Болезни Военный билет Призыв

Векторы и векторные пространства. Векторное пространство

Лекция 6. Векторное пространство.

Основные вопросы.

1. Векторное линейное пространство.

2. Базис и размерность пространства.

3. Ориентация пространства.

4. Разложение вектора по базису.

5. Координаты вектора.

1. Векторное линейное пространство.

Множество, состоящее из элементов какой угодно природы, в которых определены линейные операции: сложение двух элементов и умножение элемента на число называются пространствами , а их элементы – векторами этого пространства и обозначаются так же, как и векторные величины в гео-метрии: . Векторы таких абстрактных пространств, как правило, ничего общего не имеют с обычными геометрическими векторами. Элемен-тами абстрактных пространств могут быть функции, система чисел, матрицы и т. д., а в частном случае и обычные векторы. Поэтому такие пространства принято называть векторными пространствами .

Векторными пространствами являются, например , множество колли-неарных векторов, обозначаемое V 1 , множество компланарных векторов V 2 , множество векторов обычного (реального пространства) V 3 .

Для этого частного случая можно дать следующее определение век-торного пространства.

Определение 1. Множество векторов называется векторным прост-ранством , если линейная комбинация любых векто-ров множества также является вектором этого мно-жества. Сами векторы называются элементами век-торного пространства.

Более важным как в теоретическом, так и в прикладном отношении яв-ляется общее (абстрактное) понятие векторного пространства.

Определение 2. Множество R элементов , в котором для лю-бых двух элементов и определена сум-ма и для любого элемента https://pandia.ru/text/80/142/images/image006_75.gif" width="68" height="20"> называется векторным (или линейным) про-странством , а его элементы – векторами, если опера-ции сложения векторов и умножение вектора на число удовлетворяют следующим условиям (аксиомам ) :

1) сложение коммутативно, т. е..gif" width="184" height="25">;

3) существует такой элемент (нулевой вектор), что для любого https://pandia.ru/text/80/142/images/image003_99.gif" width="45" height="20">.gif" width="99" height="27">;

5) для любых векторов и и любого чис-ла λ имеет место равенство ;

6) для любых векторов и любых чисел λ и µ справедливо равенство https://pandia.ru/text/80/142/images/image003_99.gif" width="45 height=20" height="20"> и любых чисел λ и µ справедли-во ;

8) https://pandia.ru/text/80/142/images/image003_99.gif" width="45" height="20"> .

Из аксиом, определяющих векторное пространство, вытекают прос-тейшие следствия :

1. В векторном пространстве существует только один нуль – элемент – нулевой вектор.

2. В векторном пространстве каждый вектор имеет единственный проти-воположный вектор.

3. Для каждого элемента выполняется равенство .

4. Для любого действительного числа λ и нулевого вектора https://pandia.ru/text/80/142/images/image017_45.gif" width="68" height="25">.

5..gif" width="145" height="28">

6..gif" width="15" height="19 src=">.gif" width="71" height="24 src="> называется вектор , удовлетворяющий равенству https://pandia.ru/text/80/142/images/image026_26.gif" width="73" height="24">.

Итак, действительно, и множество всех геометрических векторов являет-ся линейным (векторным) пространством, так как для элементов этого мно-жества определены действия сложения и умножения на число, удовлетворя-ющие сформулированным аксиомам.

2. Базис и размерность пространства.

Существенными понятиями векторного пространства являются понятия базиса и размерность.

Определение. Совокупность линейно независимых векторов, взятых в определенном порядке, через которые линейно выражается любой вектор пространства, называется базисом этого пространства. Векторы. Составляющие базис пространства, называется базисным .

Базисом множества векторов, расположенных на произвольной прямой, можно считать один коллинеарный этой прямой вектор .

Базисом на плоскости назовем два неколлинеарных вектора на этой пло-скости, взятые в определенном порядке https://pandia.ru/text/80/142/images/image029_29.gif" width="61" height="24"> .

Если базисные векторы попарно перпендикулярны (ортогональны), то базис называется ортогональным , а если эти векторы имеют длину, равную единице, то базис называется ортонормированным .

Наибольшее число линейно независимых векторов пространства называ-ется размерностью этого пространства, т. е. размерность пространства сов-падает с числом базисных векторов этого пространства.

Итак, в соответствии с данными определениями:

1. Одномерным пространством V 1 является прямая линия, а базис состо-ит из одного коллинеарного вектора https://pandia.ru/text/80/142/images/image028_22.gif" width="39" height="23 src="> .

