Болезни Военный билет Призыв

Условия выполнения закона шарля. Опыт Шарля: газовые законы

В XVII – XIX веках были сформулированы опытные законы идеальных газов. Кратко напомним их.

Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

1. Изохорический процесс . Закон Шарля. V = const.

Изохорическим процессом называется процесс, протекающий при постоянном объёме V . Поведение газа при этом изохорическом процессе подчиняется закону Шарля :

При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

График изохорического процесса на РV -диаграмме называется изохорой . Полезно знать график изохорического процесса на РТ - и VT -диаграммах (рис. 1.6). Уравнение изохоры:

Где Р 0 – давление при 0 °С, α - температурный коэффициент давления газа равный 1/273 град -1 . График такой зависимости на Рt -диаграмме имеет вид, показанный на рисунке 1.7.


Рис. 1.7

2. Изобарический процесс. Закон Гей-Люссака. Р = const.

Изобарическим процессом называется процесс, протекающий при постоянном давлении Р . Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака :

При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

График изобарического процесса на VT -диаграмме называется изобарой . Полезно знать графики изобарического процесса на РV - и РT -диаграммах (рис. 1.8).


Рис. 1.8

Уравнение изобары:

Где α =1/273 град -1 - температурный коэффициент объёмного расширения . График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.


Рис. 1.9

3. Изотермический процесс. Закон Бойля – Мариотта. T = const.

Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

График изотермического процесса на РV -диаграмме называется изотермой . Полезно знать графики изотермического процесса на VT - и РT -диаграммах (рис. 1.10).


Рис. 1.10

Уравнение изотермы:

(1.4.5)

4. Адиабатический процесс (изоэнтропийный):

Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится N A =6,02·10 23 молекул (число Авогадро).

7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

(1.4.6)

Парциальное давление Pn – давление, которое оказывал бы данный газ, если бы он один занимал весь объем.

При , давление смеси газов.

Неоднозначность терминологии

В русско- и англоязычной научной литературе существуют некоторые различия в наименовании законов, связанных с именем Гей-Люссака. Эти различия представлены в следующей таблице.

Русскоязычное название Англоязычное название Формула
Закон Гей-Люссака Закон Шарля (en:Charles"s law)
Закон Гей-Люссака
Закон объёмов (Volumes Law)
Закон Шарля Закон Гей-Люссака (en:Gay Lussac"s law)
Второй закон Гей-Люссака
Закон объёмных отношений Закон Гей-Люссака (en:Gay Lussac"s law)

Формулировка закона

Формулировка закона Шарля следующая:

Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа.

Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в градусах Кельвина . Математически закон записывают так:

См. также

Примечания

Ссылки

Литература

  • Castka, Joseph F.; Metcalfe, H. Clark; Davis, Raymond E.; Williams, John E. Modern Chemistry. - Holt, Rinehart and Winston, 2002. - ISBN 0-03-056537-5
  • Guch, Ian The Complete Idiot"s Guide to Chemistry. - Alpha, Penguin Group Inc., 2003. - ISBN 1-59257-101-8
  • Mascetta, Joseph A. How to Prepare for the SAT II Chemistry. - Barron"s, 1998. - ISBN 0-7641-0331-8

Wikimedia Foundation . 2010 .

  • Закон Чарли (Звездный путь)
  • Закон взаимности Гаусса

Смотреть что такое "Закон Шарля" в других словарях:

    ЗАКОН ШАРЛЯ - ЗАКОН ШАРЛЯ, объем газа при постоянном давлении прямо пропорционален его абсолютной температуре. Эта зависимость была впервые выведена Жаком ШАРЛЕМ в 1787 г. Закон представляет собой частный случай ЗАКОНА ИДЕАЛЬНОГО ГАЗА. Его иногда называют… …

    ЗАКОН ШАРЛЯ - один из основных газовых законов, согласно которому давление р данной массы идеального газа при постоянном объёме изменяется пропорционально изменению термодинамической (абсолютной) температуры Т: Реальные газы подчиняются этому закону при… … Большая политехническая энциклопедия

    закон Шарля - Šarlio dėsnis statusas T sritis fizika atitikmenys: angl. Charles’ law vok. Charlessches Gesetz, n rus. закон Шарля, m pranc. loi de Charles, f … Fizikos terminų žodynas

    Закон Бойля-Мариотта - Закон Бойля Мариотта один из основных газовых законов. Закон назван в честь ирландского физика, химика и философа Роберта Бойля (1627 1691), открывшего его в 1662, а также в честь французского физика Эдма Мариотта (1620 1684), который открыл… … Википедия

