Болезни Военный билет Призыв

Уравнение полимеризации стирола. Кинетика блочной полимеризации стирола. III. Влияние температуры на скорость реакции роста цепи

Высокомолекулярными соединениями (ВМС) называют соединения с молекулярной массой более 10000.

Практически все высокомолекулярные вещества являются полимерами.

Полимеры — это вещества, молекулы которых состоят из огромного числа повторяющихся структурных звеньев, соединенных между собой химическими связями.

Полимеры могут быть получены с помощью реакций, которые можно разделить на два основных типа: это реакции полимеризации и реакции поликонденсации .

Реакции полимеризации

Реакции полимеризации — это реакции образования полимера путем объединения огромного числа молекул низкомолекулярного вещества (мономера).

Количество молекул мономера (n ), объединяющихся в одну молекулу полимера, называют степенью полимеризации .

В реакцию полимеризации могут вступать соединения с кратными связями в молекулах. Если молекулы мономера одинаковы, то процесс называют гомополимеризацией , а если различны — сополимеризацией .

Примерами реакций гомополимеризации, в частности, является реакция образования полиэтилена из этилена:

Примером реакции сополимеризации является синтез бутадиен-стирольного каучука из бутадиена-1,3 и стирола:

Полимеры, получаемые реакцией полимеризации, и исходные мономеры

Мономер

Получаемый из него полимер

Структурная формула

Варианты названия

Структурная формула

Варианты названия

этилен, этен полиэтилен
пропилен, пропен полипропилен
стирол, винилбензол полистирол, поливинилбензол
винилхлорид, хлористый винил, хлорэтилен, хлорэтен поливинилхлорид (ПВХ)
тетрафторэтилен (перфторэтилен) тефлон, политетрафторэтилен
изопрен (2-метилбутадиен-1,3) изопреновый каучук (натуральный)
бутадиен-1,3 (дивинил) бутадиеновый каучук, полибутадиен-1,3

хлоропрен(2-хлорбутадиен-1,3)

хлоропреновый каучук

бутадиен-1,3 (дивинил)

стирол (винилбензол)

бутадиенстирольный каучук

Реакции поликонденсации

Реакции поликонденсации — это реакции образования полимеров из мономеров, в ходе которых, помимо полимера, побочно образуется также низкомолекулярное вещество (чаще всего вода).

В реакции поликонденсации вступают соединения, в состав молекул которых входят какие-либо функциональные группы. При этом реакции поликонденсации по тому, один используется мономер или больше, аналогично реакциям полимеризации делятся на реакции гомополиконденсации и сополиконденсации .

К реакциям гомополиконденсации относятся:

* образование (в природе) молекул полисахарида (крахмала, целлюлозы) из молекул глюкозы:

* реакция образования капрона из ε-аминокапроновой кислоты:

К реакциям сополиконденсации относятся:

* реакция образования фенолформальдегидной смолы:

* реакция образования лавсана (полиэфирного волокна):

Материалы на основе полимеров

Пластмассы

Пластмассы — материалы на основе полимеров, которые способны под действием нагревания и давления формоваться и сохранять заданную форму после охлаждения.

Помимо высокомолекулярного вещества в состав пластмасс входят также и другие вещества, однако основным компонентом все же является полимер. Благодаря своим свойствам он связывает все компоненты в единую целую массу, в связи с чем его называют связующим.

Пластмассы в зависимости от их отношения к нагреванию делят на термопластичные полимеры (термопласты ) и реактопласты .

Термопласты — вид пластмасс, способных многократно плавиться при нагревании и застывать при охлаждении, благодаря чему возможно многоразовое изменение их изначальной формы.

Реактопласты — пластмассы, молекулы которых при нагревании «сшиваются» в единую трехмерную сетчатую структуру, после чего изменить их форму уже нельзя.

Так, например, термопластами являются пластмассы на основе полиэтилена, полипропилена, поливинилхлорида (ПВХ) и т.д.

Реактопластами, в частности, являются пластмассы на основе фенолформальдегидных смол.

Каучуки

Каучуки — высокоэлластичные полимеры, углеродный скелет которых можно представить следующим образом:

Как мы видим, в молекулах каучуков имеются двойные C=C связи, т.е. каучуки являются непредельными соединениями.