3. Обычное пространство является трехмерным пространством V 3 , базис которого состоит из трех некомпланарных векторов .

Отсюда мы видим, что число базисных векторов на прямой, на плос-кости, в реальном пространстве совпадает с тем, что в геометрии принято на-зывать числом измерений (размерностью) прямой, плоскости, пространства. Поэтому естественно ввести более общее определение.

Определение. Векторное пространство R называется n – мерным, если в нем существует не более n линейно неза-висимых векторов и обозначается R n . Число n на-зывается размерностью пространства.

В соответствии с размерностью пространства делятся на конечномерные и бесконечномерные . Размерность нулевого пространства по определению считается равной нулю.

Замечание 1. В каждом пространстве можно указать сколько угодно базисов, но при этом все базисы данного пространства состоят из одного и того же числа векторов.

Замечание 2. В n – мерном векторном пространстве базисом назы-вают любую упорядоченную совокупность n линейно независимых векторов.

3. Ориентация пространства.

Пусть базисные векторы в пространстве V 3 имеют общее начало и упорядочены , т. е. указано какой вектор считается первым, какой – вторым и какой – третьим. Например, в базисе век-торы упорядочены согласно индек-сации.

Для того чтобы ориентировать пространство, необходимо задать какой-нибудь базис и объявить его положительным .

Можно показать, что множество всех базисов пространства распадается на два класса, т. е. на два непересекающихся подмножества.

а) все базисы, принадлежащие одному подмножеству (классу), имеют одинаковую ориентацию (одноименные базисы) ;

б) всякие два базиса, принадлежащие различным подмножествам (кла-ссами), имеют противоположную ориентацию, (разноименные базисы) .

Если один из двух классов базисов пространства объявлен положитель-ным, а другой – отрицательным, то говорят, что это пространство ориенти-ровано .

Часто при ориентации пространства одни базисы называют правыми , а другие – левыми .

https://pandia.ru/text/80/142/images/image029_29.gif" width="61" height="24 src="> называют правым , если при наблюдении с конца третьего вектора кратчайший поворот пер-вого вектора https://pandia.ru/text/80/142/images/image033_23.gif" width="16" height="23"> осуществляется против часовой стрелки (рис. 1.8, а).

https://pandia.ru/text/80/142/images/image036_22.gif" width="16" height="24">

https://pandia.ru/text/80/142/images/image037_23.gif" width="15" height="23">

https://pandia.ru/text/80/142/images/image039_23.gif" width="13" height="19">

https://pandia.ru/text/80/142/images/image033_23.gif" width="16" height="23">

Рис. 1.8. Правый базис (а) и левый базис (б)

Обычно положительным базисом объявляется правый базис пространства

Правый (левый) базис пространства может быть определен и с помощью правила «правого» («левого») винта или буравчика.

По аналогии с этим вводится понятие правой и левой тройки некомпла-нарных векторов , которые должны быть упорядочены (рис.1.8).

Таким образом, в общем случае две упорядоченные тройки некомпла-нарных векторов имеют одинаковую ориентацию (одноименны) в пространстве V 3 если они обе правые или обе левые, и – противоположную ориентацию (разноименны), если одна из них правая, а другая левая.

Аналогично поступают и в случае пространства V 2 (плоскости).

4. Разложение вектора по базису.

Этот вопрос для простоты рассуждений рассмотрим на примере трех-мерного векторного пространства R 3 .

Пусть https://pandia.ru/text/80/142/images/image021_36.gif" width="15" height="19"> - произвольный вектор этого пространства.

ВЕКТОРНОЕ ПРОСТРАНСТВО, линейное пространство, над полем K, - аддитивно записанная абелева группа Е, в которой определено умножение элементов на скаляры, т. е. отображение

К × Е → Е: (λ, х) → λх,

удовлетворяющее следующим аксиомам (х, y ∈ Е, λ, μ, 1 ∈ K):

1) λ(х + у) = λх + λу,

2) (λ + μ)x = λx + μx,

3) (λμ)x = λ(μx),

4) 1 ⋅ x = х.

Из аксиом 1)-4) вытекают следующие важные свойства векторного пространства (0 ∈ Е):

5) λ ⋅ 0 = 0,

6) 0 ⋅ х = 0,

Элементы В. п. наз. точками В. п., или векторами, а элементы поля K - скалярами.

Наибольшее применение в математике и приложениях имеют В. п. над полем ℂ комплексных чисел или над полем ℝ действительных чисел; они наз. соответственно комплексными В. п. или действительными В. п.