    Закон Бойля - Мариотта - Воздух (или инертный газ), находящийся в запечатанном пакете с печеньем расширяется, когда продукт поднят на значительную высоту над уровнем моря (ок 2000 м) Закон Бойля Мариотта один из основных газовых з … Википедия

    ЗАКОН ИДЕАЛЬНОГО ГАЗА - ЗАКОН ИДЕАЛЬНОГО ГАЗА, закон, определяющий соотношение давления, температуры и объема идеального газа: pV = nRT, где п количество молекул газа, a R универсальная ГАЗОВАЯ ПОСТОЯННАЯ; закон гласит, что при постоянной температуре (Т) произведение… … Научно-технический энциклопедический словарь

    Закон Гей-Люссака - Анимация, представляющая зависимость объёма газа от температуры (закон Гей Люссака) Закон … Википедия

    Шарля закон - давление pt идеального газа неизменной массы и объёма возрастает при нагревании линейно: рt = р0(1 + αt), где рt и р0 давление газа при температурах t и 0°C, α = 1/273К 1. Открыт в 1787 французским учёным Ж. Шарлем, уточнён Ж. Гей Люссаком… … Энциклопедический словарь

    Закон Менделеева-Клапейрона - Уравнение состояния Статья является частью серии «Термодинамика». Уравнение состояния идеального газа Уравнение Ван дер Ваальса Уравнение Дитеричи Разделы термодинамики Начала термодинамики Уравнен … Википедия

Зако́н Ша́рля или второй закон Гей-Люссака - один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Экспериментальным путём зависимость давления газа от температуры при постоянном объёме установлена в 1787 году Шарлем и уточнена Гей-Люссаком в 1802 году.

Неоднозначность терминологии [ | ]

В русско- и англоязычной научной литературе существуют некоторые различия в наименовании законов, связанных с именем Гей-Люссака. Эти различия представлены в следующей таблице:

Русскоязычное название Англоязычное название Формула
Закон Гей-Люссака Закон Шарля (en:Charles"s law)
Закон Гей-Люссака
Закон объёмов (Volumes Law)
V / T = c o n s t {\displaystyle V/T=\mathrm {const} }
Закон Шарля Закон Гей-Люссака (en:Gay-Lussac"s law)
Второй закон Гей-Люссака
P / T = c o n s t {\displaystyle P/T=\mathrm {const} }
Закон объёмных отношений Закон Гей-Люссака (en:Gay-Lussac"s law)

Формулировка закона [ | ]

Формулировка закона Шарля следующая:

Давление газа фиксированной массы и фиксированного объёма прямо пропорционально абсолютной температуре газа.

Проще говоря, если температура газа увеличивается, то и его давление тоже увеличивается, если при этом масса и объём газа остаются неизменными.Закон имеет особенно простой математический вид, если температура измеряется по абсолютной шкале, например, в кельвинах . Математически закон записывают так:

P ∼ T {\displaystyle \qquad P\sim {T}} P T = k {\displaystyle {\frac {P}{T}}=k} P - давление газа, T - температура газа (в кельвинах), k - константа .

Этот закон справедлив, поскольку температура является мерой средней кинетической энергии вещества. Если кинетическая энергия газа увеличивается, его частицы сталкиваются со стенками сосуда быстрее, тем самым создавая более высокое давление.

Для сравнения того же вещества при двух различных условиях, закон можно записать в виде:

P 1 T 1 = P 2 T 2 o r P 1 T 2 = P 2 T 1 . {\displaystyle {\frac {P_{1}}{T_{1}}}={\frac {P_{2}}{T_{2}}}\qquad \mathrm {or} \qquad {P_{1}}{T_{2}}={P_{2}}{T_{1}}.}

Закон Амонтона о давлении и температуре: закон давления, описанный выше, должен быть на самом деле приписан Гильому Амонтону , который в начале XVIII века (точнее между 1700 и 1702 годом ) обнаружил, что давление фиксированной массы газа, поддерживаемого при постоянном объёме, пропорционально его температуре. Амонтон обнаружил это при постройке «воздушного термометра». Называть этот закон законом Гей-Люссака просто некорректно, поскольку Гей-Люссак исследовал взаимосвязь между объёмом и температурой, а не давлением и температурой.

