Болезни Военный билет Призыв

Время в биологии

Давно замечено, что все животные и растения обладают способностью ощущать время, или, как говорят ученые, имеют биологические часы . Ход этих часов тесно связан со сменой дня и ночи, сезонов года и другими внешними побудителями. Стрелки биологических часов сообщают растениям, когда им надлежит зацвести, животным — приступить к охоте, птицам — устраивать брачные «концерты» и отправляться в теплые края, а человеку — проснуться и не опоздать на работу.

Ученые полагают, что сама идея времени возникла тогда, когда наши предки учились думать: ведь ум действует последовательно — мы не можем сосредоточиться сразу же на двух событиях, все впечатления осознаются нами в некоей протяженности. С веками способность измерять время стала необходимым условием выживания организмов.

Человек рождается снабженным биологическими часами , и только по мере становления речи у него появляются вторые психологические часы, позволяющие различать прошлое, настоящее и будущее. Будущее — это то, к чему мы движемся, определенный промежуток между потребностью и моментом ее удовлетворения, образно говоря, расстояние между чашей и губами. Будущее не идет к нам, мы сами идем к нему, прошлое же остается позади.

Так время обрело характер движения. Когда мы не заняты делом, время ползет черепашьим шагом, но оно неудержимо мчится, когда мы поглощены любимым занятием. К слову сказать, первобытный человек на основе своих наивных представлений о времени пришел к выводу о неотвратимости смерти. Инстинкт подсказал ему способы борьбы с небытием, и он «перехитрил» время тем, что увековечил прошлое в ритуалах. Отмечая их, торжественно осуществляя обряды, человек убедился в необходимости измерять время. По меткому выражению Аристотеля, прошлое стало объектом памяти, будущее объектом надежд.

Много труда отдано было учеными поискам таинственных биологических часов. Кропотливые и сложные исследования подтвердили, что живые организмы мерят время периодическими процессами — от кратких, в доли секунды, реакций в клетке, до суточных и месячных циклов на уровне организма, который буквально «пронизан» ритмическими процессами.

Как же все-таки мы отмечаем время? В какой-то мере приблизился к ответу наш соотечественник известный ученый-физиолог И. П. Павлов: головной мозг за день получает раздражение, утомляется, затем восстанавливается. Пищеварительный канал периодически то занят пищей, то освобождается от нее. И так как каждое состояние может отражаться на больших полушариях, то вот и основание, чтобы отличить один момент от другого. Действительно, чудо природы — мозг человека — способен отражать события, длящиеся от тысячной доли секунды до десятков лет. И только поражение определенных его областей стирает следы прошлого, дезориентирует в событиях настоящего и лишает нас возможности планировать будущее.

Как же работают наши внутренние часы , хотя бы на протяжении суток? Вот их ход:

1 час ночи . Мы спим уже около трех часов, пройдя через все фазы сна. Около часа ночи наступает легкая фаза сна, мы можем пробудиться. В это время мы особенно чувствительны к боли.

2 часа ночи . Большинство наших органов работают в экономичном режиме. Трудится только печень. Она использует эти спокойные минуты, чтобы интенсивнее переработать необходимые нам вещества. И прежде всего те, которые удаляют из организма все яды. Организм подвергается своего рода «большой стирке». Если вы не спите в это время, не следует пить кофе, чай и особенно спиртное. Лучше всего выпить стакан воды или молока.

3 часа ночи . Тело отдыхает, физически мы полностью истощены. Если вам приходится бодрствовать, постарайтесь не рассеиваться, а сосредоточьтесь полностью над работой, которую необходимо закончить. В это время у нас самое низкое давление, редкий пульс и медленное дыхание.

4 часа ночи . По-прежнему сохраняется низкое давление. Мозг снабжается минимальным количеством крови. В этот час чаще всего умирают люди. Организм работает на малых оборотах, но слух обостряется. Мы пробуждаемся от малейшего шума.

5 часов утра . Мы сменили уже несколько фаз сна: фазу легкого сна и сновидения и фазу глубокого сна без сновидений. Встающий в это время быстро приходит в бодрое состояние.

6 часов утра . Начинает повышаться давление, учащается пульс. Даже если мы хотим спать, наш организм уже пробудился.

7 часов утра . В это время резко возрастает иммунологическая защита организма. Шанс заражения при контакте с вирусами минимальный.

8 часов утра . Мы отдохнули. Печень полностью освободила наш организм от ядовитых веществ. В этот час нельзя принимать алкоголь — на печень обрушится большая нагрузка.

9 часов утра . Повышается психическая активность, уменьшается чувствительность к боли. Сердце работает на полную мощность.

10 часов дня . Наша активность повышается. Мы в лучшей форме. Появилось желание своротить горы. Такой энтузиазм сохранится до обеда. Любая работа по плечу. Не растрачивайте зря это время на пустые разговоры с друзьями за чашкой кофе. Не распыляйте свою работоспособность, потом уже она в таком виде не проявится.

11 часов . Сердце продолжает работать ритмично в гармонии с психической активностью. Большие нагрузки почти не ощущаются.

12 часов . Наступает первый спад активности. Падает физическая и умственная работоспособность. Чувствуется усталость, нужен отдых. В эти часы печень «отдыхает», в кровь поступает немного гликогена.

13 часов . Кривая энергии опускается. Это, пожалуй, самая низкая точка в 24-часовом цикле. Реакции замедляются. Наступает время обеденного перерыва.

14 часов . Усталость проходит. Наступает улучшение. Работоспособность повышается.

