Болезни Военный билет Призыв

Уравнения первой степени с двумя неизвестными. Показательные уравнения. Исчерпывающее руководство (2019)

Начальный уровень

Показательные уравнения. Исчерпывающее руководство (2019)

Привет! Сегодня мы обсудим с тобой, как решать уравнения, которые могут быть как элементарными (а я надеюсь, что после прочтения этой статьи почти что все они и будут для тебя таковыми), так и такими, которые обычно дают «на засыпку». Видимо, чтобы засыпать окончательно. Но я постараюсь сделать все возможное, чтобы уж теперь ты не попал впросак, столкнувшись с таким типом уравнений. Я не буду больше ходить вокруг да около, а сразу открою маленький секрет: сегодня мы будем заниматься показательными уравнениями.

Прежде чем переходить к разбору способов их решений, я сразу обрисую перед тобой круг вопросов (достаточно небольшой), который тебе стоит повторить, прежде чем бросаться на штурм этой темы. Итак, для получения наилучшего результата, пожалуйста, повтори:

  1. Свойства и
  2. Решение и уравнений

Повторил? Замечательно! Тогда тебе не составит труда заметить, что корнем уравнения является число. Ты точно понял, как я это сделал? Правда? Тогда продолжаем. Теперь ответь мне на вопрос, чему равно в третьей степени? Ты абсолютно прав: . А восьмерка - это какая степень двойки? Правильно - третья! Потому что. Ну вот, теперь давай попробуем решить следующую задачку: Пусть я раз умножаю само на себя число и получаю в результате. Спрашивается, сколько раз я умножил само на себя? Ты, конечно, можешь проверить это непосредственно:

\begin{align} & 2=2 \\ & 2\cdot 2=4 \\ & 2\cdot 2\cdot 2=8 \\ & 2\cdot 2\cdot 2\cdot 2=16 \\ \end{align}

Тогда ты можешь сделать вывод, что само на себя я умножал раза. Как еще это можно проверить? А вот как: непосредственно по определению степени: . Но, согласись, если бы я спрашивал, сколько раз два нужно умножить само на себя, чтобы получить, скажем, ты бы сказал мне: я не буду морочить себе голову и умножать само на себя до посинения. И был бы абсолютно прав. Потому как ты можешь записать все действия кратко (а краткость - сестра таланта)

где - это и есть те самые «разы» , когда ты умножаешь само на себя.

Я думаю, что ты знаешь (а если не знаешь, срочно, очень срочно повторяй степени!), что, тогда моя задачка запишется в виде:

Откуда ты можешь сделать вполне оправданный вывод, что:

Вот так вот незаметно я записал простейшее показательное уравнение:

И даже нашел его корень . Тебе не кажется, что все совсем тривиально? Вот и я думаю именно так же. Вот тебе еще один пример:

Но что же делать? Ведь нельзя записать в виде степени (разумной) числа. Давай не будем отчаиваться и заметим, что оба этих числа прекрасно выражаются через степень одного и того же числа. Какого? Верно: . Тогда исходное уравнение преобразуется к виду:

Откуда, как ты уже понял, . Давай более не будем тянуть и запишем определение :

В нашем с тобой случае: .

Решаются эти уравнения сведением их к виду:

c последующим решением уравнения

Мы, собственно, в предыдущем примере это и делали: у нас получилось, что. И мы решали с тобой простейшее уравнение.

Вроде бы ничего сложного, правда? Давай вначале потренируемся на самых простых примерах:

Мы опять видим, что правую и левую часть уравнения нужно представить в виде степени одного числа. Правда слева это уже сделано, а вот справа стоит число. Но, ничего страшного, ведь, и мое уравнение чудесным образом преобразится вот в такое:

Чем мне пришлось здесь воспользоваться? Каким правилом? Правило «степени в степени» , которое гласит:

А что если:

Прежде чем ответить на этот вопрос, давай мы с тобой заполним вот такую табличку:

Нам не представляет труда заметить, что чем меньше, тем меньше значение, но тем не менее, все эти значения больше нуля. И ТАК БУДЕТ ВСЕГДА!!! Это же свойство справедливо ДЛЯ ЛЮБОГО ОСНОВАНИЯ С ЛЮБЫМ ПОКАЗАТЕЛЕМ!! (для любых и). Тогда какой мы можем сделать вывод об уравнении? А вот какой: оно корней не имеет ! Как не имеет корней и любое уравнение. Теперь давай потренируемся и порешаем простые примерчики:

Давай сверяться:

1. Здесь от тебя ничего не потребуется, кроме знания свойств степеней (которые, кстати, я просил тебя повторить!) Как правило, все приводят к наименьшему основанию: , . Тогда исходное уравнение будет равносильно следующему: Все, что мне нужно - это воспользоваться свойствами степеней: при умножении чисел с одинаковыми основаниями степени складываются, а при делении - вычитаются. Тогда я получу: Ну а теперь со спокойной совестью перейду от показательного уравнения к линейному: \begin{align}
& 2x+1+2(x+2)-3x=5 \\
& 2x+1+2x+4-3x=5 \\
& x=0. \\
\end{align}

2. Во втором примере надо быть внимательнее: беда вся в том, что в левой части у нас ну никак не получится представить и в виде степени одного и того же числа. В таком случае иногда полезно представлять числа в виде произведения степеней с разными основаниями, но одинаковыми показателями:

Левая часть уравнения примет вид: Что же нам это дало? А вот что: Числа с разными основаниями, но одинаковыми показателями можно перемножать. При этом основания перемножаются, а показатель не меняется:

Применительно к моей ситуации это даст:

\begin{align}
& 4\cdot {{64}^{x}}{{25}^{x}}=6400, \\
& 4\cdot {{(64\cdot 25)}^{x}}=6400, \\
& {{1600}^{x}}=\frac{6400}{4}, \\
& {{1600}^{x}}=1600, \\
& x=1. \\
\end{align}

Неплохо, правда?

