Болезни Военный билет Призыв

Виды синапсов. Синаптическая мембрана. Строение синапса: электрические и химические синапсы

3.6. Синапсы

Нейроны в ЦНС объединены между собой в сложнейшие нейронные цепи посредством синапсов. Синапс – область (зона) контакта нейронов или нейрона и рабочего органа. Синапсы классифицируются по нескольким признакам:

по местоположению и принадлежности соответствующим клеткам – центральные (аксосоматические, аксодендритические,

аксоаксональныеи) и периферические (нервно-мышечные, нейросекреторные)

по функциональному значению – возбуждающие и тормозящие;

по способу передачи информации – химические, электрические, смешанные.

3.6.1. Строение синапса. Проведение возбуждения через синапс

Аксон, подходя к другим нейронам или клеткам рабочего органа, теряет миелиновую оболочку, разветвляется, истончается. Каждое разветвление аксона заканчивается утолщением, которое контактирует с телами, дендритами, аксонами соседних нейронов,клетками органов (1 аксон может образовать до 10000 синапсов). В пресинаптическом отделе находится большое количество везикул (пузырьков),
в которых содержатся медиаторы – химические вещества (посредники), оказывающие возбуждающий или тормозящий эффекты в зависимости от своего химического строения. Мембрана, покрывающая пресинаптическое окончание в области контакта несколько утолщена и называется пресинаптической мембраной (рис. 8, 8.1).

Мембрана тела, аксона, дендрита, клеток рабочих органов называется постсинаптической мембраной. Она содержит рецепторы,
обладающие высокой чувствительностью и специфичностью к медиаторам (образно, медиатор – ключ, рецептор – замок). В различных синапсах находятся различные медиаторы – ацетилхолин, норадреналин, дофамин, серотонин и др.) В нервномышечных синапсах постсинаптическая мембрана имеет складчатое строение, что увеличивает ее поверхность.

Между пресинаптической и постсинаптической мембранами находится синаптическая щель (размером от 20 до 50 нанометров), заполненная внеклеточной жидкостью.

Таким образом, синапс включает в себя 3 части:

пресинаптическую мембрану

постсинаптическую мембрану

синаптическую щель

Проведение возбуждения через синапс. Проведение возбуждения через химический синапс – сложный физиологический процесс, протекающий поэтапно с участием медиаторов. Во многих центральных синапсах, нервномышечных и синапсах парасимпатической нервной системы медиатором является ацетилхолин . Потенциал действия по аксону доходит до бляшки и вызывает изменение проницаемости пресинаптической мембраны для ионов кальция, которые из синаптической щели входят внутрь бляшки, что приводит к разрыву пузырьков и выходу из них ацетилхолина в синаптическую щель. Он диффундирует к постсинаптической мембране, взаимодействует с рецепторами мембраны, что повышает ее возбудимость, изменяет проницаемость для ионов натрия, в результате на мембране возникает возбуждение, которое распространяется на другой нейрон или клетки рабочего органа. Медиатор выделяется в синаптическую щель в большем количестве, чем это необходимо для проведения нервных импульсов (проявление принципа биологической надежности). Избыток медиаторов гидролизуется ферментами, находящимися во внеклеточной жидкости синаптической щели.

Тормозные синапсы по строению и проведению возбуждения
не отличаются от возбуждающих
синапсов, отличие состоит лишь
в природе медиаторов и рецепторов постсинаптической мембраны. Медиаторами тормозных синапсов спинного мозга является глицин , головного мозга – гамма-аминомасляная кислота (ГАМК). Тормозной медиатор, взаимодействуя с рецепторами постсинаптической мембраны, вызывает снижение ее возбудимости, что приводит к блокированию нервных импульсов на постсинаптической мембране,
и возбуждение на другие нейроны не распространяется.

Электрические синапсы обнаружены в незначительных количествах в ЦНС и гладких мышцах. В этих синапсах пресинаптическая
и постсинаптическая мембраны близко прилегают друг к другу, синаптическая щель очень узкая (5 нанометров), через нее проходят поперечные (из клетки в клетку) каналы, образованные белковыми молекулами. Через этот щелевой контакт потенциал действия легко переходит с пресинаптического окончания на постсинаптическую мембрану.

Иногда встречаются смешанные синапсы : в одной части – химический, в другой – электрический механизмы передачи нервных импульсов.

