Болезни Военный билет Призыв

Тип кристаллической решетки углекислого газа. Молекулярная кристаллическая решетка. Атомная кристаллическая решетка

Одним из самых удивительных элементов, который способен формировать огромное количество разнообразных соединений органической и неорганической природы, является углерод. Это настолько необычный по свойствам элемент, что еще Менделеев предрекал ему большое будущее, говоря о не раскрытых пока особенностях.

Позже это подтвердилось практически. Стало известно, что он - главный биогенный элемент нашей планеты, входящий в состав абсолютно всех живых существ. Помимо этого, способный существовать в таких формах, которые кардинально различаются по всем параметрам, но при этом состоят только лишь из атомов углерода.

В общем, особенностей у этой структуры много, именно с ними и постараемся разобраться в ходе статьи.

Углерод: формула и положение в системе элементов

В периодической системе элемент углерод располагается в IV (по новому образцу в 14) группе, главной подгруппе. Его порядковый номер 6, а атомный вес 12,011. Обозначение элемента знаком С говорит о его названии на латыни - carboneum. Есть несколько различных форм, в которых существует углерод. Формула его поэтому бывает различна и зависит от конкретной модификации.

Однако для написания уравнений реакций обозначение конкретное, конечно, есть. В целом, когда говорится о веществе в чистом виде, принята молекулярная формула углерода С, без индексации.

История открытия элемента

Сам по себе этот элемент известен с самой древности. Ведь один из главнейших минералов в природе - это каменный уголь. Поэтому для древних греков, римлян и других народностей секретом он не был.

Помимо этой разновидности, также использовали алмазы и графит. С последним долгое время было много запутанных ситуаций, так как часто без анализа состава за графит принимали такие соединения, как:

  • серебристый свинец;
  • карбид железа;
  • сульфид молибдена.

Все они были окрашены в черный цвет и поэтому считались графитом. Позже это недоразумение было разъяснено, и данная форма углерода стала сама собой.

С 1725 года большое коммерческое значение приобретают алмазы, а в 1970 освоена технология получения их искусственным путем. С 1779 года, благодаря работам Карла Шееле, изучаются химические свойства, которые проявляет углерод. Это послужило началом ряда важнейших открытий в области данного элемента и стало основой для выяснения всех его уникальнейших особенностей.

Изотопы углерода и распространение в природе

Несмотря на то что рассматриваемый элемент - один из важнейших биогенных, его общее содержание в массе земной коры составляет 0,15 %. Так происходит от того, что он подвергается постоянной циркуляции, естественному круговороту в природе.

В целом можно назвать несколько соединений минерального характера, в состав которых входит углерод. Это такие природные породы, как:

  • доломиты и известняки;
  • антрацит;
  • горючие сланцы;
  • природный газ;
  • каменный уголь;
  • нефть;
  • бурый уголь;
  • торф;
  • битумы.

Помимо этого, не следует забывать и о живых существах, которые являются просто хранилищем углеродных соединений. Ведь им образованы белки, жиры, углеводы, нуклеиновые кислоты, а значит самые жизненно важные структурные молекулы. В целом на пересчет сухой массы тела из 70 кг 15 приходится на чистый элемент. И так у каждого человека, не говоря уже о животных, растениях и прочих существах.

Если же рассмотреть и воды, то есть гидросферу в целом и атмосферу, то здесь присутствует смесь углерод-кислород, выражаемая формулой СО 2 . Диоксид или углекислый газ - один из основных газов, составляющих воздух. Именно в таком виде массовая доля углерода составляет 0,046%. Еще больше растворено углекислого газа в водах Мирового океана.

Атомная масса углерода как элемента составляет 12,011. Известно, что данная величина рассчитывается как среднее арифметическое между атомными весами всех существующих в природе изотопных разновидностей, с учетом их распространенности (в процентном соотношении). Так происходит и у рассматриваемого вещества. Есть три главных изотопа, в виде которых находится углерод. Это:

  • 12 С - его массовая доля в подавляющем большинстве составляет 98,93 %;
  • 13 С - 1,07 %;
  • 14 С - радиоактивный, период полураспада 5700 лет, устойчивый бетта-излучатель.

В практике определения геохронологического возраста образцов широко применяется радиоактивный изотоп 14 С, который является индикатором, благодаря своему длительному периоду распада.