15 часов . Обостряются органы чувств, особенно обоняние и вкус. Гурманы в это время предпочитают садиться за стол. Мы входим в рабочую норму.

16 часов . Уровень сахара в крови повышается. Некоторые врачи это состояние называют послеобеденным диабетом. Однако, такое отклонение от нормы не свидетельствует о заболевании.

17 часов . Сохраняется высокая работоспособность. Активно, с удвоенной энергией тренируются спортсмены. Время занятий на свежем воздухе.

18 часов . У людей понижается чувствительность к боли. Усиливается желание больше двигаться. Психическая бодрость постепенно снижается.

Сохранность хода биологических часов — важный элемент долгожительства. Ритмичность — вот что продлевает жизнь. Еще 200 лет назад немецкий врач Хуфелянд, даже не подозревавший о хронобиологии, писал, что главным является не время, когда человек ложится спать, а регулярность, то есть надо постоянно ложиться в один и тот же час. Для современного же человека главное не длительность сна, а его качество — сон должен быть глубоким и спокойным.

Биологические ритмы , как показывают исследования, оказывают существенное влияние на процесс творчества. Так, анализируя музыкальный ритм произведений классиков, ученые пришли к выводу, что музыкальные темы менялись с частотой: у Чайковского — в три секунды, у Бетховена — в пять, у Моцарта — в семь. Если проанализировать взаимосвязь между музыкальным ритмом и памятью на музыку и биологическими ритмами организма, то окажется, что нам нравится и мы легко запоминаем те музыкальные мелодии, ритм которых в наибольшей степени соответствует нашему биологическому ритму. Следовательно, биоритмы являются как бы внутренними камертонами воспринимаемой музыки, и если они совпадают, то человек с удовольствием слушает ее.

В настоящее время на некоторых производствах, особенно при монотонной работе, широко используется музыка. Психологи считают, что это способствует производительности труда и снимает усталость. Музыка дает хороший эффект и при лечении бессонницы и нервно-психических болезней. Знание и учет биологических ритмов важны при организации профилактических и лечебных мероприятий.

Можно ли замедлять и ускорять биологическое время ? Замедлять его биологи уже частично умеют. Достаточно охладить организм, и живые сбавят свой ход, а то и совсем остановятся, при повышении же восстанавливают обычный ритм. Ученые давно думают над тем, как на заданный срок останавливать биологические часы у космонавтов. В таком состоянии они могут достигнуть самых отдаленных планет, почти не старея за время пути. А вот ускорить биологическое время пока значительно сложнее.

Как же сконцентрировать биологическое время? Ученые-биологи определили, что своеобразным концентратором биологического времени служат особые вещества, называемые биогенными стимуляторами. Механизм биологических часов, по-видимому, один и тот же у всех организмов, исключая бактерии, которые вообще не "приобрели" часов. Но разве с одинаковой скоростью протекают жизненные процессы у одноклеточных и многоклеточных организмов? Ведь у одних жизнь длится день, у других – столетие.

Вот коловратка – микроскопическое, но многоклеточное существо. Некоторые ее виды живут всего одну неделю. За эту неделю коловратка успевает вырасти и состариться. Так как же идет биологическое время у этой коловратки, как у человека или в 3 тыс. раз быстрее?

Сама природа дала исследователю прибор, который позволяет следить за течением биологического времени в живом организме, не входя непосредственно в его жизнь и не нарушая взаимосвязи в его структуре. Прибор этот – процесс деления самой . Скорость ее деления косвенно говорит и об обмене веществ внутри ее, и о времени, в котором она живет. Деление клетки дает и еще более важную информацию – где находится механизм, управляющий ходом биологического времени в живом.

На первый взгляд кажется несколько странным, что слон, человек, мышь и другие млекопитающие, так сильно различающиеся по размерам и по продолжительности жизни, первые шаги на жизненном пути делают с одинаковой скоростью.

Если рассматривать первые шаги жизни в развитии от одной клетки и сравнивать мышь и слона, то оказывается, что слон живет 60 лет, мышь – 2–3 года. Эмбриональное развитие у мыши – 21 день, а у слона – 660, почти 2 года. Все начинается одновременно, но как по-разному заканчивается. Может быть, у клетки мыши биологическое время сразу же побежало быстрее, и она в несколько раз обогнала по развитию зародыш слона? Нет, это не так. И мышонок, и слоненок первые 7 дней развиваются с одинаковой скоростью. Но почему же в первую неделю у зародышей слона и мыши одинаково идут биологические часы?

Оказалось, что в этот период почти у всех зародышей млекопитающих биологические часы поставлены как бы на "собачку". Наследственные механизмы – гены, регулирующие скорость роста и обмена веществ, в это время не работают.

Сначала зародыш набирает клеточную массу, в которой затем придется строить различные органы. Как только начинается строительство органов, словно бы заводится пружина часов. Каждый завод делается теперь с осторожностью и не до конца. Вся работа биологических часов идет под контролем генетического аппарата, и чем сложнее становится организм по мере развития, тем с большей четкостью гены выдают информацию. Организм начинает довлеть над работой биологических часов, и действие различных гормонов еще более замедляет биологическое время. У эмбриона, биологические часы которого не сдерживаются так сильно генетическим аппаратом и гормональными влияниями, потому что у него еще не развилась эндокринная система.