Физиологические свойства синапсов

Все синапсы характеризуются рядом общих свойств:

1) одностороннее проведение возбуждения;

2) замедленное (задержка) проведение возбуждения (в электрических синапсах задержка короче);

3) низкая возбудимость и лабильность;

4) способность в суммации возбуждений;

5) склонность к утомлению.

3.6.2. Особенности функционирования синапсов у детей

Синаптическая задержка проведения нервных импульсов у детей более длительна, чем у взрослых (у новорожденных через синапс проходит около 20 импульсов в секунду, у взрослых – 100–150 имп/сек).
У детей в пресинаптическом отделе синапса содержится меньшее количество медиаторов, медленнее происходит их синтез, поэтому быстрее наступает утомление в синапсах и нервных центрах при длительном возбуждении, чем меньше возраст ребенка, тем в большей степени это выражено. В процессе роста у детей происходит образование большого количества новых синапсов, что способствует развитию мозга, процессов научения, памяти.

Последнее обновление: 29/09/2013

Синапс – определение, структура, роль синапса в строении нервной системы

Синапс в структуре нервной системы – это небольшой участок в окончании нейона, отвечающий за передачу информации между нервными клетками. В его формировании участвуют две клетки – передающая и воспринимающая.

Определение понятия

Синапс является небольшим отделом в окончании нейрона. С его помощью ведется передача информации от одного нейрона к другому. Синапсы располагаются в тех участках нервных клеток, где они контактируют друг с другом. Кроме того, синапсы имеются в местах, где нервные клетки вступают в соединение с различными мышцами или железами организма.

Строение синапса

Структура синапса состоит из трех частей, каждая из которых несет свои функции в процессе передачи информации. В его строении задействованы обе клетки, и передающая, и воспринимающая.

На конце аксона передающей клетки располагается начальная часть синапса – пресинаптическое окончание. Оно способно вызывать в клетке запуск (термин имеет несколько названий – «нейромедиаторы», «посредники», «медиаторы») – специальных химических веществ, благодаря которым реализовывается передача электрического сигнала между двумя нейронами.

Средняя часть синапса является синаптической щелью – пространством между двумя вступающими во взаимодействие нервными клетками. Именно через эту щель и идет электрический импульс от передающей клетки.

Заключительная часть синапса является частью клетки воспринимающей и называется постсинаптическим окончанием – контактирующем фрагментом клетки со множеством чувствительных рецепторов в своей структуре.

Механизм работы синапса

Из пресинаптического окончания вниз по аксону нейрона проходит электрический заряд от передающей клетки к воспринимающей. Он запускает выброс в синаптическую щель нейротрансмиттеров. Данные медиаторы двигаются через синаптическую щель до постсинаптического окончания следующей клетки, где вступают во взаимодействие с многочисленными ее рецепторами. Данный процесс вызывает цепь биохимических реакций и, как следствие, провоцирует запуск электрического импульса с кратким изменением своего потенциала на участке клетки. Данное явление известно как потенциал действия (или волна возбуждения при прохождении нервного сигнала).

Синапс (греч. σύναψις, от συνάπτειν - обнимать, обхватывать, пожимать руку) - место контакта между двумянейронами или между и получающей сигнал эффекторной клеткой. Служит для передачи между двумя клетками, причём в ходе синаптической передачи амплитуда и частота сигнала могут регулироваться.

Термин был введён в 1897 г. английским физиологом Чарльзом Шеррингтоном.

Структура синапса

Типичный синапс - аксо-дендритический химический. Такой синапс состоит из двух частей: пресинаптической , образованной булавовидным расширением окончаниемаксона передающей клетки и постсинаптической , представленной контактирующим участком цитолеммы воспринимающей клетки (в данном случае - участком дендрита). Синапс представляет собой пространство, разделяющее мембраны контактирующих клеток, к которым подходят нервные окончания. Передача импульсов осуществляется химическим путём с помощью медиаторов или электрическим путём посредством прохождения ионов из одной клетки в другую.

Между обеими частями имеется синаптическая щель - промежуток шириной 10-50нм между постсинаптической и пресинаптической мембранами, края которой укреплены межклеточными контактами.