Каучуки получают полимеризацией сопряженных диенов, т.е. соединений, у которых две двойные C=C связи, разделены друг от друга одной одинарной С-С связью.

1) бутадиен:

В общем виде (с демонстрацией только углеродного скелета) полимеризация таких соединений с образованием каучуков может быть выражена схемой:

Таким образом, исходя из представленной схемы, уравнение полимеризации изопрена будет выглядеть следующим образом:

Весьма интересным является тот факт, что впервые с каучуком познакомились не самые продвинутые в плане прогресса страны, а племена индейцев, у которых промышленность и научно-технический прогресс отсутствовали как таковые. Естественно, индейцы не получали каучук искусственным путем, а пользовались тем, что давала им природа: в местности, где они проживали (Южная Америка), произрастало дерево гевея, сок которого содержит до 40-50% изопренового каучука. По этой причине изопреновый каучук называют также натуральным, однако он может быть получен и синтетическим путем.

Все остальные виды каучука (хлоропреновый, бутадиеновый) в природе не встречаются, поэтому всех их можно охарактеризовать как синтетические.

Однако каучук, не смотря на свои преимущества, имеет и ряд недостатков. Так, например, из-за того что каучук состоит из длинных, химически не связанных между собой молекул, его свойства делают его пригодным для использования только в узком интервале температур. На жаре каучук становится липким, даже немного текучим и неприятно пахнет, а при низких температурах подвержен затвердеванию и растрескиванию.

Технические характеристики каучука могут быть существенно улучшены его вулканизацией. Вулканизацией каучука называют процесс его нагревания с серой, в результате которого отдельные, изначально не связанные друг с другом, молекулы каучука «сшиваются» друг с другом цепочками из атомов серы (полисульфидными «мостиками»). Схему превращения каучуков в резину на примере синтетического бутадиенового каучука можно продемонстрировать следующим образом:

Волокна

Волокнами называют материалы на основе полимеров линейного строения, пригодные для изготовления нитей, жгутов, текстильных материалов.

Классификация волокон по их происхождению

Искусственные волокна (вискозу, ацетатное волокно) получают химической обработкой уже существующих природных волокон (хлопка и льна).

Синтетические волокна получаются преимущественно реакциями поликонденсации (лавсан, капрон, нейлон).

Задание 449 (ш)
Как получают в промышленности стирол? Приведите схему его полимеризации. Изобразите с помощью схем линейную и трехмерную структуры полимеров.
Решение:

Получение и полимеризация стирола


Большую часть стирола (около 85 %) в промышленности получают дегидрирование м этилбензола при температуре 600-650°С, атмосферном давлении и разбавлении перегретым водяным паром в 3 - 10 раз. Используются оксидные железо-хромовые катализаторы с добавкой карбоната калия.

Другой промышленный способ, которым получают оставшиеся 15 %, заключается в дегидратации метилфенилкарбинола , образующегося в процессе получения оксида пропилена из гидропероксида этилбензола. Гидропероксид этилбензола получают из этилбензола некаталитическим окислением воздуха.

Схехма анионоидной полимеризации стирола :

Полистирол – термопластичный аморфный полимер с формулой:

[СН 2 =С(С 6 Н 5)Н]n ------------> [-СН 2 - С(С 6 Н 5)Н -]n
стирол полистирол

Полимеризация стирола происходит при действии амидов натрия или калия в жидком аммиаке.

Структуры полимеров:

Особенность линейных и разветвленных полимеров - отсутствие первичных (химических) связей между макромолекулярными цепями; между ними действуют особые вторичные межмолекулярные силы.

Линейные молекулы полимеров:

Разветвленные линейные молекулы:

Если макромолекулярные цепи соединены между собой химическими связями, образующими ряд поперечных мостиков (трехмерный каркас), то структура такой сложной макромолекулы носит название пространственной. Валентные связи в пространственных полимерах расходятся во все стороны беспорядочно. Среди них выделяют полимеры с редким расположением поперечных связей. Эти полимеры называют сетчатыми.