А можно ли снять тормоз времени у взрослого организма и заставить его жить быстрее? Может быть, есть такие вещества, которые концентрируют время, а проще и вернее сказать, снимают тормоз времени? Вся опасность в этом случае сводится к нарушению биологических часов. Ускорение обмена веществ и деления клеток должно быть гармоничным и обязательно в пределах нормы. Обмен веществ в живых клетках проходит всегда с несколько меньшей скоростью, клетка обладает довольно большими резервами на случай опасности. Значит, если дать сигнал опасности, то клетка частично снимет свой временной тормоз и все процессы в ней пойдут с увеличенной скоростью. Для этого необходимо воздействовать непосредственно на те гены, которые регулируют скорости химических взаимодействий огромных биомолекул внутри клетки.

Как же подать клетке сигнал опасности? В процессе эволюции в клетках организма выработался механизм, воспринимающий продукты распада, которые получаются от страдающих по соседству клеток. Поскольку у живых существ молекулярные механизмы восприятия опасности однотипны, при наличии продуктов распада ускорят свой ход биологические часы, как животных, так и растений. Вот почему листья алоэ, выдержанные в темноте, или ткани животных, находящиеся несколько дней в при 4 0 C, содержат уже вещества, способные ускорить обмен веществ в клетках организма, в который они будут введены.

Человек в самом начале эмбрионального развития живет в ускоренном биологическом времени. По мере его развития биологическое время замедляется. После рождения оно еще продолжает идти несколько скорее, чем у взрослого человека. К старости же людям кажется, что время "стоит на месте". Уж не включается ли здесь в работу на полную мощь тормоз времени – гены времени?

- 108.00 Кб

Биологическое время. Биологический возраст

по курсу Концепции современного естествознания

Введение 3

Заключение 16

Введение

Ответа нет.

С понятием временной организации тесно связана проблема специфичности течения времени в живых системах, или, как ее называют, проблема биологического времени. Этой проблемы касались многие ученые.

Огромную роль в этом вопросе сыграл В. И. Вернадский, который создал понятие биологического пространства-времени и тем самым поднял учение о биосфере на теоретический уровень.

Исследование проблемы биологического времени имеет большое значение. Во-первых, она связана с понятием «биологических ритмов». Все живое на нашей планете несет отпечаток ритмического рисунка событий, характерного для нашей Земли. В сложной системе биоритмов, от коротких - на молекулярном уровне - с периодом в несколько секунд, до глобальных, связанным с годовыми изменениями солнечной активности живет и человек.

Во-вторых, все это имеет отношение к биологическому возрасту человека как к показателю уровня развития, изменения или износа структуры, его функциональной системы, организма в целом или сообщества организмов (биоценоза), выраженный в единицах времени путем соотнесения значений, определяющих эти процессы биологических маркеров старения с эталонными среднестатистическими зависимостями изменений этих биомаркеров от календарного возраста.

Поскольку все организмы и сообщества организмов представляют скоррелированные системы, все изменения, происходящие в них, в конце концов ведут к их распаду - смерти, как и у всех физических систем. Но процесс распада организмов и сообществ организмов, или их старение, неравномерен. Поэтому при одном и том же астрономическом или календарном возрасте различных организмов, людей, сообществ степень постарения отдельных органов, элементов и систем будет различна.

И, в-третьих, актуальность данного реферата можно обосновать тем, что изучение этих волнующих вопросов, и попытки проникнуть в неизведанное могут принести реальные плоды. Человеческая жизнь может качественно измениться, биологические способности индивидов могут увеличиться и, наконец, кто знает, возможно, мы подойдем к разгадке сущности Вселенной и обретем новые знания.

Цель данного реферата – рассмотреть формулировку понятия «биологического времени», суть биоритмологического подхода к феномену времени. А также выяснить, что является биологическим возрастом индивида. Определить критерии биологического возраста и рассмотреть особенности биологического возраста мужчин и женщин.

Глава 1. Биологическое время.

§1. Формулировка понятия и введение термина.

С понятием временной организации тесно связана проблема специфичности течения времени в живых системах, или, как ее называют, проблема биологического времени.

Большинство авторов подчеркивает, что время едино во Вселенной, какого-либо особого (например, биологического времени) нет, правомерно говорить лишь о субъективной оценке времени. Однако существует и противоположная позиция, имеющая немалое число сторонников. Проблема биологического времени была поставлена более 100 лет назад К.Бэром, основоположником эмбриологии. Научно обоснованная идея о биологическом времени принадлежит В.И. Вернадскому. В 1929-1931 гг.

В. И. Вернадский создает понятие биологического пространства-времени и тем самым поднимает учение о биосфере на теоретический уровень. Толчком для давно назревавшего намерения Вернадского напрямую и открыто заговорить о проблеме времени в современной науке, послужила только что вышедшая книга уже хорошо знакомого ему по литературе английского астронома Артура Эддингтона, горячего сторонника и даже пропагандиста теории относительности. 13 августа он пишет Б.Л. Личкову: “На днях получил книгу Eddington’a The nature o f the physical World – очень много заставляет думать. Он дает картину Мира, где нет законов всемирного тяготения в их обычном представлении. Довольно много было мне нового в некоторых следствиях. Попытка построить Мир, где действие законов причинности – ограниченное. Эддингтон делает из этого философские и религиозные выводы… Мне, однако, кажется, что получающаяся картина Мира не может быть верна, так как Эддингтон принимает резкое отличие времени и пространства, по существу, упуская явления симметрии».

