; 2) логически-Вселенная определяется как всеобъемлющее мировое целое, и других Вселенных не может существовать по определению и т.д. Классическая, Ньютонова космология создала Вселенной, бесконечной в пространстве и времени, причем бесконечность считалась атрибутивным свойством Вселенной. Общепринято, что бесконечная гомогенная Вселенная Ньютона “разрушила” античный . Однако научные и философские образы Вселенной продолжают сосуществовать в культуре, взаимообогащая друг друга. Ньютоновская Вселенная разрушила образ античного космоса лишь в том смысле, что отделяла человека от Вселенной и даже противопоставляла их.

В неклассической, релятивистской космологии была впервые построена теория Вселенной. Ее свойства оказались совершенно отличными от ньютоновских. Согласно теории расширяющейся Вселенной, развитой Фридманом, Вселенная как целое может быть и конечной, и бесконечной в пространстве, а во времени она во всяком случае конечна, т. е. имела начало. А. А. Фридман считал, что мир, или Вселенная как объект космологии, “бесконечно уже и меньше мира-вселенной философа”. Напротив, подавляющее большинство космологов на основе принципа единообразия отождествляло модели расширяющейся Вселенной с нашей Метагалактикой. Начальный расширения Метагалактики рассматривался как “начало всего”, с креационистской точки зрения - как “сотворение мира”. Некоторые космологи-релятивисты, считая единообразия недостаточно обоснованным упрощением, рассматривали Вселенную как всеобъемлющую физическую систему большего масштаба, чем Метагалактика, а Метагалактику-лишь как ограниченную часть Вселенной.

Релятивистская космология коренным образом изменила образ Вселенной в научной картине мира. В мировоззренческом плане она вернулась к образу античного космоса в том смысле, что снова связала человека и (эволюционирующую) Вселенную. Дальнейшим шагом в этом направлении явился в космологии. Современный подход к интерпретации Вселенной как целого основывается, во-первых, на разграничении философской идеи мира и Вселенной как объекта космологии; во-вторых, это понятие релятивизируется, т. е. его объем соотносится с определенной ступенью познания, космологической теорией или моделью - в чисто лингвистическом (безотносительно к их объектному статусу) или же в объектном смысле. Вселенная интерпретировалась, напр., как “наибольшее событий, к которому могут быть применены наши физические законы, экстраполированные тем или иным образом” или “могли бы считаться физически связанными с нами” (Г. Бонди).

Развитием этого подхода явилась концепция, согласно которой Вселенная в космологии-это “все существующее”. не в каком-то абсолютном смысле, а лишь с точки зрения данной космологической теории, т. е. физическая система наибольшего масштаба и порядка, которой вытекает из определенной системы физического знания. Это относительная и преходящая познанного мегамира, определяемая возможностями экстраполяции системы физического знания. Под Вселенной как целым не во всех случаях подразумевается один и тот же “оригинал”. Напротив, разные теории могут иметь в качестве своего объекта неодинаковые оригиналы, т. е. физические системы разного порядка и масштаба структурной иерархии. Но все претензии на репрезентацию всеобъемлющего мирового целого в абсолютном смысле остаются бездоказательными. При интерпретации Вселенной в космологии следует проводить между потенциально и актуально существующим. То, что сегодня считается несуществующим, завтра может вступить в сферу научного исследования, окажется существующим (с точки зрения физики) и будет включено в наше понимание Вселенной.