Аксиомы В. п. выявляют нек-рые алгебраич. свойства многих классов функций, часто встречающихся в анализе. Из примеров В. п. самыми фундаментальными и наиболее ранними являются n-мерные евклидовы пространства. Почти столь же важными примерами являются многие функциональные пространства: пространство непрерывных функций, пространство измеримых функций, пространство суммируемых функций, пространство аналитич. функций, пространство функций ограниченной вариации.

Понятие В. п. есть частный случай понятия модуля над кольцом, а именно, В. п. есть унитарный модуль над полем. Унитарный модуль над некоммутативным телом также наз. векторным пространством над телом; теория таких В. п. во многом сложнее теории В. п. над полем.

Одной из важных задач, связанных с В. п., является изучение геометрии В. п., т. е. изучение прямых в В. п., плоских и выпуклых множеств в В. п., подпространств В. п. и базисов в В. п.

Векторным подпространством, или просто подпространством, В. п. Е над полем К наз. подмножество F ⊂ E, замкнутое относительно действий сложения и умножения на скаляр. Подпространство, рассматриваемое отдельно от вмещающего его пространства, есть В. п. над тем же полем.

Прямой линией, проходящей через две точки х и y В. п. Е, наз. множество элементов z ∈ E вида z = λx + (1 - λ)y, λ ∈ K. Множество G ∈ E наз. плоским множеством, если вместе с любыми двумя точками оно содержит прямую, проходящую через эти точки. Каждое плоское множество получается из нек-рого подпространства с помощью сдвига (параллельного переноса): G = x + F; это означает, что каждый элемент z ∈ G представим единственным образом в виде z = x + y, y ∈ F, причем это равенство осуществляет взаимно однозначное соответствие между F и G.

Совокупность всех сдвигов F x = x + F данного подпространства F образует В. п. над K, наз. фактор-пространством E/F, если определить операции следующим образом:

F x F y = F x+y ; λF x = F λx , λ ∈ К.

Пусть М = {х α } α∈A - произвольное множество векторов из Е; линейной комбинацией векторов х α ∈ Е наз. вектор х, определенный формулой

х = ∑ α λ α x α , λ α ∈ K,

в к-рой лишь конечное число коэффициентов отлично от нуля. Совокупность всех линейных комбинаций векторов данного множества М является наименьшим подпространством, содержащим М, и наз. линейной оболочкой множества М. Линейная комбинация наз. тривиальной, если все коэффициенты λ α равны нулю. Множество М наз. линейно независимым множеством, если все нетривиальные линейные комбинации векторов из М отличны от нуля.

Любое линейно независимое множество содержится в нек-ром максимальном линейно независимом множестве М 0 , т. е. в таком множестве, к-рое перестает быть линейно независимым после присоединения к нему любого элемента из Е.

Каждый элемент х ∈ Е может быть единственным образом представлен в виде линейной комбинации элементов максимального линейно независимого множества:

х = ∑ α λ α x α , x α ∈ M 0 .

В связи с этим максимальное линейно независимое множество наз. базисом В. п. (алгебраическим базисом). Все базисы данного В. п. имеют одинаковую мощность, к-рая наз. размерностью В. п. Если эта мощность конечна, пространство наз. конечномерным В. п.; в противном случае оно наз. бесконечномерным В. п.

Поле K можно рассматривать как одномерное В. п. над полем K; базис этого В. п. состоит из одного элемента; им может быть любой элемент, отличный от нуля. Конечномерное В. п. с базисом из n элементов наз. n-мерным пространством.

В теории действительных и комплексных В. п. важную роль играет теория выпуклых множеств. Множество М в действительном В. п. наз. выпуклым множеством, если вместе с любыми двумя его точками х, у отрезок tx + (1 - t)y, t ∈ , также принадлежит М.

Большое место в теории В. п. занимает теория линейных функционалов на В. п. n связанная с этим теория двойственности. Пусть Е есть В. п. над полем K. Линейным функционалом на Е наз. аддитивное и однородное отображение f: Е → К:

f(x + y) = f(x) + f(y), f(λx) = λf(x).

Множество Е* всех линейных функционалов на Е образует В. п. над полем K относительно операций

(f 1 + f 2)(x) = f 1 (x) + f 2 (x), (λf)(x) = λf(x), х ∈ Е, Х ∈ К, f 1 , f 2 , f ∈ Е*.