Часть аксолеммы булавовидного расширения, прилежащая к синаптической щели, называется пресинаптической мембраной . Участок цитолеммы воспринимающей клетки, ограничивающий синаптическую щель с противоположной стороны, называется постсинаптической мембраной , в химических синапсах она рельефна и содержит многочисленные .

В синаптическом расширении имеются мелкие везикулы, так называемые синаптические пузырьки , содержащие либо медиатор (вещество-посредник в передаче ), либо фермент, разрушающий этот медиатор. На постсинаптической, а часто и на пресинаптической мембранах присутствуют рецепторы к тому или иному медиатору.

Классификация синапсов

В зависимости от механизма передачи нервного импульса различают

  • химические;
  • электрические - клетки соединяются высокопроницаемыми контактами с помощью особых коннексонов (каждый коннексон состоит из шести белковых субъединиц). Расстояние между мембранами клетки в электрическом синапсе - 3,5 нм (обычное межклеточное - 20 нм)

Так как сопротивление внеклеточной жидкости мало(в данном случае), импульсы проходят не задерживаясь через синапс. Электрические синапсы обычно бывают возбуждающими.

Открыты два механизма высвобождения: с полным слиянием везикулы с плазмалеммой и так называемый «поцеловал и убежал» (англ. kiss-and-run ), когда везикула соединяется с мембраной, и из неё в синаптическую щель выходят небольшие молекулы, а крупные остаются в везикуле. Второй механизм, предположительно, быстрее первого, с помощью него происходит синаптическая передача при высоком содержании ионов кальция в синаптической бляшке.

Следствием такой структуры синапса является одностороннее проведение нервного импульса. Существует так называемая синаптическая задержка - время, нужное для передачи нервного импульса. Её длительность составляет около - 0,5 мс.

Так называемый «принцип Дейла» (один - один медиатор) признан ошибочным. Или, как иногда считают, он уточнён: из одного окончания клетки может выделяться не один, а несколько медиаторов, причём их набор постоянен для данной клетки.

История открытия

  • В 1897 году Шеррингтон сформулировал представление о синапсах.
  • За исследования нервной системы, в том числе синаптической передачи, в 1906 году Нобелевскую премию получили Гольджи и Рамон-и-Кахаль.
  • В 1921 австрийский учёный О. Лёви (О. Loewi) установил химическую природу передачи возбуждения через синапсы и роль в ней ацетилхолина. Получил Нобелевскую премию в 1936 г. совместно с Г. Дейлом (Н. Dale).
  • В 1933 советский учёный А. В. Кибяков установил роль адреналина в синаптической передаче.
  • 1970 - Б. Кац (В. Katz, Великобритания), У. фон Эйлер (U. v. Euler, Швеция) и Дж. Аксельрод (J. Axelrod, США) получили Нобелевскую премию за открытие ролинорадреналина в синаптической передаче.

Мышечную и железистую клетку передается посредством специального структурного образования — синапса.

Синапс — структура, обеспечивающая проведение сигнала от одной к другой. Термин был введен английским физиологом Ч. Шеррингтоном в 1897 г.

Строение синапса

Синапсы состоят из трех основных элементов: пресинаптической мембраны, постсинаптической мембраны и синаптической щели (рис. 1).

Рис. 1. Строение синапса: 1 — микротрубочки; 2 — митохондрии; 3 — синаптические пузырьки с медиатором; 4 — пресинаптическая мембрана; 5 — постсинаптическая мембрана; 6 — рецепторы; 7 -синаптическая щель

Некоторые элементы синапсов могут иметь и другие названия. Например, синаптическая бляшка — это синапс между , концевая пластинка — постсинаптическая мембрана , моторная бляшка — пресинаптическое окончание аксона на мышечном волокне.

Пресинаптическая мембрана покрывает расширенное нервное окончание, которое представляет собой нейросекреторный аппарат. В пресинаптической части находятся пузырьки и митохондрии, обеспечивающие синтез медиатора. Медиаторы депонируются в гранулах (пузырьках).

Постсинаптическая мембрана - утолщенная часть мембраны клетки, с которой контактирует пресинаптическая мембрана. Она имеет ионные каналы и способна к генерации потенциала действия. Кроме того, на ней расположены специальные белковые структуры — рецепторы, воспринимающие действие медиаторов.

Синаптическая щель представляет собой пространство между пресинаптической и постсинаптической мембранами, заполненное жидкостью, близкой по составу к .