Трехмерные структуры полимеров:

Сетчатая структура полимера:

Полистирол

Рис. 1. Линейная структура полистирола

Полиорганосилоксан

Рис. 2. Трехмерная структура полиорганосилоксана

В процессе блочной полимеризации стирола образуется раствор синтезируемого полимера в не вступившем в реакцию мономере. С ростом глубины процесса (степени конверсии мономера) увеличивается концентрация раствора и соответственно растет его показатель преломления . Замеряя показатель преломления раствора по ходу полимеризации, можно получить информацию о кинетике процесса (в данном случае – полимеризации стирола).

В три пробирки с пришлифованными пробками помещают по 5 мл стирола и вносят взятые на аналитических весах навески инициатора – АИБН – в количествах порядка 10, 25 и 50 мг (концентрация растворов соответственно порядка 0,2, 0,5 и 1% масс.). Пробирки продувают инертным газом в течение 5 мин и помещают в термостат с температурой порядка 70 0 . Через 10 мин. после начала термостатирования из каждой пробирки на часовое стекло отбирают стеклянной палочкой несколько капель раствора и определяют показатель преломления. Из каждой пробирки отбирают не менее пяти проб ,каждый раз отмечая время с начала полимеризации .

Степень конверсии мономера определяют по приводимой ниже таблице.

Зависимость показателя преломления n D от степени конверсии (р) стирола

p,% n D p, % n D p, % n D
1,5420 1,5475 1,5518
1,5429 1,5482 1,5519
1,5435 1,5488 1,5523
1,5441 1,5492 1,5525
1,5446 1,5495 1,5528
1,5451 1,5500 1,5531
1, 5455 1,5504 1,5534
1,5461 1,5508 1,5537
1,5465 1,5511 1,5540
1,5468 1,5515 1,5543

Концентрацию инициатора (в моль/л) находят по формуле:

Где g – навеска инициатора (в г)

V – объём полимеризующейся смеси (в данном случае – 5 мл)

М 1 – молекулярная масса инициатора (для АИБН М 1 = 164)



Тангенс угла наклона полученной прямой равен порядку реакции по инициатору.

КАТИОННАЯ ПОЛИМЕРИЗАЦИЯ СТИРОЛА


Полимеризация стирола может протекать по различным вариантам, в том числе и по катионному механизму. В качестве катализаторов катионной полимеризации часто используют неорганические кислоты Льюиса – в данном случае TiCl 4 . Использование этого катализатора требует проведение реакции в условиях, исключающих попадание влаги – прежде всего абсолютно сухой аппаратуры.

Стирол свежеперегнанный 3,5 мл

Тетрахлорид титана перегнанный 1 мл

Дихлорэтан сухой 70 мл

В трехгорлую колбу, снабженную мешалкой, термометром и капельной воронкой и продутую инертным газом в течение 3-5 мин., помещают 70 мл сухого дихлорэтана и охлаждают до 0 0 С в бане с охлаждающей смесью.

Сухой пипеткой вносят 1 мл TiCl 4 и из капельной воронки в течение 15-20 мин. по каплям вводят мономер – стирол, следя, чтобы температура не превышала 0 0 . После введения мономера смесь перемешивают еще 30 мин., а затем приливают 80 мл спирта (для разложения реакционной смеси). Через несколько минут осторожно декантируют растворитель с выделившегося маслообразного продукта реакции, прибавляют еще 10-15 мл спирта и растирают палочкой до затвердевания. Твердый полимер отфильтровывают, промывают спиртом и высушивают. Определяют выход полимера и степень конверсии мономера, а также расход катализатора в г/ г полимера.

В широком разнообразии полимерных материалов особое место занимает полистирол. Из этого материала производят огромное количество различных пластиковых изделий как для бытового, так и для промышленного использования. Сегодня мы с вами познакомимся с формулой полистирола, его свойствами, способами получения и направлениями использования.

Общая характеристика

Полистирол является синтетическим полимером, относящимся к классу термопластов. Как можно понять из названия, он представляет собой продукт полимеризации винилбензола (стирола). Это твердый стеклообразный материал. Формула полистирола в общем виде выглядит следующим образом: [СН 2 СН(С 6 Н 5)] n . В сокращенном варианте она выглядит так: (C 8 H 8) n . Сокращенная формула полистирола встречается чаще.

Химические и физические свойства

Наличие фенольных групп в формуле структурного звена полистирола препятствует упорядоченному размещению макромолекул и образованию кристаллических структур. В этой связи материал является жестким, но хрупким. Он представляет собой аморфный полимер с малой механической прочностью и высоким уровнем светопропускания. Он производится в виде прозрачных цилиндрических гранул, из которых путем экструзии получают необходимую продукцию.