Так, если теория расширяющейся Вселенной описывала по сути нашу Метагалактику, то наиболее популярная в современной космологии теория инфляционной (“раздувающейся”) Вселенной вводит понятие о множестве “других вселенных” (или, в терминах эмпирического языка, внеметагалактических объектов) с качественно различными свойствами. Инфляционная теория признает, т. о., мегаскопическое нарушение принципа единообразия Вселенной и вводит дополнительный ему по смыслу принцип бесконечного многообразия Вселенной. Тотальность этих вселенных И. С. Шкловский предложил назвать “Метавселенной”. Инфляционная космология в специфической форме возрождает, т. о., идею бесконечности Вселенной (Метавселенной) как ее бесконечного многообразия. Объекты, подобные Метагалактике, в инфляционной космологии часто называют “минивселенными”. Минивселенные возникают путем спонтанных флуктуации физического вакуума. Из этой точки зрения вытекает, что начальный момент расширения нашей Вселенной, Метагалактики не обязательно должен считаться абсолютным началом всего. Это лишь начальный момент эволюции и самоорганизации одной из космических систем. В некоторых вариантах квантовой космологии понятие Вселенной тесно увязывается с существованием наблюдателя (“принцип соучастия”). “Порождая на некотором ограниченном этапе своего существования наблюдателейучастников, не приобретает

Каждый из нас хотя бы раз задумывался, в каком огромном мире мы живем. Наша планета — это безумное количество городов, сел, дорог, лесов, рек. Большинство за свою жизнь не успевает увидеть и половины. Представить грандиозные масштабы планеты сложно, но есть задача еще тяжелее. Размеры Вселенной — вот что, пожалуй, не под силу вообразить даже самому развитому уму. Попробуем разобраться, что думает на этот счет современная наука.

Основное понятие

Вселенная — это все, что нас окружает, о чем мы знаем и догадываемся, что было, есть и будет. Если снизить накал романтизма, то этим понятием определяется в науке все, существующее физически, с учетом временного аспекта и законов, регулирующих функционирование, взаимосвязь всех элементов и так далее.

Естественно, представить себе реальные размеры Вселенной достаточно трудно. В науке этот вопрос является широко обсуждаемым и единого мнения пока нет. В своих предположениях астрономы опираются на существующие теории формирования мира, каким мы его знаем, а также на полученные в результате наблюдения данные.

Метагалактика

Различные гипотезы определяют Вселенную как безразмерное или невыразимо огромное пространство, о большей части которого мы мало что знаем. Для внесения ясности и возможности обсуждения области, доступной для изучения, было введено понятие Метагалактика. Этот термин обозначает часть Вселенной, доступной для наблюдения астрономическими методами. Благодаря совершенствованию техники и знаний она постоянно увеличивается. Метагалактика является частью так называемой наблюдаемой Вселенной — пространства, в котором материя за период своего существования успела достигнуть современного положения. Когда речь заходит о понимании того, каковы размеры Вселенной, в большинстве случаев говорят о Метагалактике. Современный уровень развития техники позволяет наблюдать объекты, расположенные на расстоянии до 15 млрд световых лет от Земли. Время в определении этого параметра играет, как видно, не меньшую роль, чем пространство.

Возраст и размеры

Согласно некоторым моделям Вселенной, она никогда не появлялась, а существует вечно. Однако главенствующая сегодня теория Большого взрыва задает нашему миру «отправную точку». По представлениям астрономов, возраст Вселенной — примерно 13,7 млрд лет. Если переместиться назад во времени, то можно вернуться к Большому взрыву. Независимо от того, бесконечны ли размеры Вселенной, наблюдаемая ее часть имеет границы, поскольку конечна скорость света. В нее входят все те местоположения, которые могут оказывать воздействие на земного наблюдателя со времени Большого взрыва. Размеры наблюдаемой Вселенной увеличиваются благодаря ее постоянному расширению. По последним оценкам, она занимает пространство в 93 миллиарда световых лет.

Множество

Посмотрим, что представляет собой Вселенная. Размеры космического пространства, выраженные в сухих цифрах, конечно, поражают, но трудны для понимания. Для многих будет проще осознать масштабы окружающего мира, если они узнают, сколько систем, подобных Солнечной, умещается в нем.

Наша звезда и окружающие ее планеты лишь крохотная часть Млечного пути. По данным астрономов, Галактика насчитывает примерно 100 миллиардов звезд. У некоторых из них уже обнаружены экзопланеты. Поражают не только размеры Вселенной — уже пространство, занимаемое ее ничтожной частью, Млечным Путем, внушает уважение. Свету для того чтобы пройти нашу галактику, требуется сто тысяч лет!