Рис. Строение синапса и процессы, осуществляемые в ходе синаптической передачи сигнала

Виды синапсов

Синапсы классифицируются по местоположению, характеру действия, способу передачи сигнала.

По месту положения выделяют нервно-мышечные синапсы, нервно-железистые и нейро-нейрональные; последние, в свою очередь, делятся на аксо-аксональные, аксо-дендритические, аксо-соматические, дендро-соматические, дендро-дендротические.

По характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.

По способу передачи сигнала синапсы делятся на электрические, химические, смешанные.

Таблица 1. Классификация и виды синапсов

Классификация синапсов и механизм передачи возбуждения

Синапсы классифицируют следующим образом:

  • по местоположению — периферические и центральные;
  • по характеру их действия — возбуждающие и тормозящие;
  • по способу передачи сигналов — химические, электрические, смешанные;
  • по медиатору, с помощью которого осуществляется передача, — холинергические, адренергические, серотонинергические и т.д.

В возбуждение передается с помощью медиаторов (посредников).

Медиаторы — молекулы химических веществ, которые обеспечивают передачу возбуждения в синапсах. Другими словами химические вещества, участвующие в передаче возбуждения или торможения от одной возбудимой клетки к другой.

Свойства медиаторов

  • Синтезируются в нейроне
  • Накапливаются в окончании клетки
  • Выделяются при появлении иона Са2+ в пресинаптическом окончании
  • Оказывают специфическое действие на постсинаптическую мембрану

По химическому строению медиаторы можно подразделить на амины (норадреналин, дофамин, серотонин), аминокислоты (глицин, гамма-аминомасляная кислота) и полипептиды (эндорфины, энкефалины). Ацетилхолин известен в основном как возбуждающий медиатор и содержится в различных отделах ЦНС. Медиатор находится в пузырьках пресинаптического утолщения (синаптической бляшки). Медиатор синтезируется в клетках нейрона и может ресинтезироваться из метаболитов его расщепления в синаптической щели.

При возбуждении терминалей аксона происходит деполяризация мембраны синаптической бляшки, вызывающая поступление ионов кальция из внеклеточной среды внутрь нервного окончания через кальциевые каналы. Ионы кальция стимулируют перемещение синаптических пузырьков к пресинаптической мембране, их слияние с ней и последующий выход медиатора в синаптическую щель. После проникновения в щель медиатор диффундирует к постсинаптической мембране, содержащей на своей поверхности рецепторы. Взаимодействие медиатора с рецепторами вызывает открытие натриевых каналов, что способствует деполяризации постсинаптической мембраны и возникновению возбуждающего постсинаптического потенциала. В нервно-мышечном синапсе этот потенциал называется потенциалом концевой пластинки. Между деполяризованной постсинаптической мембраной и соседними с ней поляризованными участками этой же мембраны возникают местные токи, которые деполяризуют мембрану до критического уровня с последующей генерацией потенциала действия. Потенциал действия распространяется по всем мембранам, например, мышечного волокна и вызывает его сокращение.

Выделившийся в синаптическую щель медиатор связывается с рецепторами постсинаптической мембраны и подвергается расщеплению соответствующим ферментом. Так, холинэстераза разрушает медиатор ацетилхолин. После этого некоторое количество продуктов расщепления медиатора поступает в синаптическую бляшку, где из них снова ресинтезируется ацетилхолин.

В организме имеются не только возбуждающие, но и тормозные синапсы. По механизму передачи возбуждения они сходны с синапсами возбуждающего действия. В тормозных синапсах медиатор (например, гамма-аминомасляная кислота) связывается с рецепторами постсинаптической мембраны и способствует открытию в ней . При этом активизируется проникновение этих ионов внутрь клетки и развивается гиперполяризация постсинаптической мембраны, обусловливающая возникновение тормозного постсинаптического потенциала.

В настоящее время выяснено, что один медиатор может связываться с несколькими различными рецепторами и индуцировать различные реакции.

Химические синапсы

Физиологические свойства химических синапсов

Синапсы с химической передачей возбуждения обладают определенными свойствами:

  • возбуждение проводится в одном направлении, так как медиатор выделяется только из синаптической бляшки и взаимодействует с рецепторами на постсинаптической мембраны;
  • распространение возбуждения через синапсы происходит медленнее, чем по нервному волокну (синаптическая задержка);
  • передача возбуждения осуществляется с помощью специфических медиаторов;
  • в синапсах изменяется ритм возбуждения;
  • синапсы способны утомляться;
  • синапсы обладают высокой чувствительностью к различным химическим веществам и гипоксии.