3. Я не люблю, когда у меня без особой нужды с одной стороны уравнения стоят два слагаемых, а с другой - ни одного (иногда, конечно, это оправданно, но сейчас не такой случай). Перенесу слагаемое с минусом вправо:

Теперь, как и раньше, запишу все через степени тройки:

Сложу степени слева и получу равносильное уравнение

Ты без труда найдешь его корень:

4. Как и в примере три, слагаемому с минусом - место в правой части!

Слева у меня почти что все хорошо, кроме чего? Да, мне мешает «неправильная степень» у двойки. Но я могу без труда это исправить, записав: . Эврика - слева все основания разные, но все степени - одинаковые! Срочно перемножаем!

Тут опять-таки все ясно: (если ты не понял, каким волшебным образом я получил последнее равенство, оторвись на минуту, передохни и прочитай свойства степени еще раз очень внимательно. Кто говорил, что можно пропускать степень с отрицательным показателем? Ну вот и я о том же, что никто). Теперь я получу:

\begin{align}
& {{2}^{4\left({x} -9 \right)}}={{2}^{-1}} \\
& 4({x} -9)=-1 \\
& x=\frac{35}{4}. \\
\end{align}

Вот тебе задачки для тренировки, к которым я лишь приведу ответы (но в «перемешанном» виде). Порешай их, сверься, и мы с тобой продолжим наши изыскания!

Готов? Ответы вот такие:

  1. любое число

Ну ладно, ладно, я пошутил! Вот вам наброски решений (некоторые - весьма краткие!)

Тебе не кажется неслучайным, что одна дробь слева - это «перевернутая» другая? Грех будет этим не воспользоваться:

Это правило очень часто используется при решении показательных уравнений, запомни его хорошенько!

Тогда исходное уравнение станет вот таким:

Решив это квадратное уравнение, ты получишь вот такие корни:

2. Еще один прием решения: деление обеих частей уравнения на выражение, стоящее слева (или справа). Разделю на то, что справа, тогда получу:

Откуда (почему?!)

3. даже не хочу повторятся, настолько все уже «разжевано».

4. равносильно квадратному уравнению, корни

5. Нужно воспользоваться формулой, приведенной в первой задаче, тогда получишь, что:

Уравнение превратилось в тривиальное тождество, которое верно при любом. Тогда ответ - это любое действительное число.

Ну что же, вот ты и потренировался решать простейшие показательные уравнения. Теперь я хочу тебе привести несколько жизненных примеров, которые помогут тебе понять, а для чего они нужны в принципе. Здесь я приведу два примера. Один из них вполне повседневен, ну а другой - скорее имеет научный, нежели практический интерес.

Пример 1 (меркантильный) Пусть у тебя есть рублей, а тебе хочется превратить его в рублей. Банк предлагает тебе взять у тебя эти деньги под годовых с ежемесячной капитализацией процентов (ежемесячным начислением). Спрашивается, на сколько месяцев нужно открыть вклад, чтобы набрать нужную конечную сумму? Вполне приземленная задача, не так ли? Тем не менее ее решение связано с построением соответствующего показательного уравнения: Пусть - начальная сумма, - конечная сумма, - процентная ставка за период, - количество периодов. Тогда:

В нашем случае (если ставка годовых, то за месяц начисляют). А почему делится на? Если не знаешь ответ на этот вопрос, вспоминай тему « »! Тогда мы получим вот такое уравнение:

Данное показательное уравнение уже можно решить только при помощи калькулятора (его внешний вид на это намекает, причем для этого требуется знание логарифмов, с которыми мы познакомимся чуть позже), что я и сделаю: … Таким образом, для получения млн. нам потребуется сделать вклад на месяц (не очень быстро, не правда ли?).

Пример 2 (скорее научный). Несмотря на его, некоторую «оторванность», рекомендую тебе обратить на него внимание: он регулярно «проскальзывает в ЕГЭ!! (задача взята из «реального» варианта) В ходе распада радиоактивного изотопа его масса уменьшается по закону, где (мг) — начальная масса изотопа, (мин.) — время, прошедшее от начального момента, (мин.) — период полураспада. В начальный момент времени масса изотопа мг. Период его полураспада мин. Через сколько минут масса изотопа будет равна мг? Ничего страшного: просто берем и подставляем все данные в предложенную нам формулу:

Разделим обе части на, «в надежде», что слева мы получим что-нибудь удобоваримое:

Ну что же, нам очень повезло! Слева стоит, тогда перейдем к равносильному уравнению:

Откуда мин.