Закон Шарля был известен как закон Шарля и Гей-Люссака, поскольку Гей-Люссак опубликовал его в 1802 году с использованием по большей части неопубликованных с 1787 года данных Шарля. Закон Гей-Люссака, закон Шарля и закон Бойля - Мариотта все вместе образуют объединённый газовый закон. В сочетании с

С помощью уравнения состояния можно найти зависимость давления газа от температуры при постоянном объеме. Эту зависимость экспериментально установил французский физик Ж. Шарль (1746-1823) в 1787 г.* Располагая уравнением состояния идеального газа, прибегать к опыту уже нет необходимости.

* Ж. Шарль в 1787 г., т. е. раньше, чем Гей-Люссак, установил и зависимость объема от температуры при постоянном давлении, но он своевременно не опубликовал своих работ.

Закон Шарля

Согласно уравнению (3.9.9)

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре. Вэтом и состоит закон Шарля.

Из закона Шарля следует, что отношение давлений данной массы газа при постоянном объеме равно отношению его абсолютных температур:

Процесс изменения давления газа, вызванный изменением температуры при постоянном объеме, называют изохорным (от греческих слов isos - равный и chora - занимаемое место). Зависимость давления газа от температуры графически изображается прямой линией - изохорой. Разным объемам соответствуют различные изохоры (рис. 3.14). Так как с ростом объема газа при постоянной температуре давление его падает (закон Бойля-Мариотта), то изохора, соответствующая объему V 2 , лежит ниже изохоры, соответствующей объему V 1 < V 2 .

Все прямые заканчиваются в начале координат. Значит, давление идеального газа при абсолютном нуле равно нулю, так же как и объем.

Предлагаем читателю самостоятельно убедиться в том, что закон Шарля можно записать в форме

(3.10.3)

где р 0 - давление газа при температуре Т = 273 К, а коэффициент γ, называемый температурным коэффициентом давления газа, равен температурному коэффициенту объемного расширения:

Коэффициент γ представляет собой относительное изменение давления при изменении температуры газа на 1 К.

Газовый термометр постоянного объема

В § 3.6 говорилось об идеальной газовой шкале температур. Для определения температуры по этой шкале используют газовые термометры. Наиболее простым газовым термометром является термометр постоянного объема. Измерение температуры с помощью этого термометра основано на законе Шарля (3.10.2).

Газовый термометр представляет собой сосуд, заполненный тем или иным газом: азотом, аргоном или гелием. Сосуд соединен гибкой трубкой с ртутным манометром, которым измеряют давление газа и поддерживают его постоянный объем (рис. 3.15, а, б). Сначала измеряют давление при некоторой фиксированной температуре Т 0 (см. рис. 3.15, а)*. Затем измеряют давление при температуре Т (см. рис. 3.15, б ). Зная давление р 0 при температуре То и давление р при температуре Т, температуру Т определяют по формуле

(3.10.4)

* В качестве этой температуры обычно выбирается температура тройной точки воды, т. е. температура состояния, в котором лед, вода и водяной пар находятся в тепловом равновесии.

а) б )

Газовый термометр для точных измерений - очень сложное устройство. Для измерения температуры при физических исследованиях он применяется редко. Основное его назначение - использование для градуировки более простых, вторичных термометров. Эта градуировка производится в бюро стандартов, в метрологических институтах и в отдельных физических лабораториях. Для градуировки обычных, широко применяемых термометров используются вторичные термометры.

На законе Шарля основано устройство газового термометра для определения температуры по идеальной газовой шкале.

Зако́н Ша́рля или второй закон Гей-Люссака - один из основных газовых законов, описывающий соотношение давления и температуры для идеального газа. Экспериментальным путём зависимость давления газа от температуры при постоянном объёме установлена в 1787 году Шарлем и уточнена Гей-Люссаком в 1802 году.

Изохорический или изохорный процесс (от др.-греч. ἴσος - «равный» и χώρος - «место») - термодинамический процесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма.

При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см. Закон Шарля). В реальных газах закон Шарля не выполняется.

На графиках изображается линиями, которые называются изохоры . Для идеального газа они являются прямыми во всех диаграммах, которые связывают параметры: {\displaystyle T} (температура), {\displaystyle V} (объем) и {\displaystyle P} (давление).