Одностороннее проведение сигнала. Сигнал передается только от пресинаптической мембраны к постсинаптической. Это вытекает из особенностей строения и свойств синаптических структур.

Замедленная передача сигнала. Обусловлена синаптической задержкой в передаче сигнала с одной клетки на другую. Задержка вызывается временными затратами на процессы выброса медиатора, его диффузии к постсинаптической мембране, связывания с рецепторами постсинаптической мембраны, деполяризации и преобразования постсинаптического потенциала в ПД (потенциал действия). Длительность синаптической задержки колеблется от 0,5 до 2 мс.

Способность к суммации эффекта от приходящих к синапсу сигналов. Такая суммация проявляется, если последующий сигнал приходит к синапсу через короткое время (1- 10 мс) после предыдущего. В таких случаях амплитуда ВПСП возрастает и на постсинаптическом нейроне может генерироваться большая частота ПД.

Трансформация ритма возбуждении. Частота нервных импульсов, приходящих к пресинаптической мембране, обычно не соответствует частоте ПД, генерируемых постсинаптическим нейроном. Исключение составляют синапсы, передающие возбуждение с нервного волокна на скелетную мышцу.

Низкая лабильность и высокая утомляемость синапсов. Синапсы могут проводить 50-100 нервных импульсов в секунду. Это в 5-10 раз меньше, чем максимальная частота ПД, которую могут воспроизводить нервные волокна при их электростимуляции. Если нервные волокна считаются практически неутомляемыми, то в синапсах утомление развивается весьма быстро. Это происходит из-за истощения запасов медиатора, энергетических ресурсов, развития стойкой деполяризации постсинаптической мембраны и т.д.

Высокая чувствительность синапсов к действию биологически активных веществ, лекарственных препаратов и ядов. Например, яд стрихнин блокирует функцию тормозных синапсов ЦНС, связываясь с рецепторами, чувствительными к медиатору глицину. Столбнячный токсин блокирует тормозные синапсы, нарушая выделение медиатора из пресинаптической терминали. В обоих случаях развиваются опасные для жизни организма явления. Примеры действия биологически активных веществ и ядов на передачу сигналов в нервно-мышечных синапсах рассмотрены выше.

Свойства облегчения и депрессии синоптической передачи. Облегчение синаптической передачи имеет место, когда нервные импульсы поступают к синапсу через короткое время (10-50 мс) друг за другом, т.е. достаточно часто. При этом в течение некоторого промежутка времени каждый последующий ПД, приходящий к пресинаптической мембране, вызывает увеличение содержания медиатора в синаптической щели, возрастание амплитуды ВПСП и увеличение эффективности синаптической передачи.

Одним из механизмов облегчения является накопление ионов Са 2 в пресинаптической терминали. Для удаления кальциевым насосом порции кальция, вошедшей в синаптическую терминаль при поступлении ПД, необходимо несколько десятков миллисекунд. Если в это время приходит новый потенциал действия, то новая порция кальция входит в терминаль и ее эффект на высвобождение нейромедиатора складывается с остаточным количеством кальция, которое кальциевый насос не успел удалить из нейроплазмы терминали.

Имеются и другие механизмы развития облегчения. Этот феномен в классических руководствах по физиологии называют также посттетанической потенциацией. Облегчение синаптической передачи имеет значение в функционировании механизмов памяти, для образования условных рефлексов и обучения. Облегчение передачи сигналов лежит в основе развития пластичности синапсов и улучшения их функций при частой активации.

Депрессия (угнетение) передачи сигналов в синапсах развивается при поступлении очень частых (для нервно-мышечного синапса более 100 Гц) нервных импульсов к пресинаптической мембране. В механизмах развития явления депрессии имеют значение истощение запасов медиатора в пресинаптической терминали, снижение чувствительности рецепторов постсинаптической мембраны к медиатору, развитие стойкой деполяризации постсинаптической мембраны, затрудняющих генерацию ПД на мембране постсинаптической клетки.