Местная группа

Внегалактическая астрономия, которая начала развиваться после открытий Эдвина Хаббла, описывает множество структур, схожих с Млечным путем. Ближайшие его соседи — это Туманность Андромеды и Большое и Малое Магеллановы Облака. Вместе с еще несколькими «спутниками» они составляют местную группу галактик. От соседнего аналогичного формирования ее отделяет приблизительно 3 млн световых лет. Даже страшно представить, сколько потребовалось бы современному самолету времени, чтобы преодолеть такое расстояние!

Наблюдаемые

Все местные группы разделены обширным пространством. Метагалактика включает несколько миллиардов структур, аналогичных Млечному пути. Размеры Вселенной действительно поражают. Световому лучу для преодоления расстояния от Млечного пути до Туманности Андромеды требуется 2 млн лет.

Чем дальше от нас расположен участок космоса, тем меньше мы знаем о его современном состоянии. Из-за конечности скорости света ученые могут получить информацию только о прошлом таких объектов. По тем же причинам, как уже было сказано, область Вселенной, доступной для астрономических изысканий, ограничена.

Другие миры

Однако это еще не все поражающее воображения сведения, которыми характеризуется Вселенная. Размеры космического пространства, по-видимому, значительно превосходят Метагалактику и наблюдаемую часть. Теория инфляции вводит такое понятие, как Мультивселенная. Она состоит из множества миров, вероятно, образовавшихся одновременно, не пересекающихся друг с другом и развивающихся независимо. Современный уровень развития техники не дает надежды на познание подобных соседних Вселенных. Одна из причин — все та же конечность скорости света.

Быстрое развитие науки о космосе меняет наше представление о том, каких размеров Вселенная. Современное состояние астрономии, составляющие ее теории и выкладки ученых трудны для понимания непосвященного человека. Однако даже поверхностное изучение вопроса показывает, насколько огромен мир, частью которого мы являемся, и как мало о нем мы еще знаем.

Если бы наша Вселенная не расширялась, и скорость света стремилась к бесконечности, вопросы «видим ли мы всю Вселенную?» или «как далеко мы можем видеть Вселенную?» не имели бы смысла. Мы бы «в прямом эфире» видели бы все, что происходит в любом уголке космического пространства.

Но, как известно, скорость света конечна, а наша Вселенная расширяется, причем делает это с ускорением. Если скорость расширения постоянно возрастает, то существуют области, убегающие от нас со сверхсветовой скоростью, которые, согласно логике, видеть мы не можем. Но как такое возможно? Неужели это не противоречит Теории Относительности? В данном случае нет: ведь расширяется само пространство, а у объектов внутри него остаются досветовые скорости. Для наглядности можно представить себе нашу Вселенную в виде воздушного шарика, а пуговица, приклеенная к шарику, будет играть роль галактики. Попробуйте надуть шарик: галактика-пуговица начнет удаляться от вас вместе с расширением пространства шарика-Вселенной, хотя собственная скорость галактики-пуговицы останется нулевой.

Получается, должна существовать область, внутри которой находятся объекты, убегающие от нас со скоростью меньшей скорости света, и излучение которых мы можем фиксировать в свои телескопы. Эта область называется Сферой Хаббла . Она заканчивается границей, где скорость удаления далеких галактик будет совпадать со скоростью движения их фотонов, которые летят в нашем направлении (т.е. скоростью света). Эта граница получила название Горизонт Частиц . Очевидно, что объекты, находящиеся за Горизонтом Частиц, будут иметь скорость выше скорости света и их излучение не может нас достигнуть. Или все-таки может?

Давайте представим, что галактика Х находилась в Сфере Хаббла и испускала свет, который без проблем доходил до Земли. Но из-за ускоряющегося расширения Вселенной, галактика Х вышла за Горизонт Частиц, и уже удаляется от нас со скоростью выше скорости света. Но её фотоны, испущенные в момент нахождения в Сфере Хаббла, все ещё летят в направлении нашей планеты, и мы продолжаем их фиксировать, т.е. наблюдаем объект, который в данный момент удаляется от нас со скоростью, превышающей скорость света.