Как видишь, показательные уравнения имеют вполне реальное приложение на практике. Теперь я хочу разобрать с тобой еще один (нехитрый) способ решения показательных уравнений, который основан на вынесении общего множителя за скобки с последующей группировкой слагаемых. Не пугайся моих слов, ты уже сталкивался с этим методом в 7 классе, когда изучал многочлены. Например, если тебе требовалось разложить на множители выражение:

Давай сгруппируем: первое и третье слагаемое, а также второе и четвертое. Ясно, что первое и третье - это разность квадратов:

а второе и четвертое имеют общий множитель тройку:

Тогда исходное выражение равносильно такому:

Откуда вынести общий множитель уже не представляет труда:

Следовательно,

Вот примерно таким образом мы и будем поступать при решении показательных уравнений: искать «общность» среди слагаемых и выносить ее за скобки, ну а потом - будь что будет, я верю, что нам будет везти =)) Например:

Справа стоит далеко не степень семерки (я проверял!) Да и слева - немногим лучше, можно, конечно, «оттяпать» от первого слагаемого множитель а от второго, а затем уже разбираться с полученным, но давай с тобой поступим благоразумнее. Я не хочу иметь дело с дробями, которые неизбежно образуются при «выделении» , так не лучше ли мне вынести? Тогда дробей у меня не будет: как говорится, и волки сыты и овцы целы:

Посчитай выражение в скобках. Волшебным, магическим образом получается, что (удивительно, хотя чего нам еще ждать?).

Тогда сократим обе части уравнения на этот множитель. Получим: , откуда.

Вот пример посложнее (совсем немного, правда):

Вот беда-то! У нас здесь нет одного общего основания! Не совсем ясно, что же теперь делать. А давай сделаем, что сможем: во-первых перенесем «четверки» в одну сторону, а «пятерки» в другую:

Теперь давай вынесем «общее» слева и справа:

Ну и что теперь? В чем выгода от такой бестолковой группировки? На первый взгляд она совсем не видна, однако давай глянем глубже:

Ну а теперь сделаем так, чтобы слева у нас было только выражение с, а справа - все остальное. Как нам это сделать? А вот как: Разделить обе части уравнения сначала на (так мы избавимся от степени справа), а затем разделим обе части на (так мы избавимся от числового множителя слева). Окончательно получим:

Невероятно! Cлева у нас стоит выражение, а справа - просто. Тогда тут же делаем вывод, что

Вот тебе еще один пример на закрепление:

Я приведу его краткое решение (не особо утруждая себя пояснениями), постарайся сам разобраться во всех «тонкостях» решения.

Теперь итоговое закрепление пройденного материала. Постарайся самостоятельно решить следующие задачи. Я лишь приведу краткие рекомендации и советы к их решению:

  1. Вынесем общий множитель за скобки: Откуда
  2. Первое выражение представим в виде: , разделим обе части на и получим, что
  3. , тогда исходное уравнение преобразуется к виду: Ну а теперь подсказка - ищи, где мы с тобой уже решали это уравнение!
  4. Представь как, как, а, ну а затем подели обе части на, так ты получишь простейшее показательное уравнение.
  5. Вынеси за скобки.
  6. Вынеси за скобки.

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Я предполагаю, что после ознакомления с первой статьей, в которой рассказывалось что такое показательные уравнения и как их решать , ты овладел необходимым минимумом знаний, необходимых для решения простейших примеров.

Теперь я разберу еще один метод решения показательных уравнений, это

«метод введения новой переменной» (или замены). Им решается большинство «трудных» задач, на тему показательные уравнения (и не только уравнения). Этот способ - один из наиболее часто употребляемых на практике. Сперва рекомендую ознакомиться с темой .

Как ты уже понял из названия, суть этого метода - ввести такую замену переменной, что твое показательное уравнение чудесным образом преобразится в такое, которое ты уже с легкостью можешь решить. Все что тебе останется после решения этого самого «упрощенного уравнения» - это сделать «обратную замену»: то есть вернуться от замененного к заменяемому. Давай проиллюстрируем только что сказанное на очень простом примере:

Пример 1:

Это уравнение решается при помощи «простой замены», как ее пренебрежительно называют математики. В самом деле, замена здесь - самая очевидная. Стоит лишь увидеть, что

Тогда исходное уравнение превратится вот в такое:

Если же дополнительно представить как, то совершенно ясно, что надо заменять: конечно же, . Во что тогда превратится исходное уравнение? А вот во что:

Ты без проблем самостоятельно отыщешь его корни: . Что нам делать теперь? Пришло время возвращаться к исходной переменной. А что я забыл указать? Именно: при замене некоторой степени на новую переменную (то есть при замене вида), меня будут интересовать только положительные корни! Ты и сам без труда ответишь, почему. Таким образом, нас с тобой не интересует, а вот второй корень нам вполне подходит:

Тогда, откуда.

Ответ:

Как видишь, в предыдущем примере, замена так и просилась к нам в руки. К сожалению, так бывает далеко не всегда. Однако, давай не будем переходить сразу к грустному, а потренируемся еще на одном примере с достаточно простой заменой

Пример 2.

Ясно, что скорее всего заменять придется (это наименьшая из степеней, входящая в наше уравнение), однако прежде чем вводить замену, наше уравнение нужно к ней «подготовить», а именно: , . Тогда можно заменять, в результате я получу следующее выражение:

О ужас: кубическое уравнение с совершенно жуткими формулами его решения (ну если говорить в общем виде). Но давай не будем сразу отчаиваться, а подумаем, что нам делать. Я предложу смошенничать: мы знаем, что для получения «красивого» ответа, нам нужно получить в виде некоторой степени тройки (с чего бы это, а?). А давай попробуем угадать хотя бы один корень нашего уравнения (я начну гадать со степеней тройки).