Это В. п. наз. сопряженным (или двойственным) пространством (к Е). С понятием сопряженного пространства связан ряд геометрич. терминов. Пусть D ⊂ E (соответственно Г ⊂ Е*); аннулятором множества D, или ортогональным дополнением множества D (соответственно множества Г) наз. множество

D ⊥ = {f ∈ Е*: f(x) = 0 для всех х ∈ D}

(соответственно Г ⊥ = {х ∈ Е: f(x) = 0 для всех f ∈ Г}); здесь D ⊥ и Г ⊥ - подпространства соответственно пространств Е* и Е. Если f - ненулевой элемент из Е*, то {f} есть максимальное собственное линейное подпространство в Е, наз. иногда гиперподпространством; сдвиг такого подпространства наз. гиперплоскостьюв Е; всякая гиперплоскость имеет вид

{x: f(x) = λ), где f ≠ 0, f ∈ Е*, λ ∈ K.

Если F - подпространство В. п. Е, то существуют естественные изоморфизмы между F* и

E*/F ⊥ и между (E/F)* и F ⊥ .

Подмножество Г ⊂ E* наз. тотальным подмножеством над Е, если его аннулятор содержит лишь нулевой элемент: Г ⊥ = {0}.

Каждому линейно независимому множеству {х α } α∈A ⊂ E можно сопоставить сопряженное множество {f α } α∈A ⊂ E*, т.е. такое множество, что f α (x β) = δ αβ {Кронекера символ) для всех α, β ∈ A. Множество пap {х α , f α } наз. при этом биортогональной системой. Если множество {х α } есть базис в Е, то {f α } тотально над Е.

Значительное место в теории В. п. занимает теория линейных преобразований В. п. Пусть Е 1 , Е 2 - два В. п. над одним и тем же полем К. Линейным отображением, или линейным оператором, Т, отображающим В. п. Е 1 в В. п. Е 2 (или линейным оператором из Е 1 в Е 2), наз. аддитивное и однородное отображение пространства Е 1 в Е 2:

Т(х + у) = Тх + Ту; Т(λх) = λТ(х); х, у ∈ Е 1 .

Частным случаем этого понятия является линейный функционал, или линейный оператор из Е 1 в K. Линейным отображением является, напр., естественное отображение В. п. Е на факторпространство E/F, сопоставляющее каждому элементу х ∈ Е плоское множество F x ∈ E/F. Совокупность ℒ(Е 1 , Е 2) всех линейных операторов Т: Е 1 →Е 2 образует В. п. относительно операций

(Т 1 + Т 2)х = Т 1 х + Т 2 х; (λТ)х = λТх; х ∈ Е 1 ; λ ∈ K; T 1 , T 2 , Т ∈ ℒ(Е 1 , Е 2).

Два В. п. Е 1 и Е 2 наз. изоморфными В. п., если существует линейный оператор («изоморфизм»), осуществляющий взаимно однозначное соответствие между их элементами. Е 1 и Е 2 изоморфны тогда и только тогда, когда их базисы имеют одинаковую мощность.

Пусть Т - линейный оператор, отображающий Е 1 в Е 2 . Сопряженным линейным оператором, или двойственным линейным оператором, по отношению к Т, наз. линейный оператор Т* из E* 2 в Е* 1 , определенный равенством

(Т*φ)х = φ(Тх) для всех х ∈ Е 1 , φ ∈ Е* 2 .

Имеют место соотношения Т* -1 (0) = ⊥ , Т*(Е* 2) = [Т -1 (0)] ⊥ , откуда следует, что Т* является изоморфизмом тогда и только тогда, когда Т является изоморфизмом.

С теорией линейных отображений В. п. тесно связана теория билинейных отображений и полилинейных отображений В. п.

Важную группу задан теории В. п. образуют задачи продолжения линейных отображений. Пусть F - подпространство В. п. Е 1 , Е 2 - линейное пространство над тем же полем, что и Е 1 , и пусть Т 0 - линейное отображение F в Е 2 ; требуется найти продолжение Т отображения T 0 , определенное на всем Е 1 и являющееся линейным отображением Е 1 в Е 2 . Такое продолжение всегда существует, но дополнительные ограничения на функции (связанные с дополнительными структурами в В. п., напр., топологией или отношением порядка) могут сделать задачу неразрешимой. Примерами решения задачи продолжения являются Хана-Банаха теорема и теоремы о продолжении положительных функционалов в пространствах с конусом.