Но что, если галактика Y никогда не находилась в Сфере Хаббла и в момент начала излучения сразу же имела сверхсветовую скорость? Получается, ни один её фотон за все время существования не побывал в нашей части Вселенной. Но это не означает, что этого не произойдет в будущем! Нельзя забывать, что Сфера Хаббла тоже расширяется (вместе со всей Вселенной), и её расширение больше скорости, с которой от нас удаляется фотон галактики Y (мы нашли скорость удаления фотона галактики Y, вычтя из скорости убегания галактики Y скорость света). При выполнении данного условия когда-нибудь Сфера Хаббла догонит данные фотоны, и мы сможем засечь галактику Y. Наглядно данный процесс продемонстрирован на схеме внизу.

Пространство, включающее в себя Сферу Хаббла и Горизонт частиц , называется Метагалактикой или Видимой Вселенной .

Но есть ли что-нибудь, находящееся за Метагалактикой? Некоторые космические теории предполагают наличие так называемого Горизонта Событий . Возможно, вы уже слышали это название из описания черных дыр. Принцип его действия остается таким же: мы никогда не увидим то, что находится за пределами Горизонта Событий, так как находящиеся за Горизонтом Событий объекты будут иметь скорость убегания фотонов большую, чем скорость расширения Сферы Хаббла, поэтому их свет будет всегда убегать от нас.

Но чтобы Горизонт Событий существовал, Вселенная должна расширяться с ускорением (что согласуется с современными представлениями о мироустройстве). В конце концов, за Горизонт Событий уйдут все окружающие нас галактики. Это будет выглядеть так, будто время в них остановилось. Мы увидим, как они бесконечно уходят за пределы видимости, но так никогда и не увидим их полностью скрывшимися.

Это интересно: если бы вместо галактик мы наблюдали в телескоп большие часы с циферблатом, а уход за Горизонт Событий обозначал бы положение стрелок на 12:00, то они бы бесконечно долго замедлялись на 11:59:59, а изображение становилось бы более нечетким, т.к. до нас долетало бы всё меньше фотонов.

Но если ученые ошибаются, и в будущем расширение Вселенной начнет замедляться, то это сразу же отменяет существование Горизонта Событий, так как излучение любого объекта рано или поздно превысит скорость его убегания. Нужно будет только подождать сотни миллиардов лет…

Иллюстрация: depositphotos| JohanSwanepoel

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Что находится за пределами Вселенной? Этот вопрос слишком сложный для человеческого понимания. Это связано с тем, что в самую первую очередь необходимо определить ее границы, а это далеко не просто.

Общепринятый ответ учитывает только наблюдаемую Вселенную. Согласно ему размеры определяются скоростью света, потому что возможно видеть только свет, который излучают или отражают объекты в космосе. Невозможно заглянуть дальше, чем наиболее отдаленный свет, который путешествует все время существования Вселенной.

Пространство продолжает увеличиваться, но все еще конечно. Его размер иногда упоминается как объем или сфера Хаббла. Человек во Вселенной, вероятно, никогда не сможет узнать, что за пределами ее границ. Так что для всех исследований это единственное пространство, с которым когда-либо придется взаимодействовать. По крайней мере, в ближайшее время.

Величие

Всем известно, что Вселенная велика. На сколько миллионов световых лет она простирается?

Астрономы тщательно изучают космическое излучение микроволнового фона - послесвечения Большого взрыва. Они ищут связь между тем, что происходит на одной стороне неба, и тем, что на другой. И пока нет никаких доказательств, что там есть что-то общее. Это означает, что на протяжении 13,8 миллиардов лет в любом направлении Вселенная не повторяется. Столько нужно времени свету, чтобы он достиг хотя бы видимого края этого пространства.