Первое предположение. Не является корнем. Увы и ах…

.
Левая часть равна.
Правая часть: !
Есть! Угадали первый корень. Теперь дело пойдет легче!

Ты знаешь, про схему деления «уголком»? Конечно знаешь, ты применяешь ее, когда делишь одно число на другое. Но немногие знают, что то же самое можно делать и с многочленами. Есть одна замечательная теорема:

Применимо к моей ситуации это говорит мне о том, что делится без остатка на. Как же осуществляется деление? А вот как:

Я смотрю, на какой одночлен я должен домножить, чтобы получить Ясно, что на, тогда:

Вычитаю полученное выражение из, получу:

Теперь, на что мне нужно домножить, чтобы получить? Ясно, что на, тогда получу:

и опять вычту полученное выражение из оставшегося:

Ну и последний шаг, домножу на, и вычту из оставшегося выражения:

Ура, деление окончено! Что мы накопили в частном? Само собой: .

Тогда получили вот такое разложение исходного многочлена:

Решим второе уравнение:

Оно имеет корни:

Тогда исходное уравнение:

имеет три корня:

Последний корень мы, конечно, отбросим, поскольку он меньше нуля. А первые два после обратной замены дадут нам два корня:

Ответ: ..

Этим примером я отнюдь не хотел напугать тебя, скорее я ставил своей целью показать, что хоть у нас была довольно простая замена, тем не менее она привела к довольно сложному уравнению, решение которого потребовало от нас некоторых особых навыков. Ну что же, от этого никто не застрахован. Зато замена в данном случае была довольно очевидной.

Вот пример с несколько менее очевидной заменой:

Совершенно не ясно, что нам делать: проблема в том, что в нашем уравнении два разных основания и одно основание не получается из другого возведением ни в какую (разумную, естественно) степень. Однако, что мы видим? Оба основания - отличаются только знаком, а их произведение - есть разность квадратов, равная единице:

Определение:

Таким образом, числа, являющиеся основаниями в нашем примере - сопряженные.

В таком случае разумным шагом будет домножить обе части уравнения на сопряженное число.

Например, на, тогда левая часть уравнения станет равна, а правая. Если сделать замену, то наше с тобой исходное уравнение станет вот таким:

его корни, тогда, а помня, что, получим, что.

Ответ: , .

Как правило, метода замены оказывается достаточно, для решения большинства «школьных» показательных уравнений. Следующие задачи взяты из ЕГЭ С1 (повышенный уровень сложности). Ты уже достаточно грамотный для того, чтобы самостоятельно решать данные примеры. Я лишь приведу требуемую замену.

  1. Решите уравнение:
  2. Найдите корни уравнения:
  3. Решите уравнение: . Найдите все корни этого уравнения, принадлежащие отрезку:

А теперь краткие пояснения и ответы:

  1. Здесь нам достаточно заметить, что и. Тогда исходное уравнение будет эквивалентно вот такому: Данное уравнение решается заменой Дальнейшие выкладки проделай самостоятельно. В конце твоя задача сведется к решению простейших тригонометрических (зависящих от синуса или косинуса). Решение подобных примеров мы разберем в других разделах.
  2. Здесь даже можно обойтись без замены: достаточно перенести вычитаемое вправо и представить оба основания через степени двойки: , а затем сразу перейти к квадратному уравнению.
  3. Третье уравнение тоже решается довольно стандартно: представим как. Тогда заменив получим квадратное уравнение: тогда,

    Ты ведь уже знаешь, что такое логарифм? Нет? Тогда срочно читай тему !

    Первый корень, очевидно, не принадлежит отрезку а второй - непонятно! Но мы это очень скоро узнаем! Так как, то (это свойство логарифма!) Сравним:

    Вычтем из обеих частей, тогда получим:

    Левую часть можно представить в виде:

    домножим обе части на:

    можно домножить на, тогда

    Тогда сравним:

    так как, то:

    Тогда второй корень принадлежит искомому промежутку

    Ответ:

Как видишь, отбор корней показательных уравнений требует достаточно глубокого знания свойств логарифмов , так что я советую тебе быть как можно внимательнее, когда решаешь показательные уравнения. Как ты понимаешь, в математике все взаимосвязано! Как говорила моя учительница по математике: «математику, как историю, за ночь не прочитаешь».

Как правило, всю сложность при решении задач С1 составляет именно отбор корней уравнения. Давай потренируемся еще на одном примере:

Ясно, что само уравнение решается довольно просто. Сделав замену мы сведем наше исходное уравнение к следующему:

Вначале давай рассмотрим первый корень. Сравним и: так как, то. (свойство логарифмической функции, при). Тогда ясно, что и первый корень не принадлежит нашему промежутку. Теперь второй корень: . Ясно, что (так как функция при - возрастающая). Осталось сравнить и.

так как, то, в то же время. Таким образом, я могу «вбить колышек» между и. Этим колышком является число. Первое выражение меньше, а второе - больше. Тогда второе выражение больше первого и корень принадлежит промежутку.

Ответ: .