Полистирол является хорошим диэлектриком. Он растворяется в ароматических углеводородах, ацетоне, сложных эфирах, и собственном мономере. В низших спиртах, фенолах, алифатических углеводородах, а также простых эфирах полистирол не растворим. При смешивании вещества с другими полимерами, происходит «сшивание», в результате которого образуются сополимеры стирола, обладающие более высокими конструктивными качествами.

Вещество обладает низким влагопоглощением и устойчивостью к радиоактивному облучению. Вместе с тем оно разрушается под действием ледяной уксусной, и концентрированной азотной кислот. При воздействии ультрафиолета полистирол портится - на поверхности образуется микротрещины и желтизна, увеличивается его хрупкость. При нагревании вещества до 200 °С оно начинает разлагаться с выделением мономера. При этом, начиная с температуры в 60 °С, полистирол теряет форму. При нормальной температуре вещество не токсично.

Основные свойства полистирола:

  1. Плотность - 1050-1080 кг/м 3 .
  2. Минимальная рабочая температура - 40 градусов мороза.
  3. Максимальная рабочая температура - 75 градусов тепла.
  4. Теплоемкость - 34*10 3 Дж/кг*К.
  5. Теплопроводность - 0,093-0,140 Вт/м*К.
  6. Коэффициент термического расширения - 6*10 -5 Ом·см.

В промышленности полистирол получают с помощью радикальной полимеризации стирола. Современные технологии позволяют проводить этот процесс с минимальным количеством непрореагировавшего вещества. Реакция получения полистирола из стирола осуществляется тремя способами. Рассмотрим отдельно каждый из них.

Эмульсионный (ПСЭ)

Это самый старый метод синтеза, который так и не получил широкого промышленного применения. Эмульсионный полистирол получают в процессе полимеризации стирола в водных растворах щелочей при температуре 85-95 °С. Для этой реакции необходимы такие вещества: вода, стирол, эмульгатор и инициатор процесса полимеризации. Стирол предварительно избавляют от ингибиторов (гидрохинона и трибутил-пирокатехина). Инициаторами реакции выступают водорастворимые соединения. Как правило, это персульфат калия или двуокись водорода. В качестве эмульгаторов применяют щелочи, соли сульфокислот и соли жирных кислот.

Процесс происходит следующим образом. В реактор наливают водный раствор касторового масла и при тщательном перемешивании вводят стирол вместе с инициаторами полимеризации. Полученную смесь греют до 85-95 градусов. Растворенный в мицеллах мыла мономер, поступая из капель эмульсии, начинает полимеризоваться. Так получаются полимер-мономерные частицы. На протяжении 20 % времени реакции мицеллярное мыло идет на образование слоев адсорбции. Далее процесс идет внутри частиц полимера. Реакция завершается, когда содержание стирола в смеси будет составлять примерно 0,5 %.

Далее эмульсия поступает на стадию осаждения, позволяющую снизить содержание остаточного мономера. С этой целью ее коагулируют раствором соли (поваренной) и высушивают. В результате получается порошкообразная масса с размером частиц до 0,1 мм. Остаток щелочи сказывается на качестве получаемого материала. Устранить примеси полностью невозможно, а их наличие обуславливает желтоватый оттенок полимера. Этот метод позволяет получить продукт полимеризации стирола с наибольшей молекулярной массой. Получаемое таким способом вещество имеет обозначение ПСЭ, которое периодически можно встретить в технических документах и старых учебниках по полимерам.

Суспензионный (ПСС)

Этот метод осуществляется по периодической схеме, в реакторе, оборудованном мешалкой и теплоотводящей рубашкой. Для подготовки стирола его суспензируют в химически чистой воде с помощью стабилизаторов эмульсии (поливиниловый спирт, полиметакрилат натрия, гидроксид магния), а также инициаторов полимеризации. Процесс полимеризации проходит под давлением, при постоянном повышении температуры, вплоть до 130 °С. В итоге получается суспензия, из которой первичный полистирол отделяют с помощью центрифугирования. После этого вещество промывают и высушивают. Этот метод также считается устаревшим. Он пригоден в основном для синтезирования сополимеров стирола. Его применяют в основном в производстве пенополистирола.