Нас все еще волнует вопрос, что находится за пределом Вселенной, которую можно наблюдать. Астрономы допускают, что космос бесконечен. «Вещество» в нем (энергия, галактики и т. д.) распределено точно таким же образом, как и в наблюдаемой Вселенной. Если это действительно так, тогда появляются разные аномалии того, что находится на краю.

За пределами объема Хаббла расположено не просто больше разных планет. Там можно найти вообще все, что только может существовать. Если продвинуться достаточно далеко, можно даже найти другую солнечную систему с Землей, идентичной во всех отношениях, за исключением того, что у вас была на завтрак каша вместо яичницы. Или завтрак отсутствовал вовсе. Или, допустим, вы встали пораньше и ограбили банк.

На самом деле космологи считают, что, если пройти достаточно далеко, то можно найти еще одну сферу Хаббла, которая совершенно идентична нашей. Большинство ученых считают, что известная нам Вселенная имеет границы. Что за их пределом, остается величайшей загадкой.

Космологический принцип

Это понятие означает, что независимо от места и направления наблюдателя, каждый видит одну и ту же картину Вселенной. Разумеется, это не относится к исследованиям меньшего масштаба. Такая однородность пространства вызвана равноправием всех его точек. Обнаружить это явление можно лишь в масштабах скопления галактик.

Что-то, сродни этому понятию было впервые предложено сэром Исааком Ньютоном в 1687 году. И впоследствии, в 20 веке, это же было подтверждено наблюдениями других ученых. Логично, если все возникло из одной точки Большого взрыва, а затем расширилось до Вселенной, то будет оставаться довольно однородным.

Расстояние, на котором можно наблюдать за космологическим принципом, чтобы найти это очевидное равномерное распределение материи, занимает примерно 300 миллионов световых лет от Земли.

Однако все изменилось в 1973 году. Тогда была обнаружена аномалия, нарушающая космологический принцип.

Великий аттрактор

Огромная концентрация массы обнаружилась на расстоянии 250 миллионов световых лет, близ созвездий Гидры и Центавра. Ее вес настолько велик, что его можно было бы сравнить с десятком тысяч масс Млечных Путей. Эта аномалия считается галактическим сверхскоплением.

Этот объект получил название Великий аттрактор. Его гравитационная сила настолько сильна, что воздействует на другие галактики и их скопления в течение нескольких сотен световых лет. Он долгое время оставался одной из самых больших тайн космоса.

В 1990 г. было обнаружено, что движение колоссальных скоплений галактик, называющихся Великим аттрактором, стремится к другой области космоса - за край Вселенной. Пока что за этим процессом можно наблюдать, хотя сама аномалия находится в «зоне избегания».

Темная энергия

Согласно Закону Хаббла, все галактики должны двигаться равномерно друг от друга, сохраняя космологический принцип. Однако в 2008 г. появилось новое открытие.

Wilkinson Microwave Anisotropy Probe (WMAP) обнаружил большую группу кластеров, которые двигались в одном направлении со скоростью до 600 миль в секунду. Все они держали путь к небольшой области неба между созвездиями Центавра и Паруса.

Этому нет никакой очевидной причины, и, поскольку это было необъяснимое явление, его назвали «темной энергией». Она вызвана чем-то вне пределов наблюдаемой Вселенной. В настоящее время есть только догадки о ее природе.

Если скопления галактик тянутся к колоссальной черной дыре, то их движение должно ускоряться. Темная энергия указывает на постоянную скорость космических тел в миллиарды световых лет.

Одна из возможных причин этого процесса - массивные структуры, что находятся за пределами Вселенной. Они оказывают огромное гравитационное влияние. Внутри наблюдаемой Вселенной нет гигантских структур с достаточной гравитационной тяжестью, чтобы вызвать это явление. Но это не значит, что они не могли существовать за пределами наблюдаемой области.