В завершение давай рассмотрим еще один пример уравнения, где замена достаточно нестандартна:

Давай сразу начнем с того, что делать можно, а что - в принципе можно, но лучше не делать. Можно - представить все через степени тройки, двойки и шестерки. К чему это приведет? Да ни к чему и не приведет: мешанина степеней, причем от некоторых будет довольно сложно избавиться. А что же тогда нужно? Давай заметим, что а И что нам это даст? А то, что мы можем свести решение данного примера к решению достаточно простого показательного уравнения! Вначале давай перепишем наше уравнение в виде:

Теперь разделим обе части получившегося уравнения на:

Эврика! Теперь можно заменять, получим:

Ну что, теперь твоя очередь решать задачки на показательные, а я приведу к ним лишь краткие комментарии, чтобы ты не сбился с верного пути! Удачи!

1. Самая трудная! Замену здесь усмотреть ох как негелко! Но тем не менее этот пример вполне решаем при помощи выделения полного квадрата . Для его решения достаточно заметить, что:

Тогда вот тебе и замена:

(Обрати внимание, что здесь при нашей замене мы не можем отбрасывать отрицательный корень!!! А почему, как ты думаешь?)

Теперь для решения примера тебе осталось решить два уравнения:

Оба они решаются «стандартной заменой» (зато второй в одном примере!)

2. Заметь, что и сделай замену.

3. Разложи число на взаимно-простые сомножители и упрости полученное выражение.

4. Подели числитель и знаменатель дроби на (или, если тебе так больше по душе) и сделай замену или.

5. Заметь, что числа и - сопряженные.

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ. ПРОДВИНУТЫЙ УРОВЕНЬ

В дополнение давай рассмотрим еще один способ - решение показательных уравнений методом логарифмирования . Не могу сказать, что решение показательных уравнений этим методом очень уж популярно, однако в некоторых случаях только он способен привести нас к правильному решению нашего уравнения. Особенно часто он используется для решения так называемых «смешанных уравнений »: то есть таких, где встречаются функции разного вида.

Например, уравнение вида:

в общем случае можно решить только логарифмированием обеих частей (например по основанию), при котором исходное уравнение превратится в следующее:

Давай рассмотрим следующий пример:

Ясно, что по ОДЗ логарифмической функции, нас интересуют только. Однако, это следует не только из ОДЗ логарифма, а еще по одной причине. Я думаю, что тебе не будет трудно угадать, по какой же именно.

Давай прологарифмируем обе части нашего уравнения по основанию:

Как видишь, логарифмирование нашего исходного уравнения достаточно быстро привело нас к правильному (и красивому!) ответу. Давай потренируемся еще на одном примере:

Здесь тоже нет ничего страшного: прологарифмируем обе стороны уравнения по основанию, тогда получим:

Сделаем замену:

Однако, мы кое-что упустили! Ты заметил, где я сделал промах? Ведь тогда:

что не удовлетворяет требованию (подумай откуда оно взялось!)

Ответ:

Попробуй самостоятельно записать решение показательных уравнений приведенных ниже:

А теперь сверь свое решение с этим:

1. Логарифмируем обе части по основанию, учитывая, что:

(второй корень нам не подходит ввиду замены)

2. Логарифмируем по основанию:

Преобразуем полученное выражение к следующему виду:

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ. КРАТКОЕ ОПИСАНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Показательное уравнение

Уравнение вида:

называется простейшим показательным уравнением.

Свойства степеней

Подходы к решению

  • Приведение к одинаковому основанию
  • Приведение к одинаковому показателю степени
  • Замена переменной
  • Упрощение выражения и применение одного из вышеназванных.

55. Уравнение с двумя неизвестными . Рассмотрим теперь уравнение

Оно является записью задачи: найти числовые значения для x и y, чтобы двучлен 5x + 3y оказался равным числу 18.

Мы знаем, что если бы в этом двучлене было бы лишь одно неизвестное число, то и тогда мы сумели бы решить соответствующее уравнение. Поэтому возникает соображение, что здесь одно из неизвестных является как бы лишним: если взамен неизвестного y, например, взять какое угодно число, то мы получим уравнение с одним неизвестным.

А если так, то данное уравнение должно иметь сколько угодно решений, и выясняется способ их получения: станем давать одному из неизвестных, например, y, произвольные значения и всякий раз из получаемого уравнения с 1 неизвестным станем определять другое неизвестное x. Чтобы придать этой работе больше порядка, будем результаты ее записывать в таблице.

Дадим y значение 0, т. е. примем, что y = 0 (записано в первой строчке таблицы). Тогда наше уравнение обратится в

(в таблице записываем это число во втором столбце, озаглавленном буквою x).

Итак, мы получили одно решение нашего уравнения: y = 0 и x = 3(3/5) (если эти значения подставить в наш двучлен вместо x и y, то требование, чтобы двучлен равнялся числу 18, оправдается:
3 * 3(3/5) + 3 * 0 = 18).

Дадим y значение 1, т. е. примем, что y = 1 (вторая строчка таблицы); тогда получим

откуда 5x = 18 – 3 или 5x = 15 и x = 3 (записано во 2-ой строчке). Итак, найдено второе решение уравнения y = 1 и x = 3.

Дадим y значение 7, т. е. примем, что y = 7; тогда получим уравнение 5x + 21 = 18, откуда 5x = –3 и x = –3/5 (см. 3-ю строчку таблицы).