В сентябре в Праге Вернадский начинает вплотную работать над проблемой времени. О направлении его мысли и о намерениях дают представление и другие чрезвычайно важные и красноречивые свидетельства. 9 сентября 1929 г. он пишет своему заместителю по БИОГЕЛу А.П. Виноградову. «Я здесь много обдумывал вопросы живого вещества и пробую набросать кое-какие мысли. Хочу сделать доклад о диссимметрии живого вещества в биологическом времени – не знаю, в Обществе естествоиспытателей (как прежние два доклада), или на годовом заседании нашей Лаборатории (кстати, нам надо справиться, когда она официально утверждена)? Пока мне очень трудно справиться с этой задачей, но я надеюсь эти немногие недели, что мне осталось здесь, ее двинуть. Очень интересно затронуть оба вопроса совместно: и диссимметрия, открытая Пастером, и так мало проникшая в сознание натуралистов, и биологическое время, о котором я много думаю – уже несколько лет – имеют много общего и сейчас приобретают огромный интерес в связи с новым направлением физических

дисциплин. Не знаю, удастся ли мне все ясно сформулировать – но я хочу рассмотреть эти вопросы [в связи] с новой физикой. Для биологического времени важно определить единицу этого времени, равную минимальному промежутку между двумя поколениями – между делениями клеток или делениями бактерий (Cyanophyceae?). В последнем случае мы имеем дело не со средой нашего тяготения, а средой молекулярных сил. И здесь, должно быть, есть скачок? Скачок, имеющий биологическое значение. В первом случае д[олжны] б[ыть] часы, а во втором 15-20 минут? Надо будет заказать кому-нибудь свести весь эспериментальный материал, имеющийся в этой области, и мы эту сводку можем напечатать в наших трудах». (Одновременно с созданием БИОГЕЛ было получено право издавать непериодически ее труды).

Слова Вернадского чрезвычайно важны для темы данного реферата: скорее всего, здесь, именно 9 сентября 1929 г., Вернадский впервые озвучивает свой новый термин биологическое время. Пока еще не в научной статье, но в частном письме. Затем Вернадский начинает с очень широкого, предельного охвата: «Время физика несомненно, не есть отвлеченное время математика или философа, и оно в разных явлениях проявляется в столь различных формах, что мы вынуждены это отмечать в нашем эмпирическом знании. Мы говорим об историческом, геологическом, космическом и т.п. временах. Удобно отличать биологическое время, в пределах которого проявляются жизненные явления.

Это биологическое время отвечает полутора – двум миллиардам, на протяжении которых нам известно на Земле существование биологических процессов, начиная с археозоя. Очень возможно, что эти годы связаны только с существованием нашей планеты, а не с действительностью жизни в Космосе. Мы сейчас ясно подходим к заключению, что длительность существования космических тел предельна, т.е. и здесь мы имеем дело с необратимым процессом. Насколько предельна жизнь в ее проявлениях в Космосе, мы не знаем, так как наши знания о жизни в Космосе ничтожны. Возможно, что миллиарды лет отвечают земному планетному времени и составляют лишь малую часть биологического времени».

Вернадский утверждает: «На основе новой физики явление должно изучаться в комплексе пространство-время. Пространство жизни имеет особое, единственное в природе симметрическое состояние. Время, ему отвечающее, имеет не только полярный характер векторов, но особый, ему свойственный параметр, особую, связанную с жизнью единицу измерения».

Вернадский был единственным ученым в 1929 году, который своим понятием биологического времени перевернул все представления на 180 градусов: не жизнь как ничтожная, не принимаемая во внимание подробность на ничтожной крупице в космосе – планете Земля, существует на фоне великой Вселенной, но вся материальная Вселенная разворачивается на фоне времени жизни.

Следует сказать о приоритете во введении понятия биологическое время. Понятие бытует в сегодняшней науке.

В мировой литературе приоритет в употреблении понятия биологическое время связывается с именем французского гистолога Леконта дю Нуи. Во время работы врачом в госпитале во время первой мировой войны он заинтересовался скоростью заживления ран и стал исследовать эту проблему. В том числе и с точки зрения времени, которое он разделил на внешнее и внутреннее, назвав последнее физиологическим или биологическим.

В последующем довольно бурном развитии работ, связанных с использованием термина и понятия биологического времени, особенно в 60-70 гг., он приобрел совершенно другое направление, уже содержавшееся в работах Леконта дю Нуи и Г. Бакмана. Это направление стало называться биоритмология.

§2. Биоритмологический подход к феномену времени.

Любые изменения в живых системах обнаруживаются только при сравнении состояний системы как минимум в двух временных точках, разделенных большим или меньшим интервалом. Однако их характер может быть различным. О фазовых изменениях в системе говорят когда, в системе последовательно сменяются стадии какого-либо биологического процесса. Примером может служить смена стадий онтогенеза, то есть индивидуального развития организма. Изменения такого типа свойственны морфофизиологическим показателям организма после воздействия на него каким-либо фактором. Эти изменения характеризуют как нормальное течение процессов в организме, так и реакцию на воздействия.
Имеется особый класс периодических изменений деятельности и поведения живых систем – биологические ритмы. Учение о биологических ритмах (в узком смысле) получило наименование биоритмологии, т.к. сегодня признается, что биологический ритм – один из наиболее важных инструментов исследования роли фактора времени в деятельности живых систем и их временной организации.

В сложной системе биоритмов, от коротких - на молекулярном уровне - с периодом в несколько секунд, до глобальных, связанным с годовыми изменениями солнечной активности живет и человек. Биологические ритмы или биоритмы - это более или менее регулярные изменения характера и интенсивности биологических процессов. Способность к таким изменениям жизнедеятельности передается по наследству и обнаружена практически у всех живых организмов. Их можно наблюдать в отдельных клетках, тканях и органах, в целых организмах и в популяциях.