Важным разделом теории В. п. является теория операций над В. п., т. е. способов построения новых В. п. по известным. Примеры таких операций - известные операции взятия подпространства и образования факторпространства по подпространству. Другие важные операции - построение прямой суммы, прямого произведения и тензорного произведения В. п.

Пусть {Е α } α∈I - семейство В. п. над полем К. Множество Е - произведение множеств Е α - можно превратить в В. п. над полем К, введя операции

(x α) + (y α) = (x α + y α); λ(x α) = (λx α); λ ∈ K; x α , y α ∈ E α , α ∈ I;

полученное В. п. Е наз. прямым произведением В. п. Е α и обозначается П α∈I Е α . Подпространство В. п. Е, состоящее из всех тех наборов (х α), для каждого из к-рых множество {α: х α ≠ 0} конечно, наз. прямой суммой В. п. Е α и обозначается Σ α E α или Σ α + E α ; Для конечного числа слагаемых эти определения совпадают; в этом случае используются обозначения:

Пусть Е 1 , Е 2 - два В. п. над полем K; Е" 1 , Е" 2 -тотальные подпространства В. п. E* 1 , Е* 2 , и Е 1 □ Е 2 -В. п., имеющее своим базисом совокупность всех элементов пространства Е 1 × Е 2 . Каждому элементу x □ y ∈ E 1 □ E 2 сопоставляется билинейная функция b = Т(х, у) на Е" 1 × Е 2 по формуле b(f, g) = f(x)g(y), f ∈ E" 1 , g ∈ E" 2 . Это отображение базисных векторов x □ y ∈ E 1 □ E 2 можно продолжить до линейного отображения Т В. п. Е 1 □ Е 2 в В. п. всех билинейных функционалов на Е" 1 × Е" 2 . Пусть E 0 = T -1 (0). Тензорным произведением В. п. Е 1 и Е 2 наз. факторпространство Е 1 ○ Е 2 = (E 1 □ E 2)/E 0 ; образ элемента x □ y обозначается х ○ у. В. п. Е 1 ○ Е 2 изоморфно В. п. билинейных функционалов на Е 1 × Е 2 (см. Тензорное произведение векторных пространств).

Лит.: Бурбаки Н., Алгебра. Алгебраические структуры. Линейная и полилинейная алгебра, пер. с франц., М., 1962; Райков Д. А., Векторные пространства, М., 1962; Дэй М. М., Нормированные линейные пространства, пер. с англ., М., 1961; , Эдварде Р., Функциональный анализ, пер. с англ., М., 1969; Халмош П., Конечномерные векторные пространства, пер. с англ., М., 1963; Глазман И. М., Любич Ю. И., Конечномерный линейный анализ в задачах, М., 1969.

М. И. Кадец.


Источники:

  1. Математическая Энциклопедия. Т. 1 (А - Г). Ред. коллегия: И. М. Виноградов (глав ред) [и др.] - М., «Советская Энциклопедия», 1977, 1152 стб. с илл.

Ве́кторное (или лине́йное ) простра́нство - математическая структура , которая представляет собой набор элементов, называемых векторами , для которых определены операции сложения друг с другом и умножения на число - скаляр . Эти операции подчинены восьми аксиомам. Скаляры могут быть элементами вещественного , комплексного или любого другого поля чисел . Частным случаем подобного пространства является обычное трехмерное евклидово пространство, векторы которого используются, к примеру, для представления физических сил . При этом следует отметить, что вектор как элемент векторного пространства не обязательно должен быть задан в виде направленного отрезка. Обобщение понятия «вектор» до элемента векторного пространства любой природы не только не вызывает смешения терминов, но и позволяет уяснить или даже предвидеть ряд результатов, справедливых для пространств произвольной природы .

Векторные пространства являются предметом изучения линейной алгебры . Одна из главных характеристик векторного пространства - его размерность. Размерность представляет собой максимальное число линейно независимых элементов пространства, то есть, прибегая к грубому геометрическому описанию, число направлений, невыразимых друг через друга посредством только операций сложения и умножения на скаляр. Векторное пространство можно наделить дополнительными структурами, например, нормой или скалярным произведением . Подобные пространства естественным образом появляются в математическом анализе , преимущественно в виде бесконечномерных функциональных пространств (англ. ) , где в качестве векторов выступают функции . Многие проблемы анализа требуют выяснить, сходится ли последовательность векторов к данному вектору. Рассмотрение таких вопросов возможно в векторных пространствах с дополнительной структурой, в большинстве случаев - подходящей топологией , что позволяет определить понятия близости и непрерывности . Такие топологические векторные пространства , в частности, банаховы и гильбертовы , допускают более глубокое изучение.