Аллотропные модификации элемента

Углерод - это такой элемент, который в виде простого вещества существует в нескольких формах. То есть он способен формировать самое большое из известных на сегодня число аллотропных модификаций.

1. Кристаллические вариации - существуют в виде прочных структур с правильными решетками атомного типа. К данной группе относятся такие разновидности, как:

  • алмазы;
  • фуллерены;
  • графиты;
  • карбины;
  • лонсдейлиты;
  • и трубки.

Все они различаются строением кристаллической решетки, в узлах которых - атом углерода. Отсюда и совершенно уникальные, не схожие свойства, как физические, так и химические.

2. Аморфные формы - их образует атом углерода, входящий в состав некоторых природных соединений. То есть это не чистые разновидности, а с примесями других элементов в незначительном количестве. В данную группу входят:

  • активированный уголь;
  • каменный и древесный;
  • сажа;
  • углеродная нанопена;
  • антрацит;
  • стеклоуглерод;
  • техническая разновидность вещества.

Их также объединяют особенности строения кристаллической решетки, объясняющие и проявляемые свойства.

3. Соединения углерода в виде кластеров. Такая структура, при которой атомы замыкаются в особую полую изнутри конформацию, заполняемую водой или ядрами других элементов. Примеры:

  • углеродные наноконусы;
  • астралены;
  • диуглерод.

Физические свойства аморфного углерода

Из-за большого разнообразия аллотропных модификаций, выделить какие-то общие физические свойства для углерода сложно. Проще говорить о конкретной форме. Так, например, аморфный углерод обладает следующими характеристиками.

  1. В основе всех форм - мелкокристаллические разновидности графита.
  2. Высокая теплоемкость.
  3. Хорошие проводниковые свойства.
  4. Плотность углерода около 2 г/см 3 .
  5. При нагревании свыше 1600 0 С происходит переход в графитовые формы.

Сажа, и каменные разновидности находят широкое применение в технических целях. Они не являются проявлением модификации углерода в чистом виде, однако содержат его в очень большом количестве.

Кристаллический углерод

Существует несколько вариантов, в которых углерод - вещество, формирующее правильные кристаллы различного вида, где атомы соединяются последовательно. В результате происходит образование следующих модификаций.

  1. - кубическая, в которой соединяются четыре тетраэдра. В результате все ковалентные химические связи каждого атома максимально насыщенны и прочны. Это объясняет физические свойства: плотность углерода 3300 кг/м 3 . Высокая твердость, низкая теплоемкость, отсутствие электрической проводимости - все это является результатом строения кристаллической решетки. Существуют технически полученные алмазы. Образуются при переходе графита в следующую модификацию под влиянием высокой температуры и определенного давления. В целом так же высока, как и прочность - около 3500 0 С.
  2. Графит. Атомы расположены подобно структуре предыдущего вещества, однако происходит насыщение только трех связей, а четвертая становится более длинной и менее прочной, она соединяет между собой "слои" гексагональных колец решетки. В результате получается, что графит - мягкое, жирное на ощупь вещество черного цвета. Обладает хорошей электрической проводимостью и имеет высокую температуру плавления - 3525 0 С. Способно к сублимации - возгонке из твердого состояния в газообразное, минуя жидкое (при температуре 3700 0 С). Плотность углерода - 2,26 г/см 3, что гораздо ниже таковой у алмаза. Это объясняет их различные свойства. Из-за слоистой структуры кристаллической решетки, возможно использование графита для изготовления грифелей простых карандашей. При проведении по бумаге чешуйки отслаиваются и оставляют на бумаге след черного цвета.
  3. Фуллерены. Открыты были лишь в 80-х годах прошлого столетия. Представляют собой модификации, в которых углероды соединяются между собой в особую выпуклую замкнутую структуру, имеющую в центре пустоту. Причем форма кристалла - многогранник, правильной организации. Количество атомов четное. Самая известная форма фуллерен С 60 . Образцы подобного вещества были найдены при исследованиях:
  • метеоритов;
  • донных отложений;
  • фольгуритов;
  • шунгитов;
  • космического пространства, где содержались в виде газов.

Все разновидности кристаллического углерода имеют важное практическое значение, поскольку обладают рядом полезных в технике свойств.