Выделим следующие важные достижения хронобиологии (область науки, которая исследует периодические (циклические) феномены, протекающие у живых организмов во времени, и их адаптацию к солнечным и лунным ритмам):

Описание работы

В условиях современности, науке нельзя ограничиваться анализом пространственного аспекта отдельно от временного, они связаны воедино. Пространство в естествознании выражает протяженность, порядок и характер размещения материального объекта, их взаимное расположение.
Время в естествознании отражает последовательность процессов изменений и длительность существований объекта.

Попыток определить единство пространственно-временной организации в отношении живого объекта не предпринималось. Писатель Сартаков в романе “Философский камень”:

“Альберт Эйнштейн как математик разгадал единое пространство-время, найдя 4ое измерение. Но это только для мертвой материи. А между тем жизнь, течение жизни никак не отделимы от пространства и времени. Эйнштейн, почему же вы пренебрегли этим? Я тоже хочу разгадать пространство и время, но для живой материи. Я все испробовал. Какая наука даст мне ответ на это?”

Глава 1. Биологическое время 5

§1. Формулировка понятия и введение термина 5

§2. Биоритмологический подход к феномену времени 7

Глава 2. Биологический возраст 11

§1. Понятие и критерии определения биологического возраста 11

§2. Биологический возраст мужчин и женщин 13

Заключение 16

Список использованной литературы 18

Реферат *

440руб.