Электрические синапсы

Кроме синапсов с химической передачей возбуждения в организме есть синапсы с электрической передачей. Эти синапсы имеют очень узкую синаптическую щель и пониженное электрическое сопротивление между двумя мембранами. Благодаря наличию поперечных каналов между мембранами и низкому сопротивлению, электрический импульс легко проходит через мембраны. Электрические синапсы обычно характерны для однотипных клеток.

В результате воздействия раздражителя пресинаптический потенциал действия раздражает постсинаптическую мембрану, где возникает распространяющийся потенциал действия.

Характеризуются большей скоростью проведения возбуждения по сравнению с химическими синапсами и низкой чувствительностью к воздействию химических веществ.

Электрические синапсы бывают с одно- и двусторонней передачей возбуждения.

В организме встречаются и электрические тормозные синапсы. Тормозное влияние развивается за счет действия тока, который вызывает гиперполяризацию постсинаптической мембраны.

В смешанных синапсах может происходить передача возбуждения с помощью как электрических импульсов, так и медиаторов.

Область контакта между двумя нейронами называют синапсом .

Внутреннее строение аксодендритического синапса.

а) Электрические синапсы . Электрические синапсы в нервной системе млекопитающих встречаются редко. Они образованы щелевидными контактами (нексусами) между дендритами или сомами соприкасающихся нейронов, которые соединяются с помощью цитоплазматических каналов диаметром 1,5 нм. Процесс передачи сигнала происходит без синаптической задержки и без участия медиаторов.

Посредством электрических синапсов возможно распространение электротонических потенциалов от одного нейрона к другому. Вследствие тесного синаптического контакта модуляция проведения сигнала невозможна. Задача этих синапсов - осуществление одновременного возбуждения нейронов, выполняющих одинаковую функцию. Примером служат нейроны дыхательного центра продолговатого мозга, которые во время вдоха синхронно генерируют импульсы. Кроме того, примером могут служить нейронные цепи, управляющие саккадами, при которых точка фиксации взора перемещается от одного объекта внимания к другому.

б) Химические синапсы . Большинство синапсов нервной системы - химические. Функционирование таких синапсов зависит от высвобождения медиаторов. Классический химический синапс представлен пресинаптической мембраной, синаптической щелью и постсинаптической мембраной. Пресинаптическая мембрана - часть булавовидного расширения нервного окончания клетки, передающей сигнал, а постсинаптическая мембрана - часть клетки, получающей сигнал.

Медиатор высвобождается из булавовидного расширения посредством экзоцитоза, проходит через синаптическую щель и связывается с рецепторами на постсинаптической мембране. Под постсинаптической мембраной расположена субсинаптическая активная зона, в которой после активации рецепторов постсинаптической мембраны происходят разнообразные биохимические процессы.

В булавовидном расширении расположены содержащие медиаторы синаптические пузырьки, а также большое количество митохондрий и цистерны гладкой эндоплазматической сети. Применение традиционных методик фиксации при исследовании клеток позволяет различить на пресинаптической мембране пресинаптические уплотнения, ограничивающие активные зоны синапса, к которым при помощи микротрубочек направляются синаптические пузырьки.


Аксодендритический синапс.
Срез препарата спинного мозга: синапс между концевым участком дендрита и, предположительно, двигательным нейроном.
Наличие округлых синаптических пузырьков и постсинаптического уплотнения характерно для возбуждающих синапсов.
Срез дендрита проведен в поперечном направлении, о чем свидетельствует наличие множества микротрубочек.
Кроме того, видны некоторые нейрофиламенты. Участок синапса окружен протоплазматическим астроцитом.