Химическая активность

Молекулярный углерод проявляет низкую химическую активность вследствие своей устойчивой конфигурации. Заставить его вступать в реакции можно лишь сообщив атому дополнительную энергию и заставив электроны внешнего уровня распариться. В этот момент валентность становится равна 4. Поэтому в соединениях он имеет степень окисления + 2, + 4, - 4.

Практически все реакции с простыми веществами, как металлами, так и неметаллами, протекают под влиянием высоких температур. Рассматриваемый элемент может быть как окислителем, так и восстановителем. Однако последние свойства выражены у него особенно сильно, именно на этом основано применение его в металлургической и других отраслях промышленности.

В целом способность вступать в химическое взаимодействие зависит от трех факторов:

  • дисперсности углерода;
  • аллотропной модификации;
  • температуры реакции.

Таким образом, в ряде случаев происходит взаимодействие со следующими веществами:

  • неметаллами (водородом, кислородом);
  • металлами (алюминием, железом, кальцием и прочими);
  • оксидами металлов и их солями.

С кислотами и щелочами не реагирует, с галогенами очень редко. Важнейшее из свойств углерода - способность образовывать длинные цепи между собой. Они могут замыкаться в цикл, формировать разветвления. Так происходит образование органических соединений, которые на сегодняшний день исчисляются миллионами. Основа этих соединений два элемента - углерод, водород. Также в состав могут входить и другие атомы: кислород, азот, сера, галогены, фосфор, металлы и прочие.

Основные соединения и их характеристика

Существует множество различных соединений, в состав которых входит углерод. Формула самого известного из них - СО 2 - углекислый газ. Однако помимо этого оксида, существует еще СО - монооксид или угарный газ, а также недооксид С 3 О 2 .

Среди солей, в состав которых входит данный элемент, самыми распространенными являются карбонаты кальция и магния. Так, карбонат кальция имеет несколько синонимов в названии, так как в природе встречается в виде:

  • мела;
  • мрамора;
  • известняка;
  • доломита.

Важное значение карбонатов щелочноземельных металлов проявляется в том, что они активные участники процессов образования сталактитов и сталагмитов, а также подземных вод.

Угольная кислота - еще одно соединение, которое образует углерод. Формула ее - Н 2 СО 3 . Однако в обычном виде она крайне неустойчива и сразу же в растворе распадается на углекислый газ и воду. Поэтому известны лишь ее соли, а не она сама, как раствор.

Галогениды углерода - получаются в основном косвенным путем, так как прямые синтезы идут лишь при очень высоких температурах и с низким выходом продукта. Одно из самых распространенных - CCL 4 - тетрахлорметан. Ядовитое соединение, способное при вдыхании вызвать отравление. Получают при реакциях радикального фотохимического замещения в метане.

Карбиды металлов - соединения углерода, в которых он проявляет степень окисления 4. Также возможно существование объединений с бором и кремнием. Главное свойство карбидов некоторых металлов (алюминия, вольфрама, титана, ниобия, тантала, гафния) - это высокая прочность и отличная электропроводность. Карбид бора В 4 С - одно из самых твердых веществ после алмаза (9,5 по Моосу). Данные соединения используются в технике, а также химической промышленности, как источники получения углеводородов (карбид кальция с водой приводит к образованию ацетилена и гидроксида кальция).

Многие сплавы металлов изготавливают с использованием углерода, значительно повышая тем самым их качественные и технические характеристики (сталь - сплав железа с углеродом).

Отдельного внимания заслуживают многочисленные органические соединения углерода, в которых он - основополагающий элемент, способный соединяться с такими же атомами в длинные цепи различного строения. К ним можно отнести:

  • алканы;
  • алкены;
  • арены;
  • белки;
  • углеводы;
  • нуклеиновые кислоты;
  • спирты;
  • карбоновые кислоты и многие другие классы веществ.

Применение углерода

Значение соединений углерода и его аллотропных модификаций в жизни человека очень велико. Можно назвать несколько самых глобальных отраслей, чтобы стало понятно, что это действительно так.

  1. Данный элемент образует все виды органического топлива, из которого человек получает энергию.
  2. Металлургическая промышленность использует углерод как сильнейший восстановитель для получения металлов из их соединений. Здесь же находят широкое применение карбонаты.
  3. Строительство и химическая промышленность потребляют огромное количество соединений углерода для синтеза новых веществ и получения необходимых продуктов.