Введение

Биологическое время

Фрагмент работы для ознакомления

Важнейшим внешним фактором, влияющим на ритмы организма, является фотопериодичность. У высших животных предполагается существование двух способов фотопериодической регуляции биологических ритмов: через органы зрения и далее через ритм двигательной активности организма и путем экстрасенсорного восприятия света. Существует несколько концепций эндогенного регулирования биологических ритмов: генетическая регуляция, регуляция с участием клеточных мембран. Большинство ученых склоняются к мнению о полигенном контроле над ритмами. Известно, что в регуляции биологических ритмов принимают участие не только ядро, но и цитоплазма клетки.
Центральное место среди ритмических процессов занимает циркадианный ритм, имеющий наибольшее значение для организма. Понятие циркадианного (околосуточного) ритма ввел в 1959 году Халберг. Циркадианный ритм является видоизменением суточного ритма с периодом 24 часа, протекает в константных условиях и принадлежит к свободно текущим ритмам. Это ритмы с не навязанным внешними условиями периодом. Они врожденные, эндогенные, т.е. обусловлены свойствами самого организма. Период циркадианных ритмов длится у растений 23-28 часов, у животных 23-25 часов. Поскольку организмы обычно находятся в среде с циклическими изменениями ее условий, то ритмы организмов затягиваются этими изменениями и становятся суточными.
Циркадианные ритмы обнаружены у всех представителей животного царства и на всех уровнях организации – от клеточного давления до межличностных отношений. В многочисленных опытах на животных установлено наличие циркадианных ритмов двигательной активности, температуры тела и кожи, частоты пульса и дыхания, кровяного давления и диуреза. Суточным колебаниям оказались подвержены содержания различных веществ в тканях и органах, например, глюкозы, натрия и калия в крови, плазмы и сыворотки в крови, гормонов роста и др. По существу, в околосуточном ритме колеблются все показатели эндокринные и гематологические, показатели нервной, мышечной, сердечно-сосудистой, дыхательной и пищеварительной систем. В этом ритме содержание и активность десятков веществ в различных тканях и органах тела, в крови, моче, поте, слюне, интенсивность обменных процессов, энергетическое и пластическое обеспечение клеток, тканей и органов. Этому же циркадианному ритму подчинены чувствительность организма к разнообразным факторам внешней среды и переносимость функциональных нагрузок. Всего к настоящему времени у человека выявлено около 500 функций и процессов, имеющих циркадианную ритмику.
Биоритмы организма – суточные, месячные, годовые – практически остались неизменными с первобытных времен и не могут угнаться за ритмами современной жизни. У каждого человека в течение суток четко прослеживаются пики и спады важнейших жизненных систем. Важнейшие биоритмы могут быть зафиксированы в хронограммах. Основными показателями в них служат температура тела, пульс, частота дыхания в покое и другие показатели, которые можно определить только при помощи специалистов. Знание нормальной индивидуальной хронограммы позволяет выявить опасности заболевания, организовать свою деятельность в соответствии с возможностями организма, избежать срывов в его работе.
Самую напряженную работу надо делать в те часы, когда главнейшие системы организма функционируют с максимальной интенсивностью. Если человек "голубь", то пик работоспособности приходится на три часа дня. Если "жаворонок" – то время наибольшей активности организма падает на полдень. "Совам" рекомендуется самую напряженную работу выполнять в 5-6 часов вечера.
О влиянии 11-летнего цикла солнечной активности на биосферу Земли сказано много. Но не все знают о тесной зависимости, существующей между фазой солнечного цикла и антропометрическими данными молодежи. Киевские исследователи провели статистический анализ показателей массы тела и роста юношей, приходивших на призывные участки. Оказывается, что акселерация весьма подвержена солнечному циклу: тенденция к повышению модулируется волнами, синхронными с периодом "переполюсовки " магнитного поля Солнца (а это удвоенный 11-летний цикл, т.е. 22 года). Кстати, в деятельности Солнца выявлены и более длительные периоды, охватывающие несколько столетий.
Важное практическое значение имеет также исследование других многодневных (околомесячных, годовых и пр.) ритмов, датчиком времени для которых являются такие периодические изменения в природе, как смена сезонов, лунные циклы и др.3
1.2 Влияние биоритмов на человека
Имея понятия об основных биологических ритмах, можно рассмотреть влияние биологичеких ритмов на трудоспособность человека.
Окологодовыми (цирканнуальными) называют ритмы, соответствующие смене времен года, т. е, годичные или сезонные, имея в виду, что эти ритмы подобно циркадианным не отличаются жесткой стабильностью периода. Эти ритмы обусловлены вращением Земли вокруг Солнца. Сезонные ритмы сформировались в ходе естественного отбора и закрепились в естественных структурах организма. Весна - это довольно трудное время года, весной совершается больше самоубийств, чаще наблюдается депрессия у лиц с неуравновешенной психикой. Осень же является оптимальным сезоном года для человека. Годовые ритмы свойственны всем физиологическим и психическим функциям. Психическая и мышечная возбудимость у людей выше весной и в начале лета, зимой она значительно ниже. Значительно изменяется обмен веществ, артериальное давление, частота пульса: он становится реже весной и осенью, а учащается зимой и летом. В окологодовом ритме меняется работоспособность человека осенью она наибольшая. Поэтому для реализации творческих замыслов, бесспорно, хороша осень. Лето лучше использовать для закаливания, формирования выносливости.
Рассмотрим влияние месячного, недельного и суточного цикла на работоспособность организма человека.
Месячный цикл в отличие от недельного существует объективно в окружающей нас природе. Это так называемый сидерический месяц - 27 1/3 дня - период вращения Луны вокруг Земли и 29 1/2 дня - синодический месяц - время от одного новолуния до другого. Все месячные циклы так или иначе связаны с ритмом половой активности. При этом, околомесячные циклы, затрагивающие весь организм обуславливают большую устойчивость женского организма, так как колебательный режим у особей женского пола тренирует их физиологические системы и функции, делает их более устойчивыми.
Мы хорошо знаем, что основное действие Луны на Землю связано с взаимодействием их масс (закон всемирного тяготения), проявляющихся в виде приливов и отливов в реках и морях, а так же с экранированием Земли Луной от электромагнитного излучения солнца или дополнительным потоком в виде отраженного света. Это важно знать и учитывать гипертоникам и гипотоникам. Итак, гипертоникам надо остерегаться полнолуния, когда кровь максимально приливает к голове, а гипотоникам - новолуния, когда кровь отливает к ногам. На смене лунных фаз необходимо делать перерывы в работе, для восполнения сил, а также делать кратковременные перерывы в работе на пиках фаз.
Поэтому, желательно, в течение месячного цикла планировать нагрузку на работе, в соответствии, с биологическими ритмами, т.к. в критические дни цикла снижается работоспособность и ухудшается общее самочувствие организма.
В недельных ритмах подчеркнуто выражен социальный (экзогенный) компонент - недельный ритм работы и отдыха, в соответствии с которым изменяются функциональные отправления нашего организма.
Динамика работоспособности испытывает влияние недельного ритма: в понедельник происходит врабатываемость после выходных дней, максимум работоспособности наблюдается в середине недели, а к пятнице уже накапливается усталость, утомление и работоспособность падает. Следовательно, в понедельник и пятницу рабочую нагрузку стоит уменьшить за счет других рабочих дней. Недельному биоритму подвержены не только физиологические, но и психические процессы, а точнее целостное протекание тех и других. Вот почему особенно удачным распорядком оказывается тот, когда попеременно усиливается то физическая, то интеллектуальная активность человека. Недельный ритм упорядочил трудовую деятельность, приспособив ее к физическим возможностям и потребностям организма. Ритм этот не случаен, и борьба с ним - это борьба человека с его же собственными, но еще не познанными законами.
Конечно, нельзя жить строго по расписанию, но учитывать особенности каждого дня и, сообразуясь с этим, контролировать себя вполне возможно. Распределяя рабочую нагрузку, учитывайте следующее:
а) не планируйте трудовые подвиги в понедельник. Понедельник – день конфликтов, инфарктов и инсультов;
б) дни активных действий – вторник, среда, четверг;
в) пятница – день спокойной, рутинной работы, не требующей нагрузки и напряжения.
Смена дня и ночи, времени года приводит к тому, что органы человека также ритмично изменяют свою активность. Суточный цикл, один из основных циклов, влияющих на работоспособность человека.
Самочувствие человека во многом зависит от того, насколько режим труда и отдыха соответствует его индивидуальным биоритмам. Активизация органов подчиняется внутренним биологическим часам. При энергетическом возбуждении организма происходит взаимодействие главных органов, подстройка их друг под друга, и под изменения окружающей среды. Полный цикл энергетического возбуждения органов завершается примерно за 24 часа. Причем максимальная активность органов длится около двух часов. Именно в это время органы человека лучше поддаются лечебному воздействию.
Ниже приводится время максимальной активности человека в его суточном биоритме:
печень - с 1 до 3 часов ночи;
легкие - с 3 до 5 часов утра;
толстая кишка - с 5 до 7 часов утра;
желудок - с 7 до 9 часов утра;
селезенка и поджелудочная железа - с 9 до 11 часов утра;
сердце - с 11 до 13 часов дня;
тонкая кишка - с 13 до 15 часов дня;
мочевой пузырь - с 15 до 17 часов дня;
почки - с 17 до 19 часов вечера;
органы кровообращения, половые органы - с 19 до 21 часов вечера;
органы теплообразования - с 21 до 23 часов ночи;
желчный пузырь - с 23 до 1 часу ночи. 4
Глава II Биологические циклы
2.1 Понятие биологических циклов
Биологические циклы, ритмическое повторение биологических явлений в сообществах организмов (популяциях, биоценозах), служащее приспособлением к циклическим изменениям условий их существования. Биологические циклы входят в более общее понятие – биологические циклы, включающее все ритмически повторяющиеся биологические явления. Биологические циклы могут быть суточными, сезонными (годовыми) или многолетними. Суточные биологические циклы выражаются в закономерных колебаниях физиологических явлений и поведения животных в течение суток. В основе их лежат автоматические механизмы, которые корректируются воздействием внешних факторов - суточными колебаниями освещённости, температуры, влажности и др. В основе сезонных биологических циклов лежат те же изменения обмена веществ, регулируемые у животных с помощью гормонов. В разные сезоны меняются состояние и поведение организмов в пределах популяции или биоценоза: происходит накопление (расходование) резервных веществ, смена покровов, начинаются (заканчиваются) размножение, миграция, спячка и другие сезонные явления. Будучи в значительной мере автоматизированными, эти явления корректируются внешними влияниями (состоянием погоды, запасов пищи и т.п.). Многолетние биологические циклы обусловливаются циклическими колебаниями климата и других условий существования (в связи с изменением солнечной активности и других космических или планетарных факторов); такие биологические циклы совершаются в популяциях и биоценозах и выражаются в колебаниях размножения и численности отдельных видов, в расселении популяции в новые места или вымирании её части. Эти явления - суммированный результат циклических изменений популяций и биоценозов и колебаний условий их существования, главным образом климата.5
2.2 Теория «трех циклов»
Австрийский психолог Г. Свобода, немецкий врач В. Фисс и австрийский инженер А. Тельчер в конце XIX и начале XX века создали известную теорию о трех циклах, согласно которой человеку присущи особые циклы: 23 - суточный (физический), 28 - суточный (эмоциональный) и 33- суточный (интеллектуальный). Отношение к ней спорное.
Краткая суть этой концепции:

Список литературы

Список использованной литературы:

1.Детари Л., Карцаш В. Биоритмы. – М.: Мир, 2004.
2.Куприянович Л.И. Биологические ритмы и сон. // ж. Вопросы психологии, 2000 № 5
3.Мажкенов С.А. Теория биологических ритмов человека. // ж.Вопросы психологии, 2001 № 2
4.Сергеев Д. Совы и жаворонки// ж. Огонек, 2002 № 33
5.Уинфри А. Время по биологическим часам. - М., 1990.

Пожалуйста, внимательно изучайте содержание и фрагменты работы. Деньги за приобретённые готовые работы по причине несоответствия данной работы вашим требованиям или её уникальности не возвращаются.

* Категория работы носит оценочный характер в соответствии с качественными и количественными параметрами предоставляемого материала. Данный материал ни целиком, ни любая из его частей не является готовым научным трудом, выпускной квалификационной работой, научным докладом или иной работой, предусмотренной государственной системой научной аттестации или необходимой для прохождения промежуточной или итоговой аттестации. Данный материал представляет собой субъективный результат обработки, структурирования и форматирования собранной его автором информации и предназначен, прежде всего, для использования в качестве источника для самостоятельной подготовки работы указанной тематики.

Марина Чернышева

Временнáя структура биосистем и биологическое время

Sankt-Petersburg State University

M. P.Chernysheva

TEMPORAL STRUCTURE of biosystems and biological TIME

Super Izdatelstvo

Введение

Природа Времени – одна из глобальных проблем, к решению которых наука неоднократно возвращалась на протяжении всей истории ее существования. Эволюция представлений о Времени от античности до XX-го века глубоко проанализирована в классическом труде Дж. Уитроу «Естественная философия времени» (1964), в монографиях М. И. Элькина (1985), П. П. Гайденко (2006) и других авторов. Начиная с ХХ века философские аспекты этой проблемы неизменно связаны с естественнонаучными подходами к ее решению (Шредингер, 2002; Чижевский, 1973; Уинфри, 1986; Козырев, 1963, 1985, 1991; Пригожин, 2002; и др.). В работах выдающихся отечественных исследователей находим идеи, давшие начало целым направлениям в науке о времени. Так, И. М. Сеченов положил начало исследованиям по влиянию двигательной активности на субъективное время человека. И.П. Павлов, впервые описавший рефлекс на время, фактически заявил о способности мозга к запоминанию временных интервалов. Н. П. Пэрна (1925), сотрудник кафедры физиологии Петроградского университета, впервые описал ритмы ряда физиологических процессов человека. Д. И. Менделеев, описавший движение цветка вслед за изменением положения солнца, определенно продемонстрировал наличие околосуточного (циркадианного) ритма движений растений, гормональный механизм которого был описан позже (В. Н. Полевой, 1982). В работах А. А. Ухтомского прослеживается мысль о важности временного фактора в работе нервной системы и в, частности, в формировании доминанты (Ухтомский, 1966; Соколова, 2000). Один из гениев русского Ренессанса начала ХХ века, В. И. Вернадский, не только ввел рубрикацию специфического для разных систем времени (геологического, исторического, биологического, социального), но и обосновал представление о биологическом времени как основном и первичном, придав ему «космический статус» по причине способности биосистем к движению и размножению (Вернадский, 1989). Эту же особенность живых организмов подчеркивал Э. Шредингер (2002).