Наиболее часто первые исследования изохорного процесса связывают с Гильомом Амптоном. В своей работе «Парижские мемуары» в 1702 году он описал поведение газа в фиксированном объёме [Комм 1] внутри так называемого «воздушного термометра». Жидкость в нём находится в равновесии под воздействием давления газа в резервуаре и атмосферным давлением. При нагревании давление в резервуаре увеличивается, и жидкость вытесняется в выступающий столб. Зависимость между температурой и давлением была установлена в виде:

{\displaystyle {\frac {p_{1}}{p_{2}}}={\frac {1+\alpha t_{1}}{1+\alpha t_{2}}}}

В 1801 году Джон Дальтон в двух своих эссе опубликовал эксперимент, в котором установил, что все газы и пары, исследованные им при постоянном давлении, одинакового расширяются при изменении температуры, если начальная и конечная температура одинакова . Данный закон получил название закона Гей-Люссака, так как Гей-Люссак, вскоре провёл самостоятельные эксперименты и подтвердил одинаковое расширение различных газов, причём получив практически тот же самый коэффициент, что и Дальтон . Впоследствии он же объединил свой закон с законом Бойля - Мариотта , что позволило описывать в том числе и изохорный процесс.



Изменение давления газа при изменении его температуры происходит так, что отношение P/T остается постоянным:

Поэтому экспериментальная проверка этого закона не может дать иного результата.

В изохорном процессе (V = const) газ работы не совершает, A = 0.

АДИАБАТИЧЕСКИЙ ПРОЦЕСС

Адиабати́ческий , или адиаба́тный проце́сс (от др.-греч. ἀδιάβατος - «непроходимый») - термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке .

Адиабатический процесс является частным случаем политропного процесса, так как при нём теплоёмкость газа равна нулю и, следовательно, постоянна . Адиабатические процессы обратимы только тогда, когда в каждый момент времени система остаётсяравновесной (например, изменение состояния происходит достаточно медленно) и изменения энтропии не происходит. Некоторые авторы (в частности, Л. Д. Ландау) называли адиабатическими только обратимые адиабатические процессы .

Обратимый адиабатический процесс для идеального газа описывается уравнением Пуассона. Линия, изображающая адиабатный процесс на термодинамической диаграмме, называется адиабатой Пуассона . Примером необратимого адиабатического процесса может быть распространение ударной волны в газе. Такой процесс описывается ударной адиабатой . Адиабатическими можно считать процессы в целом ряде явлений природы. Также такие процессы получили ряд применений в технике.

Существование атмосферного давления было показано рядом экспериментов в XVII веке. Одним из первых доказательств гипотезы стали магдебургские полушария, сконструированные немецким инженером Герике. Из сферы, образованной полушариями, выкачивался воздух, после чего их было трудно разъединить в силу внешнего давления воздуха. Другой эксперимент в рамках исследования природы атмосферного давления поставил Роберт Бойль. Он состоял в том, что если запаять изогнутую стеклянную трубку с короткого конца, а в длинное колено постоянно подливать ртуть, она не поднимется до верха короткого колена, поскольку воздух в трубке, сжимаясь, будет уравновешивать давление ртути на него. К 1662 году данные опыты позволили прийти к формулировке закона Бойля - Мариотта .

В 1779 году в «Пирометрии» Ламберта был описан опыт повышения и понижения температуры в приёмнике воздушного насосапри движении поршня. Впоследствии данный эффект был подтверждён Дарвином (1788) и Пикте (1798). В 1802 году Дальтонопубликовал доклад, в котором, в числе прочего, указал, что сгущение газов сопровождается выделением тепла, а разрежение - охлаждением. Рабочий оружейного завода зажёг трут в дуле духового ружья путём сжатия воздуха, о чём сообщил в 1803 году лионский физик Моле .

Теоретическим обобщением накопившихся экспериментальных знаний занялся физик Пуассон. Так как при адиабатическом процессе температура непостоянна, то закон Бойля - Мариотта требует поправки, которую Пуассон обозначил как коэффициентk и выразил через соотношение теплоёмкостей. Экспериментально данный коэффициент определялся Вальтером и Гей-Люссаком (эксперимент описан в 1807 году) и затем, более точно Дезормом и Клеманом в 1819 году. Практическое использование адиабатического процесса предложил С. Карно в работе «Движущая сила огня» в 1824 году.

Если термодинамический процесс в общем случае представляет собой три процесса - теплообмен, совершение системой (или над системой) работы и изменение её внутренней энергии , то адиабатический процесс в силу отсутствия теплообмена (dQ=0{\displaystyle \Delta Q=0}) системы со средой сводится только к последним двум процессам . Поэтому, первое начало термодинамики в этом случае приобретает вид dU=-A

{\displaystyle \Delta U=-A,}

Где dU {\displaystyle \Delta U} - изменение внутренней энергии тела, dA{\displaystyle A} - работа, совершаемая системой.