Процессы, происходящие в нервных окончаниях двух типов.
(А) Синаптическая передача небольших молекул (например, глутамата).
(1) Транспортные пузырьки, содержащие мембранные белки синаптических пузырьков, направляются вдоль микротрубочек к плазматической мембране булавовидного утолщения.
В это же время происходит перенос молекул ферментов и глутамата путем медленного транспорта.
(2) Мембранные белки пузырьков выходят из плазматической мембраны и формируют синаптические пузырьки.
(3) Глутамат погружается в синаптические пузырьки; происходит накопление медиатора.
(4) Пузырьки, содержащие глутамат, подходят к пресинаптической мембране.
(5) В результате деполяризации происходит экзоцитоз медиатора из частично разрушенных пузырьков.
(6) Высвобождающийся медиатор распространяется диффузно в области синаптической щели и активирует специфические рецепторы на постсинаптической мембране.
(7) Мембраны синаптических пузырьков транспортируются обратно в клетку путем эндоцитоза.
(8) Происходит частичный обратный захват глутамата в клетку для повторного использования.
(Б) Передача нейропептидов (например, субстанции Р), осуществляющаяся одновременно с синаптической передачей (например, глутамата).
Совместная передача этих веществ происходит в центральных нервных окончаниях униполярных нейронов, обеспечивающих болевую чувствительность.
(1) Синтезированные в комплексе Гольджи (в области перикариона) пузырьки и предшественники пептидов (пропептиды) транспортируются к булавовидному расширению путем быстрого транспорта.
(2) При их попадании в область булавовидного утолщения завершается процесс формирования молекулы пептида, и пузырьки транспортируются к плазматической мембране.
(3) Деполяризация мембраны и перенос содержимого пузырьков в межклеточное пространство путем экзоцитоза.
(4) Одновременно с этим происходит высвобождение глутамата.

1. Активация рецепторов . Молекулы медиаторов проходят через синаптическую щель и активируют рецепторные белки, расположенные парами на постсинаптической мембране. Активация рецепторов запускает ионные процессы, которые приводят к деполяризации постсинаптической мембраны (возбуждающее постсинаптическое действие) или гиперполяризации постсинаптической мембраны (тормозящее постсинаптическое действие). Изменение электротонуса передается в сому в виде затухающего по мере распространения электротонического потенциала, за счет которого происходит изменение потенциала покоя в начальном сегменте аксона.

Ионные процессы подробно описаны в отдельной статье на сайте. При преобладании возбуждающих постсинаптических потенциалов начальный сегмент аксона деполяризуется до порогового уровня и генерирует потенциал действия.

Наиболее распространенный возбуждающий медиатор ЦНС - глутамат, а тормозной - гамма-аминомасляная кислота (ГАМК). В периферической нервной системе медиатором для двигательных нейронов поперечно-полосатой мускулатуры служит ацетилхолин, а для чувствительных нейронов - глутамат.

Последовательность процессов, происходящих в глутаматергических синапсах, показана на рисунке ниже. При передаче глутамата совместно с другими пептидами высвобождение пептидов осуществляется внесинаптическим путем.

Большинство чувствительных нейронов помимо глутамата выделяет и другие пептиды (один или несколько), высвобождающиеся в различных участках нейрона; однако основная функция этих пептидов - модуляция (повышение или снижение) эффективности синаптической передачи глутамата.

Кроме того, нейротрансмиссия может происходить путем диффузной внесинаптической передачи сигнала, характерной для моноаминергических нейронов (нейронов, использующих биогенные амины для обеспечения нейротрансмиссии). Выделяют две разновидности моноаминергических нейронов. В одних нейронах осуществляется синтез катехоламинов (норадреналина или дофамина) из аминокислоты тирозина, а в других - серотонина из аминокислоты триптофана. Например, дофамин высвобождается как в синаптической области, так и из варикозных утолщений аксона, в которых также происходит синтез этого нейромедиатора.

Дофамин проникает в межклеточную жидкость ЦНС и до момента деградации способен активировать специфические рецепторы на расстоянии до 100 мкм. Моноаминергические нейроны присутствуют во многих структурах ЦНС; нарушение передачи импульса этими нейронами приводит к различным заболеваниям, среди которых выделяют болезнь Паркинсона, шизофрению и глубокую депрессию.

Оксид азота (газообразная молекула) также участвует в диффузной нейропередаче в глутаматергической системе нейронов. Избыточное влияние оксида азота оказывает цитотоксическое действие, особенно в тех участках, кровоснабжение которых нарушено за счет тромбоза артерий. Глутамат также является потенциально цитотоксическим нейромедиатором.

В отличие от диффузной нейротрансмиссии, традиционную синаптическую передачу сигнала ввиду ее относительной стабильности называют «проводниковой».

в) Резюме . Мультиполярные нейроны ЦНС состоят из сомы, дендритов и аксона; аксон образует коллатеральные и терминальные ветви. В соме расположены гладкая и шероховатая эндоплазматическая сети, комплексы Гольджи, нейрофиламенты и микротрубочки. Микротрубочки пронизывают нейрон на всем протяжении, принимают участие в процессе антероградного транспорта синаптических пузырьков, митохондрий и веществ для построения мембран, а также обеспечивают ретроградный транспорт «маркерных» молекул и разрушенных органелл.