Также можно назвать такие отрасли хозяйства, как:

  • ядерная промышленность;
  • ювелирное дело;
  • техническое оборудование (смазки, жаропрочные тигли, карандаши и прочее);
  • определение геологического возраста пород - радиоактивный индикатор 14 С;
  • углерод - прекрасный адсорбент, что позволяет использовать его для изготовления фильтров.

Круговорот в природе

Масса углерода, находящегося в природе, включена в постоянный круговорот, который циклически совершается ежесекундно по всему земному шару. Так, атмосферный источник углерода - СО 2 , поглощается растениями и выделяется всеми живыми существами в процессе дыхания. Попадая в атмосферу, он снова поглощается, и так цикл не прекращается. При этом отмирание органических остатков приводит к высвобождению углерода и накоплению его в земле, откуда затем он снова поглощается живыми организмами и выводится в атмосферу в виде газа.

5. Ионная и металлическая связь. Водородная связь. Валентность

5.4. Типы кристаллических решеток

Вещества в твердом состоянии могут иметь аморфное и кристаллическое строение. В аморфных веществах (стекло, полимеры) расположение частиц неупорядоченное, а в кристаллических структурные единицы (атомы, молекулы или ионы) расположены в строгом порядке.

Под кристаллической решеткой понимается каркас, который образуется, если структурные единицы кристалла соединить воображаемыми прямыми линиями. Точки пересечения этих линий называются узлами кристаллической решетки . В зависимости от природы частиц, находящихся в узлах кристаллической решетки, а также от типа химической связи между ними различают четыре основных вида (типа) кристаллических решеток: атомную, молекулярную, ионную и металлическую.

Вещества с атомной, ионной и металлической кристаллическими решетками имеют немолекулярное строение

В узлах атомной кристаллической решетки находятся атомы одинаковых или разных химических элементов (как правило, неметаллов), связанных между собой прочными ковалентными связями (см. рис. 16.1 на с. 347). Вещества с атомной решеткой называются атомными или ковалентными кристаллами.

Запомним вещества с атомной кристаллической решеткой: бор, кремний, алмаз, графит, черный и красный фосфор, карборунд SiC, оксид кремния(IV) SiO 2 .

Благодаря высокой энергии ковалентных связей вещества атомного строения имеют очень высокую температуру плавления, высокие твердость и прочность, низкую растворимость; как правило, являются диэлектриками или полупроводниками (кремний, германий). Самое твердое природное вещество - алмаз (температура плавления 3500 °С), самое тугоплавкое - графит (3700 °С); высокую температуру плавления имеют карборунд SiC (2700 °С) и кремнезем SiO 2 (1610 °С).

В узлах молекулярных кристаллов (веществ с молекулярной кристаллической решеткой, молекулярного строения) находятся молекулы (рис. 5.7, а ). Между собой молекулы связаны слабыми межмолекулярными силами (не путайте: в молекулах связь ковалентная, т.е. прочная), для разрыва которых требуется сравнительно немного энергии. Поэтому молекулярные вещества имеют небольшую прочность, малую твердость, значительную сжимаемость, низкие температуры плавления и кипения. Для них характерна летучесть, многие имеют запах, некоторые возгоняются. Молекулярные кристаллы не проводят электрический ток, могут быть растворимы в полярных и неполярных растворителях.

Молекулярную кристаллическую решетку имеют большинство веществ с ковалентной полярной или неполярной связью, за исключением перечисленных выше веществ атомного строения. Молекулярное строение более характерно для органических веществ. Примеры веществ молекулярного строения: благородные газы (для них понятия атом и молекула идентичны, можно сказать, что благородные газы состоят из одноатомных молекул), галогены (в твердом состоянии), белый фосфор P 4 , ромбическая и моноклинная сера S 8 , твердые кислород, озон, азот, вода, галогеноводороды, алканы, бензол.