Кроме векторов, линейная алгебра изучает также тензоры более высокого ранга (скаляр считается тензором ранга 0, вектор - тензором ранга 1).

Первые труды, предвосхитившие введение понятия векторного пространства, относятся к XVII веку . Именно тогда своё развитие получили аналитическая геометрия , учения о матрицах , системах линейных уравнений , евклидовых векторах .

Энциклопедичный YouTube

  • 1 / 5

    Линейное , или векторное пространство V (F) {\displaystyle V\left(F\right)} над полем F {\displaystyle F} - это упорядоченная четвёрка (V , F , + , ⋅) {\displaystyle (V,F,+,\cdot)} , где

    • V {\displaystyle V} - непустое множество элементов произвольной природы, которые называются векторами ;
    • F {\displaystyle F} - поле , элементы которого называются скалярами ;
    • Определена операция сложения векторов V × V → V {\displaystyle V\times V\to V} , сопоставляющая каждой паре элементов x , y {\displaystyle \mathbf {x} ,\mathbf {y} } множества V {\displaystyle V} V {\displaystyle V} , называемый их суммой и обозначаемый x + y {\displaystyle \mathbf {x} +\mathbf {y} } ;
    • Определена операция умножения векторов на скаляры F × V → V {\displaystyle F\times V\to V} , сопоставляющая каждому элементу λ {\displaystyle \lambda } поля F {\displaystyle F} и каждому элементу x {\displaystyle \mathbf {x} } множества V {\displaystyle V} единственный элемент множества V {\displaystyle V} , обозначаемый λ ⋅ x {\displaystyle \lambda \cdot \mathbf {x} } или λ x {\displaystyle \lambda \mathbf {x} } ;

    Векторные пространства, заданные на одном и том же множестве элементов, но над различными полями, будут различными векторными пространствами (например, множество пар действительных чисел R 2 {\displaystyle \mathbb {R} ^{2}} может быть двумерным векторным пространством над полем действительных чисел либо одномерным - над полем комплексных чисел).

    Простейшие свойства

    1. Векторное пространство является абелевой группой по сложению.
    2. Нейтральный элемент 0 ∈ V {\displaystyle \mathbf {0} \in V}
    3. 0 ⋅ x = 0 {\displaystyle 0\cdot \mathbf {x} =\mathbf {0} } для любого .
    4. Для любого x ∈ V {\displaystyle \mathbf {x} \in V} противоположный элемент − x ∈ V {\displaystyle -\mathbf {x} \in V} является единственным, что вытекает из групповых свойств.
    5. 1 ⋅ x = x {\displaystyle 1\cdot \mathbf {x} =\mathbf {x} } для любого x ∈ V {\displaystyle \mathbf {x} \in V} .
    6. (− α) ⋅ x = α ⋅ (− x) = − (α x) {\displaystyle (-\alpha)\cdot \mathbf {x} =\alpha \cdot (-\mathbf {x})=-(\alpha \mathbf {x})} для любых и x ∈ V {\displaystyle \mathbf {x} \in V} .
    7. α ⋅ 0 = 0 {\displaystyle \alpha \cdot \mathbf {0} =\mathbf {0} } для любого α ∈ F {\displaystyle \alpha \in F} .

    Связанные определения и свойства

    Подпространство

    Алгебраическое определение: Линейное подпространство или векторное подпространство ― непустое подмножество K {\displaystyle K} линейного пространства V {\displaystyle V} такое, что K {\displaystyle K} само является линейным пространством по отношению к определенным в V {\displaystyle V} действиям сложения и умножения на скаляр. Множество всех подпространств обычно обозначают как L a t (V) {\displaystyle \mathrm {Lat} (V)} . Чтобы подмножество было подпространством, необходимо и достаточно, чтобы

    Последние два утверждения эквивалентны следующему:

    Для всяких векторов x , y ∈ K {\displaystyle \mathbf {x} ,\mathbf {y} \in K} , вектор α x + β y {\displaystyle \alpha \mathbf {x} +\beta \mathbf {y} } также принадлежал K {\displaystyle K} для любых α , β ∈ F {\displaystyle \alpha ,\beta \in F} .

    В частности, векторное пространство, состоящее из одного лишь нулевого вектора, является подпространством любого пространства; любое пространство является подпространством самого себя. Подпространства, не совпадающие с этими двумя, называют собственными или нетривиальными .