Это означало бы, что устройство Вселенной не является однородным. Что касается самих структур, они могут быть буквально любыми, от агрегатов материи и до энергии в масштабах, которые едва можно представить. Возможно даже, что это направляющие гравитационные силы из других Вселенных.

Бесконечные пузыри

Говорить о чем-то за пределами сферы Хаббла не совсем верно, так как это по-прежнему имеет идентичное устройство Метагалактики. «Неизвестность» имеет те же физические законы Вселенной и константы. Есть версия, что Большой взрыв вызвал появление пузырей в структуре пространства.

Сразу после него, до момента начала инфляции Вселенной, возникла своего рода «космическая пена», существующая как скопление «пузырей». Один из объектов этого вещества внезапно расширился, со временем став Вселенной, известной сегодня.

Но что получилось из других пузырей? Александр Кашлинский - глава команды НАСА, организации, которая обнаружила «темную энергию», - заявил: «Если отдалиться на достаточно большое расстояние, то можно увидеть структуру, которая находится вне пузыря, за пределами Вселенной. Эти структуры должны вызвать движение».

Таким образом, «темная энергия» воспринимается как первое свидетельство существования другой Вселенной, или даже «Мультивселенной».

Каждый пузырь - это область, которая перестала растягиваться вместе с остальной частью пространства. Она сформировала свою собственную Вселенную со своими особыми законами.

В этом сценарии пространство бесконечно, и каждый пузырь также не имеет границ. Даже если можно нарушить рубеж одного из них, пространство между ними все еще расширяется. Со временем будет невозможно добраться до следующего пузыря. Такое явление до сих пор остается одной из величайших тайн космоса.

Черная дыра

Теория, предложенная физиком Ли Смолином, предполагает, что каждый подобный космический объект в устройстве Метагалактики вызывает образование нового. Стоит только представить сколько черных дыр во Вселенной. Внутри каждой действуют физические законы, отличные от тех, что были у предшественника. Подобная гипотеза была впервые изложена в 1992 году в книге «Жизнь Космоса».

Звезды во всем мире, которые попадают в черные дыры, сжимаются до невероятно экстремальной плотности. В таких условиях это пространство взрывается и расширяется до собственной новой Вселенной, отличной от оригинала. Точка, где время останавливается внутри черной дыры, - это начало Большого взрыва новой Метагалактики.

Экстремальные условия внутри разрушенной черной дыры приводят к небольшим случайным изменениям основных физических сил и параметров в дочерней Вселенной. У каждого из них есть отличные от родительской характеристики и показатели.

Существование звезд является предпосылкой для формирования жизни. Это связано с тем, что углерод и другие сложные молекулы, обеспечивающие жизнь, создаются именно в них. Поэтому для формирования существ и Вселенной нужны одни и те же условия.

Критика космического естественного отбора как научной гипотезы заключается в отсутствии прямых доказательств на данном этапе. Но следует иметь в виду, что с точки зрения убеждений он не хуже, чем предлагаемые научные альтернативы. Нет подтверждений того, что находится за пределами Вселенной, будь это Мультивселенная, теория струн или циклическое пространство.

Множество параллельных Вселенных

Эта идея кажется чем-то, что мало относится к современной теоретической физике. Но мысль о существовании Мультиверса уже давно считается научной возможностью, хотя все еще вызывает активные дискуссии и деструктивные споры среди физиков. Этот вариант полностью разрушает представление о том, сколько Вселенных в космосе.

Важно иметь в виду, что Мультиверс не теория, а скорее следствие современного понимания теоретической физики. Это отличие имеет решающее значение. Никто не махнул рукой и не сказал: «Пусть будет Мультивселенная!». Эта идея была получена из текущих учений, таких как квантовая механика и теория струн.

Мультиверс и квантовая физика

Многим известен мысленный эксперимент «Кот Шредингера». Его суть заключается в том, что Эрвин Шредингер, австрийский физик-теоретик, указывал на несовершенство квантовой механики.