Примем еще y = –2½; тогда 5x + 3(–2½) = 18 или 5x – 7½ = 18, откуда 5x = 25½ и x = 5(1/10) = 5,1 (см. 4-ю строчку таблицы). Эту работу можно продолжить сколь угодно далеко. Итак, одно уравнение с двумя неизвестными имеет бесконечно много решений; для их получения надо одному неизвестному давать произвольные значения и из получаемых уравнений определять всякий раз другое неизвестное .

Рассматривая предыдущую таблицу и вспоминая п. 49, мы установим: у нас y был независимым переменным, x - зависимым, или x является функцией y – a.

Мы можем несколько ускорить работу нахождения решений данного уравнения. Сочтем y за известное число (все равно, ведь, y мы всякий раз заменяли известным числом); тогда на уравнение 5x + 3y = 18 мы можем смотреть, как на уравнение с одним неизвестным x и решим это уравнение:

5x = 18 – 3y; x = (18 – 3y) / 5

Мы можем этот результат выразить словами так: мы из данного уравнения определили y через x .

Теперь по формуле (18 – 3y) / 5 мы можем легко найти сколько угодно решений, делая вычисления в уме. Примем, например, y = 2. Тогда надо (–3) умножить на (+2), получим –6; сложить (+18) и (–6) - получим +12 и разделить на 5 - получим x = +2(2/5). Еще пусть y = 10; тогда (–3) · (+10) = –30; (+18) + (–30) = –12; (–12) : (+5) = –2(2/5), т. е. x = –2(2/5) и т. д.

Возьмем еще уравнение:

Примем за независимое переменное x, а за зависимое y и определим y через x. Это можно сделать двумя приемами:

Быть может второй прием удобнее 1-го, так как его выполнение легче поддается воображению, если желательно выполнить определение y-а через x в уме.

Теперь мы можем найти сколько угодно решений нашего уравнения: 1) x = 0; y = –5(2/3); 2) x = 1; y = –4; 3) x = –1; y = –7(1/3) и т. д.

Следует приучиться быстро (в уме) определять одно из неизвестных данного уравнения с двумя неизвестными через другое. Примеры:

Когда мы обдумываем решение той или иной задачи, необходимо обращать внимание на то, какие в ней используются величины. Целые или дробные? Положительные или отрицательные? Ведь незначительная деталь помогает не только устранить ошибку в решении той или иной задачи, но и найти само решение. Разберем это на примере.

Пусть у Миши (заранее извиняюсь, если посетитель сайта Михаил) есть пятирублёвые и,допустим, восьмирублевые монеты. Всего их на сумму тридцать девять рублей. Сколько монет по пять рублей и сколько по восемь у Миши.

Кажется, что тут не хватает данных, если, например, через x обозначить кол-во 5-рублёвых монет, а за y - 8-рублёвых монет, то условие самой задачи позволяет написать одно единственное уравнение:

Эти и другие уравнения и их системы, в которых число неизвестных превышает число уравнений, называют неопределёнными.

Из условия видно, что кол-во монет не может измеряться нецелыми или отрицательными числами. Значит, если x - целое неотрицательное число, то и:

должно быть неотрицательным и целым. А значит, нужно, чтобы выражение 39 - 5x без остатка делилось на 8. С помощью подбора можно убедится, что это возможно при x = 3. Отсюда, y = 3.

Перебор вариантов не удобен, когда мы работаем с большими числами. Гораздо лучше воспользоваться методом рассевания или методом спуска, который придумали древнеиндийские математики. О методе спуска будет сказано чуть ниже.

(материал взят из энциклопедии Аванта+ "Математика")

Продолжим рассмотрение неопределённого уравнения вида:

где a, b, c - известные целые коэффициенты.

Разберём это всё на знакомом примере:

Выберем неизвестное, имеющее наименьший коэффициент, и выразим его через другое неизвестное:

Теперь выделим целую часть:

Всё число будет целым, если целым окажется значение (4 - 3у)/5. Это возможно лишь тогда когда число (4 - 3у) без остатка делится на 5. Вводя дополнительную целочисленную переменную z, последнее условие запишем в виде

Мы пришли к уравнению такого же типа, как и исходное, но уже с меньшими коэффициентами. Решать его теперь нужно относительно переменных y и z.

Продолжаем действовать всё по тому же принципу:

Для того чтобы у оказалось целым, необходимо, чтобы число 1 - 2z без остатка делилось на 3: 1 - 2z = 3u (вновь введена дополнительная переменная u, принимающая только целые значения). Отсюда по уже отработанной схеме получаем:

Продолжим... Число z будет целым, если число 1 - u без остатка делится на 2: 1 - u = 2v, где v - произвольное целое. Отсюда u =1 - 2v. Дробей больше нет, спуск закончен.

Осталось теперь благополучно «подняться вверх». Выразим через переменную v сначала z, потом у и, наконец, х:

Формулы х = 3 + 8v, y = 3 - 5v представляют общее решение исходного уравнения в целых числах. А если нас интересуют только неотрицательные целые числа, то среди всех целых решений нужно выбрать такие, для которых

Уравнения и системы уравнений первой степени

Два числа или какие-нибудь выражения, соединенные знаком « = », образуют равенство . Если данные числа или выражения при любых значениях букв равны, то такое равенство называют тождеством .

Например, когда утверждают, что при любом а действительном:

а + 1 = 1 + а , здесь равенство является тождеством.

Уравнением называется равенство, содержащее неизвестные числа, обозначенные буквами. Эти буквы называют неизвестными . Неизвестных в уравнении может быть несколько.