Существует три вида химических межнейрональных взаимодействий: синаптическое (например, глутаматергическое), внесинаптическое (пептидергическое) и диффузное (например, моноаминергическое, серотонинергическое).

Химические синапсы классифицируют по анатомическому строению на аксодендритические, аксосоматические, аксоаксональные и дендро-дендритические. Синапс представлен пре- и постсинаптическими мембранами, синаптической щелью и субсинаптической активной зоной.

Электрические синапсы обеспечивают одновременную активацию целых групп , образуя между ними электрические связи за счет щелевидных контактов (нексусов).

Диффузная нейротрансмиссия в головном мозге.
Аксоны глутаматергического (1) и дофаминергического (2) нейронов образуют плотные синаптические контакты с отростком звездчатого нейрона (3) полосатого тела.
Дофамин высвобождается не только из пресинаптической области, но и из варикозного утолщения аксона, откуда диффузно распространяется в межклеточное пространство и активирует дофаминовые рецепторы дендритного ствола и стенки перицита капилляра.

Растормаживание.
(А) Возбуждающий нейрон 1 активирует тормозной нейрон 2, который в свою очередь затормаживает нейрон 3.
(Б) Появление второго тормозного нейрона (2б) оказывает противоположное влияние на нейрон 3, поскольку происходит торможение нейрона 2б.
Спонтанно-активный нейрон 3 генерирует сигналы в условиях отсутствия тормозных влияний.

2. Лекарственные средства - «ключи» и «замки» . Рецептор можно сравнить с замком, а медиатор - с подходящим к нему ключом. В том случае, если процесс высвобождения медиатора нарушится с возрастом или в результате какого-либо заболевания, лекарственное средство может сыграть роль «запасного ключа», выполняющего аналогичную медиатору функцию. Такое лекарственное средство называют агонистом. В то же время в случае чрезмерной продукции медиатор может быть «перехвачен» блокатором рецептора - «фальшивым ключом», который свяжется с «замком»-рецептором, но при этом не вызовет его активацию.

3. Торможение и растормаживание . Функционирование спонтанно-активных нейронов сдерживается под влиянием тормозных нейронов (обычно, ГАМКергических). Деятельность тормозных нейронов, в свою очередь, может быть ингибирована воздействующими на них другими тормозными нейронами, в результате чего происходит растормаживание клетки-мишени. Процесс растормаживания - важная особенность нейрональной активности в базальных ганглиях.

4. Редкие виды химических синапсов . Выделяют два типа аксоаксональных синапсов. В обоих случаях булавовидное утолщение образует тормозной нейрон. Синапсы первого типа образуются в области начального сегмента аксона и передают мощное ингибирующее влияние тормозного нейрона. Синапсы второго типа образуются между булавовидным утолщением тормозного нейрона и булавовидными утолщениями возбуждающих нейронов, что приводит к угнетению высвобождения медиаторов. Этот процесс получил название пресинаптического торможения. В этом плане традиционный синапс обеспечивает постсинаптичсекое торможение.

Дендро-дендритические (Д-Д) синапсы образуются между дендритными шипиками дендритов смежных шипиковых нейронов. Их задача - не генерирование нервного импульса, а изменение электротонуса клетки-мишени. В последовательных Д-Д-синапсах синаптические пузырьки располагаются только в одном дендритном шипике, а в реципрокном Д-Д-синапсе- в обоих. Возбуждающие Д-Д-синапсы изображены на рисунке ниже. Тормозные Д-Д-синапсы широко представлены в переключающих ядрах таламуса.

Кроме того, выделяют немногочисленные сомато-дендритические и сомато-соматические синапсы.

Аксоаксональные синапсы коры головного мозга.
Стрелками указано направление проведения импульсов.

(1) Пресинаптическое и (2) постсинаптическое торможение спинномозгового нейрона, направляющегося к головному мозгу.
Стрелками указано направление проведения импульсов (возможно торможение переключательного нейрона под действием тормозных влияний).

Возбуждающие дендро-дендритические синапсы. Изображены дендриты трех нейронов.
Реципрокный синапс (справа). Стрелками указано направление распространения электрото-нических волн.

Учебное видео - строение синапса