    Свойства подпространств

    Линейные комбинации

    Конечная сумма вида

    α 1 x 1 + α 2 x 2 + … + α n x n {\displaystyle \alpha _{1}\mathbf {x} _{1}+\alpha _{2}\mathbf {x} _{2}+\ldots +\alpha _{n}\mathbf {x} _{n}}

    Линейная комбинация называется:

    Базис. Размерность

    Векторы x 1 , x 2 , … , x n {\displaystyle \mathbf {x} _{1},\mathbf {x} _{2},\ldots ,\mathbf {x} _{n}} называются линейно зависимыми , если существует их нетривиальная линейная комбинация, равная нулю:

    α 1 x 1 + α 2 x 2 + … + α n x n = 0 , | α 1 | + | α 2 | + … + | α n | ≠ 0. {\displaystyle \alpha _{1}\mathbf {x} _{1}+\alpha _{2}\mathbf {x} _{2}+\ldots +\alpha _{n}\mathbf {x} _{n}=\mathbf {0} ,\quad \ |\alpha _{1}|+|\alpha _{2}|+\ldots +|\alpha _{n}|\neq 0.}

    В противном случае эти векторы называются линейно независимыми .

    Данное определение допускает следующее обобщение: бесконечное множество векторов из V {\displaystyle V} называется линейно зависимым , если линейно зависимо некоторое конечное его подмножество, и линейно независимым , если любое его конечное подмножество линейно независимо.

    Свойства базиса:

    x = α 1 x 1 + α 2 x 2 + … + α n x n {\displaystyle \mathbf {x} =\alpha _{1}\mathbf {x} _{1}+\alpha _{2}\mathbf {x} _{2}+\ldots +\alpha _{n}\mathbf {x} _{n}} .

    Линейная оболочка

    Линейная оболочка подмножества X {\displaystyle X} линейного пространства V {\displaystyle V} - пересечение всех подпространств V {\displaystyle V} , содержащих X {\displaystyle X} .

    Линейная оболочка является подпространством V {\displaystyle V} .

    Линейная оболочка также называется подпространством, порожденным X {\displaystyle X} . Говорят также, что линейная оболочка V (X) {\displaystyle {\mathcal {V}}(X)} - пространство, натянутое на множество X {\displaystyle X} .

    Пусть Р – поле. Элементы a, b, ... ÎР будем называть скалярами .

    Определение 1. Класс V объектов (элементов) , , , ... произвольной природы называется векторным пространством над полем Р , а элементы класса V называются векторами , если V замкнуто относительно операции «+» и операции умножения на скаляры из Р (т.е. для любых , ÎV +ÎV ;"aÎ Р aÎV), и выполняются следующие условия:

    А 1: алгебра - абелева группа;

    А 2: для любых a, bÎР, для любого ÎV выполняется a(b)=(ab)- обобщенный ассоциативный закон;

    А 3: для любых a, bÎР, для любого ÎV выполняется (a+b)= a+ b;

    А 4: для любого a из Р, для любых , из V выполняется a(+)=a+a(обобщённые дистрибутивные законы);

    А 5: для любого из V выполняется 1 = , где 1 – единица поля Р - свойство унитарности.

    Элементы поля Р будем называть скалярами, а элементы множества V - векторами.

    Замечание. Умножение вектора на скаляр не является бинарной операцией на множестве V, так как это отображение P´V®V.

    Рассмотрим примеры векторных пространств.

    Пример 1. Нулевое (нуль-мерное) векторное пространство - пространство V 0 ={} - состоящее из одного нуль-вектора.

    И для любого aÎР a=. Проверим выполнимость аксиом векторного пространства.

    Заметим, что нулевое векторное пространство существенно зависит от поля Р. Так, нульмерные пространства над полем рациональных чисел и над полем действительных чисел считаются различными, хоть и состоят из единственного нуль-вектора.

    Пример 2. Поле Р само является векторным пространством над полем Р. Пусть V=P. Проверим выполнимость аксиом векторного пространства. Так как Р - поле, то Р является аддитивной абелевой группой и А 1 выполняется. В силу выполнимости в Р ассоциативности умножения выполняется А 2 . Аксиомы А 3 и А 4 выполняются в силу выполнимости в Р дистрибутивности умножения относительно сложения. Так как в поле Р существует единичный элемент 1, то выполняется свойство унитарности А 5 . Таким образом, поле Р является векторным пространством над полем Р.

    Пример 3. Арифметическое n-мерное векторное пространство.