Например, в уравнении 2х + у = 7х – 3 два неизвестных: х и у .

Выражение, стоящее в уравнении слева (2х + у ) называют левой частью уравнения, а выражение, стоящее в уравнении справа (7х – 3), называют правой его частью.

Значение неизвестного, при котором уравнение становится тождеством, называется решением или корнем уравнения.

Например, если в уравнение 3х + 7=13 вместо неизвестного х подставить число 2, получим тождество . Следовательно, значение х = 2 удовлетворяет данному уравнению и число 2 есть решение или корень данного уравнения.

Два уравнения называются равносильными (или эквивалентными ), если все решения первого уравнения являются решениями второго и наоборот, все решения второго уравнения являются решениями первого. К равносильным уравнениям относятся также уравнения, не имеющие решений.

Например, уравнения 2х – 5 = 11 и 7х + 6 = 62 равносильны, так как они имеют один и тот же корень х = 8; уравнения х + 2 = х + 5 и 2х + 7 = 2х равносильны, потому что оба не имеют решений.

Свойства равносильных уравнений

    К обеим частям уравнения можно прибавить любое выражение, имеющее смысл при всех допустимых значениях неизвестного; полученное уравнение будет равносильно данному.

Пример. Уравнение 2х – 1 = 7 имеет корень х = 4. Прибавив к обеим частям по 5, получим уравнение 2х – 1 + 5 = 7 + 5 или 2х + 4 = 12, которое имеет тот же корень х = 4.

2. Если в обеих частях уравнения имеются одинаковые члены, то их можно опустить.

Пример. Уравнение 9х + 5х = 18 + 5х имеет один корень х = 2. Опустив в обеих частях 5х , получим уравнение 9х = 18, которое имеет тот же корень х = 2.

3. Любой член уравнения можно перенести из одной части уравнения в другую, изменив его знак на противоположный.

Пример. Уравнение 7х - 11 = 3 имеет один корень х = 2. Если перенести 11 в правую часть с противоположным знаком, получим уравнение 7х = 3 + 11, которое имеет то же решение х = 2.

4. Обе части уравнения можно умножить на любое выражение (число), имеющее смысл и отличное от нуля при всех допустимых значениях неизвестного, полученное уравнение будет равносильно данному.

Пример. Уравнение 2х - 15 = 10 – 3х имеет корень х = 5. Умножив обе части на 3, получим уравнение 3(2х – 15) = 3(10 – 3х ) или 6х – 45 =30 – 9х , которое имеет тот же корень х = 5.

5. Знаки всех членов уравнения можно изменить на противоположные (это равносильно умножению обеих частей на (-1)).

Пример. Уравнение – 3х + 7 = – 8 после умножения обеих частей на (-1) примет вид 3х - 7 = 8. Первое и второе уравнения имеют единственный корень х = 5.

6. Обе части уравнения можно разделить на одно и тоже число, отличное от нуля (то есть, не равное нулю).

Пример. Уравнение
имеет два корня:
и
. Разделив все его члены на 3, получим уравнение
, равносильное данному, так как оно имеет те же два корня: и .

7. Уравнение, в котором коэффициенты всех или нескольких членов дробные числа, можно заменить равносильным ему уравнением с целыми коэффициентами, для этого обе части уравнения надо умножить на наименьшее общее кратное знаменателей дробных коэффициентов.

Пример. Уравнение
после умножения обеих частей на 14 примет вид:

Легко убедиться в том, что первое и последнее уравнения имеют корень х = 10.

Уравнения первой степени

Уравнение с одним неизвестным, которое после раскрытия скобок и приведения подобных членов принимает вид
, где
произвольные числа, х – неизвестное, называется уравнением первой степени с одним неизвестным (или линейным уравнением с одним неизвестным).

Пример. 2х + 3 = 7 – 0,5х ; 0,3х = 0.

Уравнение первой степени с одним неизвестным всегда имеет одно решение; линейное уравнение может не иметь решений (
) или иметь их бесконечное множество (
).

Пример. Решить уравнение .

Решение. Умножим все члены уравнения на наименьшее общее кратное знаменателей, равное 12.

После сокращения получим: . Раскроем скобки, чтобы отделить члены, содержащие неизвестное и свободные члены:

Сгруппируем в одной части (левой) члены, содержащие неизвестное, а в другой части (правой) - свободные члены:

Приведем подобные члены:
. Разделив обе части на (-22), получим х = 7.

Системы двух уравнений первой степени с двумя неизвестными

Уравнение вида
, где
называется уравнением первой степени с двумя неизвестными х и у . Если находят общие решения двух и более уравнений то говорят, что эти уравнения образуют систему, их записывают обычно одно под другим и объединяют фигурной скобкой, например
.

Каждая пара значений неизвестных, которая одновременно удовлетворяет обоим уравнениям системы, называется решением системы . Решить систему – это значит найти все решения этой системы или показать, что она их не имеет. Две системы уравнений называются равносильными (эквивалентными ), если все решения одной из них являются решениями другой и наоборот, все решения другой являются решениями первой.

Например, решением системы
является пара чисел х = 4 и у = 3. Эти числа являются также единственным решением системы
. Следовательно, эти системы уравнений равносильны.