Наряду с мультидисциплинарными подходами к решению проблемы природы Времени (Аксенов, 2000; Вакуленко и др., 2008; Казарян, 2009; Коганов, 2009; Козырев, 1989; Коротаев, Киктенко, 2012; Лебедев, 2004; Левич, 2000, 2002, 2013; Хасанов, 2011; Чураков, 2012; Шихобалов, 2008, и др.), огромный объем исследований, начиная со второй половины ХХ века, посвящен природе биологического времени (Aschoff, 1960; Уинфри, 1990; Питтендрих, 1984; Алпатов, 2000; Романов, 2000; Оловников, 1973, 2009; Скулачев, 1995; Загускин, 2004, 2007, и др.). Достижения физики, химии, математики и биологии предопределили разработку разнообразных новых методов исследования, позволивших открыть белки часовых генов (clock-genes proteins), формирующие механизм околосуточных ритмов для многих функций организма. Важность активности clock-белков и clock-осциллятора для здоровья и адаптации человека к пространственно-временному континууму окружающей среды обусловили соответствующую тематическую направленность большинства работ современных отечественных и зарубежных исследователей. В отечественной биологии и медицине «штурм» клеточно-молекулярных механизмов биологического времени привел к выдающимся открытиям: созданию теломерно-редусомной теории контроля продолжительности жизни (Оловников, 1973, 2009) и представления о роли митохондрий в процессах старения (Скулачев, 1995), а также к развитию геронтологических аспектов роли гормонов эпифиза и тимуса (Анисимов, 2010; Хавинсон и др., 2011; Кветной и др., 2011). В работах зарубежных исследователей выявлены функции отдельных clock-белков, условия формирования clock-осциллятора и ритмов с разными темпоральными параметрами (см. Golombek et al., 2014), а также развиты представления о системах синхронизации clock-осцилляторов разных структурных уровней организма. Растущее понимание специфики клеточных, тканевых, органных и системных генераторов временных процессов определяют начинающийся возврат зарубежных авторов к «системному мышлению» в аспекте проблемы Времени (Blum et al., 2012; Mohawk et al., 2012). Заметим, что у отечественных исследователей системный подход в изучении этой проблемы всегда оставался в поле внимания (Черниговский, 1985; Баранникова и др., 2003; Кулаев, 2006; Январева и др., 2005; Журавлев, Сафонова, 2012, и др.). Наряду с очевидными успехами в изучении чувствительных к «ходу времени» (термин Н.А. Козырева) биологических объектов, остаются мало разработанными вопросы о временной структуре живых организмов, взаимосвязи клеточно-молекулярных и системных таймеров, сенсорах Времени и пока открыт вопрос о природе Времени. По мнению автора, обширный круг исследований биосистем, выполненных к настоящему времени в мире, позволяет предложить определенные решения по перечисленным вопросам.

Биологическое время

«Понять “природу” времени, – значит указать его природный референт, т. е. процесс, явление, “носитель” в материальном мире, свойства которого могли бы быть отождествлены или корреспондированы со свойствами, приписываемыми феномену времени».

А.П. Левич, 2000.

1.1. Феномен жизни

Вынесенное в эпиграф высказывание Александра Петровича Левича представляется совершенно справедливым в свете представлений Г. Лейбница и Н.А. Козырева об энергетической природе времени и его «активных свойствах». Действительно, по аналогии с историей открытия электрона по иммерсионному следу в камере Вильсона, биологические процессы, обладающие рядом темпоральных параметров и потому являющиеся по сути временными процессами, вполне могут быть «референтами» времени и отражать его воздействие. Для понимания «природы» времени в биосистемах важен анализ факторов, определяющих специфику живых организмов по сравнению с косными системами

Феномен жизни и отличия живого организма от косных систем, во все времена привлекали внимание философов и представителей естественных наук (Аристотель, 1937; Страхов, 2008; Вернадский, 1989; Ухтомский, 1966; Шредингер, 2002, и многие другие). Очевидно, что общность базисных законов природы не исключает особенностей их проявления в условиях специфики биосистемы, косной природной или искусственной систем. К их числу, в первую очередь, следует отнести законы термодинамики, определяющие для любой системы возможность и длительность работы, а также время существования (продолжительность жизни). Признавая справедливость законов термодинамики для всех объектов Вселенной, многие исследователи отмечают специфику проявлений второго начала термодинамики для живых организмов (Шредингер, 2002; Пригожин, 2002, и др.). Среди таковых, прежде всего, отмечается невозможность «тепловой смерти» для живых организмов вследствие стремления биосистем к стабилизации уровня энтропии (Вернадский, 1989; Пригожин, 2002; Пригожин, Стенгерс, 2000, и др.).

В основе жизнедеятельности биосистем лежат разнообразные процессы, использующие химическую, механическую, электрическую, световую и другие виды энергии. Как известно, при реализации различных функций (работы) в любой системе происходит частичное преобразование той или иной энергии в тепловую, которая может быть утрачена через теплорассеивание в окружающую среду или частично задержана, определяя уровень хаоса (энтропии) в структурах организма. Для живых организмов справедливы и другие известные определения энтропии: как меры степени неструктурированности потоков энергии и меры термодинамической возможности определенного состояния или процесса. Множественность возможных определений энтропии для биосистемы подчеркивает и разнообразие путей ее регуляции.