Изменения энтропии {\displaystyle S}dS системы в обратимом адиабатическом процессе вследствие передачи тепла через границы системы не происходит : dS=dQ/T=0

{\displaystyle \mathrm {d} S=\delta Q/T=0.}

Здесь {\displaystyle T}T - температура системы, {\displaystyle \delta Q}dQ - теплота, полученная системой. Благодаря этому адиабатический процесс может быть составной частью обратимого цикла.

Открытие адиабатического процесса практически сразу нашло применение в дальнейших исследованиях. Создание теоретической модели цикла Карно позволило установить пределы развития реальных тепловых машин (сам С. Карно показал, что двигатель с более высоким КПД позволил бы создать вечный двигатель ). Однако цикл Карно трудно осуществим для некоторых реальных процессов, так как входящие в его состав изотермы требуют определённой скорости теплообмена . Поэтому были разработаны принципы циклов, частично сходных с циклом Карно (например, цикл Отто, цикл сжижения газа), которые были бы применимы в конкретных практических задачах.

Дальнейшие исследования показали также, что некоторые процессы в природе (например, распространение звука в газе) можно с достаточной степенью приближения описывать адиабатическим процессом и выявлять их закономерности . Химическая реакция внутри объёма газа в случае отсутствия теплообмена с окружающей средой также по определению будет адиабатическим процессом. Таким процессом является, например, адиабатическое горение. Для атмосферы Земли также считается адиабатическим процесс совершения газом работы на увеличение его потенциальной энергии. Исходя из этого, можно определить адиабатический градиент температуры для атмосферы Земли . Теория адиабатического процесса употребляется и для других астрономических объектов с атмосферой. В частности, для Солнца наличие макроскопических конвекционных движений теоретически определяют путём сравнения адиабатического градиента и градиента лучевого равновесия . Адиабатическими можно считать процессы, происходящие с применением адиабатных оболочек.

Цикл Карно является идеальным термодинамическим циклом. Тепловая машина Карно , работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно .

Максимальное КПД достигается при обратимом цикле . Для того, чтобы цикл был обратимым, из него должна быть исключена передача тепла при наличии разности температур. Чтобы доказать этот факт, предположим, что передача тепла при разности температур имеет место. Данная передача происходит от более горячего тела к более холодному. Если предположить процесс обратимым, то это означало бы возможность передачи тепла обратно от более холодного тела к более нагретому, что невозможно, следовательно процесс необратим . Соответственно, преобразование тепла в работу может происходить только изотермически [Комм 3] . При этом обратный переход двигателя в начальную точку только путём изотермического процесса невозможен, так как в этом случае вся полученная работа будет затрачена на восстановление исходного положения. Так как выше было показано, что адиабатический процесс может быть обратимым - то этот вид адиабатического процесса подходит для использования в цикле Карно.

Всего при цикле Карно происходят два адиабатических процесса :

1. Адиабатическое (изоэнтропическое) расширение (на рисунке - процесс 2→3). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.

2. Адиабатическое (изоэнтропическое) сжатие (на рисунке - процесс 4→1). Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.


ПОЛИТРОПНЫЙ ПРОЦЕСС

Политропным называют процесс, который описывается уравнением

Уравнение состояния одного моля идеального газа

Дифференцируем уравнение (3.38):

Правую часть равенства (3.40) подставим в (3.36). Тогда

Политропный процесс является обобщением всех изопроцессов.

Замечание: 1. Изобарический процесс, Р=сonst. В этом случае уравнение политропы PV n = const принимает вид PV 0 = const, т.к. показатель политропы n=0, C n =C p .

2. Изотермический процесс, Т=сonst. При n=1 уравнение политропы переходит в уравнение изотермы, т.е. PV=сonst. Теплоемкость при постоянной температуре согласно (3.42) C n =C T =±¥.

3. Изохорический процесс, V=сonst. При n=±¥ уравнение политропы переходит в уравнение изохоры.

Теплоемкость при постоянном объеме .

4. Адиабатический процесс, Q=сonst. При n=g уравнение политропы переходит в уравнение адиабаты, а теплоемкость C n =C Q =0.

Найдем работу политропного процесса.

Рассмотрим два адиабатических состояния:

Работа политропного процесса

.