Блочный (ПСМ)

Получение полистирола общего назначения в рамках этого метода можно проводить по двум схемам: полной и неполной конверсии. Термическая полимеризация по непрерывной схеме осуществляется на системе, состоящей из 2-3 последовательно соединенных колонных аппаратов-реакторов, каждый из которых оборудован мешалкой. Реакцию проводят постадийно, увеличивая температуру с 80 до 220 °С. Когда степень превращения стирола доходит до 80-90 %, процесс прекращается. При методе неполной конверсии степень полимеризации достигает 50-60 %. Остатки непрореагировавшего стирола-мономера удаляют из расплава путем вакуумирования, доводя его содержание до 0,01-0,05 %. Полученный блочным методом полистирол отличается высокой стабильностью и чистотой. Эта технология является наиболее эффективной, в том числе и потому, что практически не имеет отходов.

Применение полистирола

Полимер выпускается в виде прозрачных цилиндрических гранул. В конечные изделия их перебарывают путем экструзии или литья, при температуре 190-230 °С. Из полистирола производят большое количество пластиков. Распространение он получил благодаря своей простоте, невысокой цене и широкому ассортименту марок. Из вещества получают массу предметов, которые стали неотъемлемой частью нашей повседневной жизни (детские игрушки, упаковка, одноразовая посуда и так далее).

Полистирол широко используют в строительстве. Из него делают теплоизоляционные материалы - сэндвич-панели, плиты, несъемные опалубки и прочее. Кроме того, из данного вещества производят отделочные декоративные материалы - потолочные багеты и декоративную плитку. В медицине полимер используют для производства одноразовых инструментов и некоторых деталей в системах переливания крови. Вспененный полистирол также применяют в системах для очистки воды. В пищевой промышленности используют тонны упаковочного материала, сделанного из данного полимера.

Существует и ударопрочный полистирол, формула которого изменяется путем добавления бутадиенового и бутадиенстирольного каучука. На этот вид полимера приходится более 60 % всего производства полистирольного пластика.

Благодаря предельно низкой вязкости вещества в бензоле можно получить подвижные растворы в придельных концентрациях. Этим обуславливается использование полистирола в составе одного из видов напалма. Он играет роль загустителя, у которого по мере увеличения молекулярной массы полистирола уменьшается зависимость «вязкость-температура».

Преимущества

Белый термопластичный полимер может стать отличной заменой пластику ПВХ, а прозрачный - оргстеклу. Популярность вещество получило главным образом благодаря гибкости и легкости в обработке. Оно отлично формуется и обрабатывается, предотвращает потери тепла и, что немаловажно, имеет низкую стоимость. Благодаря тому, что полистирол может хорошо пропускать свет, его даже используют в остеклении зданий. Однако размещать такое остекление на солнечной стороне нельзя, так как под действием ультрафиолета вещество портится.

Полистирол давно используется для изготовления пенопластов и сопутствующих материалов. Теплоизоляционные свойства полистирола во вспененном состоянии, позволяют использовать его для утепления стен, пола, кровли и потолков, в зданиях различного назначения. Именно благодаря обилию утеплительных материалов, во главе которых стоит пенополистирол, простые обыватели знают о рассматриваемом нами веществе. Эти материалы отличаются простой в использовании, устойчивостью к гниению и агрессивным средам, а также отличными теплоизоляционными свойствами.

Недостатки

Как и у любого другого материала, у полистирола есть недостатки. Прежде всего, это экологическая небезопасность (речь идет об отсутствии методов безопасной утилизации), недолговечность и пожароопасность.

Переработка

Сам по себе полистирол не представляет опасности для окружающей среды, однако некоторые продукты, полученные на его основе, требуют особого обращения.

Отходы материала и его сополимеров накапливаются в виде изделий, вышедших из употребления, и промышленных отходов. Вторичное использование полистирольных пластиков, производится несколькими путями:

  1. Утилизация промышленных отходов, которые были сильно загрязнены.
  2. Переработка технологических отходов методами литья, экструзии и прессования.
  3. Утилизация изношенных изделий.
  4. Утилизация смешанных отходов.