Способы решения систем уравнений

1. Способ алгебраического сложения. Если коэффициенты при каком-нибудь неизвестном в обоих уравнениях равны по абсолютной величине, то складывая оба уравнения (или вычитая одно из другого), можно получить уравнение с одним неизвестным. Решая это уравнение, определяют одно неизвестное, а подставляя его в одно из уравнений системы, находят второе неизвестное.

Примеры: Решить системы уравнений: 1) .

Здесь коэффициенты при у по абсолютной величине равны между собой, но противоположны по знаку. Для получения уравнения с одним неизвестным уравнения системы почленно складываем:

Полученное значение х = 4 подставляем в какое-нибудь уравнение системы, например в первое, и находим значение у :
.

Ответ: х = 4; у = 3.

2)
.

Уравняем коэффициенты при х . Для этого умножим первое уравнение на 3, а второе на (– 2) и сложим полученные уравнения.



Ответ:
.

2. Способ подстановки. Из любого уравнения системы одну из неизестных выражаем через остальные, а затем подставляем значение этой неизвестной в остальные уравнения. Рассмотрим этот способ на конкретных примерах:

1) Решим систему уравнений
. Выразим из первого уравнения одно из неизвестных, например х :
и подставим полученное значение х во второе уравнение системы, получим уравнение с одним неизвестным у :

Подставим у = 1 в выражение для х , получим
.

Ответ:
.

2)
. В этом случае удобно выразить у из второго уравнения:

Полученное значение у подставляем в первое уравнение и получаем уравнение с одним неизвестным х :

Подставим значение х = 5 в выражение для у , получим .

Ответ:
.

3) Решим систему уравнений
. Из первого уравнения находим
. Подставив это значение во второе уравнение, получим уравнение с одним неизвестным у :

Подставим у = 5 в выражение для х , получим

Ответ:
.

3. Способ замены. К cистемам двух линейных уравнений с двумя неизвестными можно приводить некоторые нелинейные системы. Это можно осуществлять способом замены.

Пример. Решить систему.
.

Перепишем систему в виде:
. Заменим неизвестные, положив
, получим линейную систему
. Из первого уравнения выразим неизвестное
. Подставим значение во второе уравнение, получим уравнение с одним неизвестным:

. Подставив значение v в выражение для t , получим:
. Из соотношений
находим
.

Исследование системы уравнений

Исследуем сколько решений может иметь система уравнений
, где
- коэффициенты при неизвестных,
- свободные члены.

А) Если
, то система имеет единственное решение.

Б) Если
, то система не имеет решений.

  • Программа единого элективного курса по математике для 9-11 классов

    Программа

    9,10,11 классов. Первая часть курса (17 ... . Повторить с учащимися свойства степени ; действия вещественными числами. с/р... Иррациональные уравнения и системы уравнений . Повторить с учащимися способы решения иррациональных уравнений и систем уравнений . с/р...

  • Ответы на экзаменационные вопросы интернет-курсов интуит (intuit): Автоматизированное проектирование промышленных изделий

    Экзаменационные вопросы

    ... система уравнений Дана система уравнений Дана система уравнений Дана система уравнений Дана система уравнений регрессии. В результате её решения находят: Дана система уравнений ... целью образования первой части. Далее... ограничением на степени вершин? Когда...

  • Формулы степеней используют в процессе сокращения и упрощения сложных выражений, в решении уравнений и неравенств.

    Число c является n -ной степенью числа a когда:

    Операции со степенями.

    1. Умножая степени с одинаковым основанием их показатели складываются:

    a m ·a n = a m + n .

    2. В делении степеней с одинаковым основанием их показатели вычитаются:

    3. Степень произведения 2-х либо большего числа множителей равняется произведению степеней этих сомножителей:

    (abc…) n = a n · b n · c n …

    4. Степень дроби равняется отношению степеней делимого и делителя:

    (a/b) n = a n /b n .

    5. Возводя степень в степень, показатели степеней перемножают:

    (a m) n = a m n .

    Каждая вышеприведенная формула верна в направлениях слева направо и наоборот.

    Например . (2·3·5/15)² = 2²·3²·5²/15² = 900/225 = 4 .

    Операции с корнями.

    1. Корень из произведения нескольких сомножителей равняется произведению корней из этих сомножителей:

    2. Корень из отношения равен отношению делимого и делителя корней:

    3. При возведении корня в степень довольно возвести в эту степень подкоренное число:

    4. Если увеличить степень корня в n раз и в тоже время возвести в n -ую степень подкоренное число, то значение корня не поменяется:

    5. Если уменьшить степень корня в n раз и в тоже время извлечь корень n -ой степени из подкоренного числа, то значение корня не поменяется:

    Степень с отрицательным показателем. Степень некоторого числа с неположительным (целым) показателем определяют как единицу, деленную на степень того же числа с показателем, равным абсолютной величине неположительного показателя:

    Формулу a m :a n =a m - n можно использовать не только при m > n , но и при m < n .

    Например . a 4:a 7 = a 4 - 7 = a -3 .

    Чтобы формула a m :a n =a m - n стала справедливой при m=n , нужно присутствие нулевой степени.

    Степень с нулевым показателем. Степень всякого числа, не равного нулю, с нулевым показателем равняется единице.

    Например . 2 0 = 1,(-5) 0 = 1,(-3/5) 0 = 1.

    Степень с дробным показателем. Чтобы возвести действительное число а в степень m/n , необходимо извлечь корень n -ой степени из m -ой степени этого числа а .