Ученый предлагает представить животное, которое поместили в закрытую коробку. Если открыть ее, можно узнать одно из двух состояний кота. Но пока коробка закрыта, животное либо живое, либо мертвое. Это доказывает то, что не существует состояния, сочетающего жизнь и смерть.

Все это кажется невозможным просто потому, что человеческое восприятие не может этого осознать.

Но это вполне реально в соответствии со странными правилами квантовой механики. Пространство всех возможностей в ней огромно. Математически квантовомеханическое состояние представляет собой сумму (или суперпозицию) всех возможных состояний. В случае «Кота Шредингера», эксперимент представляет собой суперпозицию «мертвых» и «живых» положений.

Но как это интерпретировать, чтобы оно имело какой-либо практический смысл? Популярный способ состоит в том, чтобы думать обо всех этих возможностях так, что единственным «объективно истинным» состоянием кота является - наблюдаемый. Однако можно также согласиться с тем, что эти возможности верны и все они существуют в разных Вселенных.

Теория струн

Это самая перспективная возможность объединить квантовую механику и гравитацию. Это трудно, потому что сила тяготения так же неописуема в небольших масштабах, как и атомы и субатомные частицы в рамках квантовой механики.

Но теория струн, в которой говорится, что все фундаментальные частицы состоят из мономерных элементов, описывает сразу все известные силы природы. К ним относят гравитацию, электромагнетизм и ядерные силы.

Однако для математической теории струн требуется не менее десяти физических измерений. Мы можем наблюдать только четыре измерения: высоту, ширину, глубину и время. Поэтому дополнительные измерения от нас скрыты.

Чтобы иметь возможность использовать теорию для объяснения физических явлений, эти дополнительные исследования «уплотнены» и слишком малы в небольших масштабах.

Проблема или особенность теории струн заключается в том, что существует много способов произвести компактификацию. Каждая из них приводит к созданию Вселенной с различными физическими законами, такими как отличные массы электронов и константы силы тяжести. Однако есть также серьезные возражения против методологии компактификации. Поэтому проблема не совсем решена.

Но возникает очевидный вопрос: в какой из этих возможностей мы живем? Теория струн не обеспечивает механизм определения этого. Она делает ее бесполезной, поскольку не представляется возможным ее досконально протестировать. Но исследование края Вселенной превратило эту ошибку в особенность.

Последствия Большого взрыва

Во время самого раннего устройства Вселенной был период ускоренного расширения, называемый инфляцией. Первоначально она объясняла, почему сфера Хаббла почти однородна по температуре. Однако инфляция также предсказала спектр флуктуаций температуры вокруг этого равновесия, который позднее был подтвержден несколькими космическими аппаратами.

Хотя точные детали теории все еще горячо обсуждаются, инфляция широко принимается физиками. Однако следствие этой теории состоит в том, что должны быть другие объекты во Вселенной, которые все еще ускоряются. Из-за квантовых флуктуаций пространства-времени некоторые ее части никогда не достигнут конечного состояния. Это означает, что пространство будет вечно расширяться.

Этот механизм генерирует бесконечное количество Вселенных. Комбинируя этот сценарий с теорией струн, есть вероятность, что каждая из них обладает другой компактификацией дополнительных размеров и, следовательно, имеет разные физические законы Вселенной.

Согласно учению Мультиверс, предсказанному теорией струн и инфляцией, все Вселенные живут в одном и том же физическом пространстве и могут пересекаться. Они неизбежно должны сталкиваться, оставляя следы в космическом небе. Их характер имеет широкий спектр - от холодных или горячих точек на космическом микроволновом фоне до аномальных пустот в распределение галактик.

Поскольку столкновение с другими Вселенными должно происходить в определенном направлении, ожидается, что любые вмешательства нарушают однородность.

Некоторые ученые ищут их через аномалии в космическом микроволновом фоне, послесвечении Большого Взрыва. Другие в гравитационных волнах, которые рябят в пространстве-времени по мере прохождения массивных объектов. Эти волны могут непосредственно доказывать существование инфляции, которая в конечном итоге усиливает поддержку теории Мультивселенной.