Вторичное применение полистирола позволяет получить новые качественные изделия со старого сырья, не загрязняя при это окружающую среду. Одним из перспективных направлений переработки полимера является производство полистиролбетона, который применяется в строительстве зданий малой этажности.

Продукты разложения полимера, образующиеся при термодеструкции или термоокислительной деструкции, токсичны. В процессе переработки полимера путем частичной деструкции могут выделяться пары бензола, стирола, этилбензола, оксида углерода и толуола.

Сжигание

При сжигании полимера выделяется диоксид углерода, монооксид углерода и сажа. В общем виде уравнение реакции горения полистирола выглядит так: (С 8 Н 8) n + О 2 = СО 2 + Н 2 О. Сжигание полимера, содержащего добавки (компоненты увеличивающие прочность, красители и т. д.), приводит к выбросу ряда других вредных веществ.

Полистирол вспенивающийся (ПСВ), с поверхностной обработкой частиц, производится методом суспензионной полимеризации стирола в присутствии пентана и полимеризацией в массе. Полистирол выпускается в виде сферических частиц (бисер), поверхность которых обработана различными веществами, улучшающими технологичность полимера при переработке и придающими ему новые свойства (например, антистатические свойства, негорючесть).

При производстве вспенивающегося полистирола основными являются способы суспензионной полимеризации и полимеризации в массе . Наиболее современным и эффективным является второй способ получения ВПС.

Полимеризация в массе вспенивающегося полистирола

Метод производства полистиролов полимеризацией в массе (блочный полистирол) с неполной конверсией мономеров является в настоящее время одним из наиболее распространенных в силу высоких технико-экономических показателей. Большинство современных производств работают именно по этой схеме, как наиболее производительной. Этот метод имеет оптимальную непрерывную схему технологического процесса. Процесс осуществляется в последовательно соединенных 2-3 аппаратах с мешалками; заключительную стадию процесса часто проводят в аппарате колонного типа.

Начальная температура реакции 80-100°С, конечная 200-220 °С. Полимеризацию прерывают при степени превращения стирола 80-90%. Непрореагировавший мономер удаляют из расплава под вакуумом, а затем с водяным паром до содержания стирола в полимере 0,01-0,05%. В полистирол вводят стабилизаторы, красители, антипирены и другие добавки и гранулируют. Полистирол отличается высокой чистотой. Эта технология наиболее экономична (в ней отсутствуют операции промывки, обезвоживания и сушки мелкодисперсных продуктов) и практически безотходна (непрореагировавший стирол возвращается на полимеризацию).

Проведение процесса до неполной конверсии мономера (80-90%) позволяет использовать высокие скорости полимеризации, контролировать температурные параметры, обеспечивать допустимые вязкости полимеризуемой среды. При проведении процесса до более глубоких степеней превращения мономера, затрудняется отвод тепла от высоковязкой реакционной массы, становится невозможным вести полимеризацию в изотермическом режиме. Эта особенность процесса полимеризации в массе привела к тому, что все большее внимание уделяется другим способам производства, и, в первую очередь, суспензионному методу.

Суспензионная полимеризация

Полимеризация в суспензии — конкурирующий технологический процесс, основан на малой растворимости виниловых мономеров в воде и на нейтральности последней в реакциях радикальной полимеризации. Суспензионный метод производства проводится в реакторе, это полунепрерывный процесс, который характеризуется наличием дополнительных технологических стадий (создание реакционной системы, выделение полученного полимера) и периодическим использованием оборудования на стадии полимеризации. Стирол суспендируют в деминерализованной воде, используя стабилизаторы эмульсии; инициатор полимеризации (органические пероксиды) растворяют в каплях мономера, где и происходит полимеризация. В результате образуются крупные гранулы в суспензии полимера в воде. Полимеризацию ведут при постепенном повышении температуры от 40 до 130°С под давлением в течение 8-14 часов. Из полученной суспензии полимер выделяют центрифугированием, после чего его промывают и сушат. Затем на виброситах сортируют по маркам. При этом процессе существенно облегчены теплоотвод и перемешивание компонентов системы.