    Пусть Р - поле. Рассмотрим множество V= P n ={(a 1 , a 2 , … , a n) ½ a i Î P, i=1,…, n}. Введём на множестве V операции сложения векторов и умножения вектора на скаляр по следующим правилам:

    "= (a 1 , a 2 , … , a n), = (b 1 , b 2 , … , b n) Î V, "aÎ P += (a 1 + b 1 , a 2 + b 2 , … , a n + b n) (1)

    a=(aa 1 , aa 2 , … , aa n) (2)

    Элементы множества V будем называть n-мерными векторами . Два n-мерных вектора называются равными, если их соответствующие компоненты (координаты) равны. Покажем, что V является векторным пространством над полем Р. Из определения операций сложения векторов и умножения вектора на скаляр следует, что V замкнуто относительно этих операций. Так как сложение элементов из V сводится к сложению элементов поля Р, а Р является аддитивной абелевой группой, то и V является аддитивной абелевой группой. Причём, = , где 0 - ноль поля Р, -= (-a 1 , -a 2 , … , -a n). Таким образом, А 1 выполняется. Так как умножение элемента из V на элемент из Р сводится к умножению элементов поля Р, то:


    А 2 выполняется в силу ассоциативности умножения на Р;

    А 3 и А 4 выполняются в силу дистрибутивности умножения относительно сложения на Р;

    А 5 выполняется, так как 1 Î Р - нейтральный элемент относительно умножения на Р.

    Определение 2. Множество V= P n с операциями, определёнными формулами (1) и (2) называется арифметическим n-мерным векторным пространством над полем Р.

    ВЕКТОРНОЕ ПРОСТРАНСТВО (линейное пространство), одно из фундаментальных понятий алгебры, обобщающее понятие совокупности (свободных) векторов. В векторном пространстве вместо векторов рассматриваются любые объекты, которые можно складывать и умножать на числа; при этом требуется, чтобы основные алгебраические свойства этих операций были такими же, как и для векторов в элементарной геометрии. В точном определении числа заменяются элементами любого поля К. Векторным пространством над полем К называется множество V с операцией сложения элементов из V и операцией умножения элементов из V на элементы из поля К, которые обладают следующими свойствами:

    х + у = у + х для любых х, у из V, т. е. относительно сложения V является абелевой группой;

    λ(х + у) = λ χ + λу для любых λ из К и х, у из V;

    (λ + μ)х = λх + μх для любых λ, μ из К и х из V;

    (λ μ)х = λ(μх) для любых λ, μ из К и х из V;

    1х = х для любого х из V, здесь 1 означает единицу поля К.

    Примерами векторного пространства являются: множества L 1 , L 2 и L 3 всех векторов из элементарной геометрии, соответственно на прямой, плоскости и в пространстве с обычными операциями сложения векторов и умножения на число; координатное векторному пространству K n , элементами которого являются всевозможные строки (векторы) длины n с элементами из поля К, а операции заданы формулами

    множество F(M, К) всех функций, оп-ределённых на фиксированном множе-стве М и принимающих значения в поле К, с обычными операциями над функ-циями:

    Элементы векторного пространства е 1 ..., е n называются линейно независимыми, если из равенства λ 1 e 1 + ... +λ n е n = 0 Є V следует, что все λ 1 , λ 2 ,..., λ n = 0 Є К. В противном слу-чае элементы е 1 , е 2 , ···> е n называются линейно зависимыми. Если в векторном пространстве V любые n + 1 элементов e 1 ,..., е n+1 ли-нейно зависимы и существует n линей-но независимых элементов, то V назы-вается n-мерным векторным пространством, а n - размерно-стью векторного пространства V. Если в векторном пространстве V для любого натурального n существует n линейно независимых векторов, то V называется бесконечномерным векторным пространством. Например, векторное пространство L 1 , L 2 , L 3 и К n соответственно 1-, 2-, 3- и n-мерны; если М - бесконечное множество, то векторное пространство F(М, К) бесконечномерно.

    Векторное пространство V и U над полем К называются изоморфными, если существует взаимно однозначное отображение φ : V -> U такое, что φ(х+у) = φ(х) + φ(у) для любых х, у из V и φ(λх) = λ φ(х) для любых λ из К и х из V. Изоморфные векторные пространства являются алгебраически неразличимыми. Классификация конечномерных векторных пространств с точностью до изоморфности даётся их размерностью: любое n-мерное векторное пространство над полем К изоморфно координатному векторному пространству К n . Смотри также Гильбертово пространство, Линейная алгебра.