Применяется:

  • в производстве пенополистирольных блоков и плит различной конфигурации зданий и помещений любого назначения (стены, крыша, пол, склады, павильоны, жилые дома, гаражи, подвалы, лоджии);
  • в изготовлении упаковки сложной формы для различных приборов, требующих защиты от удара при хранении и транспортировке;
  • в изготовлении комплектующих деталей автомобилей;
  • в получении полистиролбетона — легкого бетона на цементном вяжущем и вспененном полистирольном наполнителе, применяемого в изготовлении теплоизоляционных блоков и плит, монолитной теплоизоляции чердаков, кровель, наружных стен, полов и др.;
  • В изготовлении отделочных материалов для потолка — плиток, плинтусов, розеток;

  • для монолитного домостроения и скорлупы для теплоизоляции трубопроводов.
  • для изготовления пенополистирольных газифицируемых моделей, используемых при литье металлов.

Сополимеры стирола с акрилонитрилом САН

Сополимер стирола с акрилонитрилом (САН) обычно содержит 24% последнего, что соответствует анизотропному составу смеси мономеров и позволяет получать продукт постоянного состава. САН превосходит по теплостойкости, прочности при растяжении, ударной вязкости и устойчивости к растрескиванию в агрессивных жидких средах, однако уступает по диэлектрическим свойствам и прозрачности. Стоимость САН значительно выше, чем полистирола. Аналогичными свойствами, но лучшими прозрачностью и устойчивостью к УФ облучению обладает тройной сополимер стирол-акрилонитрил-метилметакрилат (САМ); однако его стоимость ещё выше, чем САН.

Сополимеры САН обычно получают суспензионной или эмульсионной полимеризацией, аналогичной производству ПС.

Сополимеры САН имеют более высокую химическую стойкость и твердость поверхности, чем гомополимер. Исходный материал имеет желтоватый оттенок и его приходится подсинивать. Стойкость к атмосферному воздействию хорошая, что позволяет использовать его, например, для облицовки и в дорогой бытовой технике взамен хрупкого и не морозостойкого полистирола общего назначения.

Сополимеры акрилонитрила, бутадиена и стирола: АБС-пластик

Подобные сополимеры получили название «АБС-пластики». Существует несколько методов получения трехзвенного полимера (терполимера), но главные их принципы понятны на следующих примерах: 1) стирол и акрилонитрил добавляют в полибута-диеновую эмульсию, перемешивают и нагревают до 50С; затем добавляют растворимый в воде инициатор, например персульфат калия, и смесь полимеризуется; 2) бутадиенакрилонитрильный латекс добавляют в стиролакрилонитрильный латекс, смесь коагулируют и высушивают распылением.

Свойства варьируются в широком диапазоне в зависимости от композиции и метода производства. В целом, однако, АБС — пластики имеют высокую ударную прочность, химическую стой-кость и пластичность; не стойки к метилэтилкетону и сложным эфирам.

АБС очень технологичен, прекрасно перерабатывается как литьем под давлением, так и экструзией. Производители выпускают марки АБС- пластика с различными индексами текучести расплава, с повышенным блеском и матовые. Тонкие листы термоформуют в баночки и подносы. АБС-пластики широко применяются при изготовлении бытовой техники, где востребованы высокая прочность, высокий блеск, технологичность в окрашивании суперконцентратами, экологическая нейтральность и теплостойкость. На изделия из АБС-пластиков лучше, чем на полистирольные изделия наносятся декоративные покрытия и рисунки.

Технология производства полистирола

В промышленности полистирол получают радикальной полимеризацией стирола. Методы получения полистиролов отличаются по циклу работы, съему продукции с единицы объема, условиям проведения процесса полимеризации. От конкретного метода производства зависят свойства получаемого полистирола. Различают 4 способа полимеризации стирола: полимеризацию в массе (блоке) мономера, полимеризацию мономера в эмульсии (в основном производство АБС — пластиков), суспензионную полимеризацию (ударопрочный полистирол и пенополистирол) и полимеризацию в растворе (блок-сополимеры бутадиена и стирола).

При производстве полистирола общего назначения основными являются способы суспензионной полимеризации и полимеризации в массе. Эмульсионную полимеризацию применяют в сравнительно небольшом масштабе.

Для получения ударопрочных сополимеров стирола с каучуком наиболее широко применяют метод блочно-суспензионной полимеризации, при котором сначала полимеризацию ведут в массе (до достижения конверсии 20% — 40%), а затем в водной дисперсии.

Общей тенденцией развития технологии синтеза является увеличение мощности единичных агрегатов, как за счет возрастания реакционных объемов, так и за счет интенсификации режимов синтеза. В настоящее время производительность единичных агрегатов синтеза достигает 15-30 тыс. тонн полимера в год.

Полимеризация в массе

Метод производства полимеризацией в массе с неполной конверсией мономеров является в настоящее время одним из наиболее распространенных в силу высоких технико-экономических показателей. В отечественной промышленности метод полимеризации в массе был выбран в качестве основного в 70-х годах, и в настоящее время по этому методу выпускается около 60% продукции. Этот метод имеет оптимальную схему технологического процесса. Процесс осуществляется по непрерывной схеме в системе последовательно соединенных 2-3 аппаратов с мешалками; заключительную стадию процесса часто проводят в аппарате колонного типа. Начальная температура реакции 80-100°С, конечная 200-220 °С. Полимеризацию прерывают при степени превращения стирола 80% — 90%. Непрореагировавший мономер удаляют из расплава полистирола под вакуумом, а затем с водяным паром до содержания стирола в полимере 0,01% — 0,05%.

В полистирол вводят стабилизаторы, красители, антипирены и другие добавки и гранулируют. Блочный полистирол отличается высокой чистотой. Эта технология наиболее экономична (в ней отсутствуют операции промывки, обезвоживания и сушки мелкодисперсных продуктов) и практически безотходна (непрореагировавший стирол возвращается на полимеризацию). Проведение процесса до неполной конверсии мономера (80% — 90%) позволяет использовать высокие скорости полимеризации, контролировать температурные параметры, обеспечивать допустимые вязкости полимеризуемой среды. При проведении процесса до более глубоких степеней превращения мономера, затрудняется отвод тепла от высоковязкой реакционной массы, становится невозможным вести полимеризацию в изотермическом режиме. Эта особенность процесса полимеризации в массе привела к тому, что все большее внимание уделяется другим способам производства, и, в первую очередь, суспензионному методу.

Суспензионная полимеризация

Полимеризация в суспензии - конкурирующий технологический процесс, который развивается параллельно с полимеризацией в массе, основан на малой растворимости виниловых мономеров в воде и на нейтральности последней в реакциях радикальной полимеризации. Процесс используется для получения полистирола специальных марок, главным образом, пенополистирола. Суспензионный метод производства - полунепрерывный процесс - характеризуется наличием дополнительных технологических стадий (создание реакционной системы, выделение полученного полимера) и периодическим использованием оборудования на стадии полимеризации.

Процесс проводится в реакторах объемом 10-50 м 3 , снабженных мешалкой и рубашкой. Стирол суспендируют в деминерализованной воде, используя стабилизаторы эмульсии; инициатор полимеризации (органические пероксиды) растворяют в каплях мономера, где и происходит полимеризация. В результате образуются крупные гранулы в суспензии полимера в воде. Полимеризацию ведут при постепенном повышении температуры от 40 до 130°С под давлением в течение 8-14 часов. Из полученной суспензии полимер выделяют центрифугированием, после чего его промывают и сушат. Закономерности суспензионной полимеризации близки к закономерностям полимеризации в массе мономера, но существенно облегчены теплоотвод и перемешивание компонентов системы.

Эмульсионная полимеризация

В производстве полистирола эмульсионный метод ведения полимеризации не получил такого развития, как полимеризация в массе или суспензии. Это обусловлено тем, что при эмульсионной полимеризации получают продукт слишком высокого молекулярного веса. Чаще всего для последующей переработки его необходимо вальцевать либо каким-то другим методом снижать его молекулярный вес. Основное направление его применения - получение полупродукта для последующего производства пенополистирола экструзионным методом.Система эмульсионной полимеризации содержит стирол, воду, как дисперсионную среду, водорастворимый инициатор (персульфат калия), ионный эмульгатор, различные добавки, в частности призванные регулировать рН среды.

Полимеризация протекает в мицеллах эмульгатора, содержащих мономер. Образующийся полимер представляет собой высокодисперсную суспензию (латекс), не растворимую в воде. Система в целом является многокомпонентной, что затрудняет выделение полимера в чистом виде. Поэтому используются различные приемы его отмывки. Применение метода постепенно сокращается, так как он сопряжен с большим количеством сточных вод.

Химич Ирина