Рис. 5.7. Строение кристаллической решетки углекислого газа (CO 2) в твердом состоянии (а ) и хлорида натрия (б )

Все вещества с ионной связью образуют ионные кристаллические решетки , имеют ионное строение. Это соли, основные и амфотерные оксиды, основания, бинарные соединения металлов с неметаллами (гидриды, нитриды и т.д.). В узлах ионных кристаллов находятся противоположно заряженные простые или сложные катионы и анионы, связанные между собой прочной ионной связью (рис. 5.7, б ).Благодаря прочности ионной связи ионные кристаллы обладают большой твердостью, нелетучи и не имеют запаха, для них характерны высокие температуры кипения и плавления. При комнатной температуре ионные вещества плохо проводят электрический ток и теплоту, многие хорошо растворимы в полярных растворителях, их водные растворы и расплавы проводят электрической ток (электролиты). Для ионных веществ характерны слабая деформируемость и хрупкость, так как при смещении ионов относительно друг друга между одноименно заряженными ионами возникают силы отталкивания.

Вещества с металлической связью образуют металлические кристаллические решетки (металлические кристаллы), в которых (см. рис. 5.1) связь обеспечивается свободными электронами (электронным газом).

По этой причине простые вещества металлы (и их сплавы) имеют характерный металлический блеск, очень высокие тепло- и электропроводность, они непрозрачные, ковкие и пластичные. У металлов наблюдается большой разброс температур плавления (например, при обычных условиях ртуть находится в жидком агрегатном состоянии), твердости (мягкий свинец и очень твердый хром), что обусловлено некоторыми различиями в характере металлической связи разных металлов. Как уже отмечалось, мерой прочности металлической связи может служить температура плавления металлов: чем выше t пл, тем энергия металлической связи больше. Температура плавления металлов повышается в ряду:

ртуть → щелочные металлы → щелочноземельные металлы →

→ металлы d -семейства → вольфрам.

Пример 5.4. Среди соединений хлора с элементами 3-го периода наименьшую температуру плавления имеет:

Решение. Искомое вещество - SCl 2 , так как оно имеет молекулярную кристаллическую решетку (все другие вещества - ионную).

Задачи:

Оборудование и реактивы

Тип урока:

Форма организации работы:

Методы и приемы:

ХОД УРОКА

    Организационны. этап

Слайд 1

Слайд 2

Постановка проблемного

вопроса

Слайд 3

II . Актуализация знаний

Слайд 4

III . Формирование знаний

Слайд 5

Лабораторная

работа:

Кристаллические решетки

дать понятие о кристаллическом и аморфном состоянии твердых веществ, познакомить с типами кристаллических решеток;

развивать умения устанавливать причинно-следственную зависимость физических свойств веществ от химической связи и типа кристаллической решетки;

воспитывать интерес к предмету

Модели кристаллических решеток поваренной соли, алмаза, графита, углекислого газа, металлов; пластилин, жевательная резинка, смолы, воск, поваренная соль NaCl, графит, сахар, вода; презентация.

формирование знаний

фронтальная, парная, индивидуальная.

объяснительно-иллюстративный, постановка проблемного вопроса, демонстрационный опыт, лабораторная работа.

Сегодня я хочу начать урок со слов поэта Леонида Мартынова:

«В мире этом – я знаю –

нет счета сокровищам,

Но весьма поучительно

для очей заглянуть

повнимательнее в нутро вещам,

прямо в нутро вещей».

Тема урока: Кристаллические решетки

Цель урока – понять, что такое кристаллическое и аморфное состояние твердых веществ, познакомиться с типами кристаллических решеток, законом постоянства состава веществ.

Посмотрите на слайд. На нем представлены вещества:

алмаз, медный купорос, аметист, графит, алюминий,

оксид кремния ( IV ), ртуть, каменная соль.

В конце урока вы должны ответить на вопрос:

Что общего у этих веществ?

Какие агрегатные состояния веществ вы знаете?

(О): Твердое, жидкое и газообразное.

Следовательно: вещества по агрегатному состоянию делят на газы, жидкости и твердые тела.

(запись схемы в тетрадь)

Приведите примеры веществ.

Для нас важны все три агрегатных состояния, так как любое вещество

может быть газом, жидкостью или твердым веществом.

Приведите примеры такого перехода:

Лед ↔ вода ↔ пар;

твердый натрий легко плавится и может испарятся, т.е. быть газообразным.

Газ кислород при низких температурах сначала превращается в жидкость, а при еще более низких – затвердевает в синие кристаллы.

Сегодня мы рассмотрим твердое состояние вещества.

Посмотрите на ваших столах предложены вещества

Пластилин, жевательная резинка, смола, воск, соль NaCl , графит, сахар.

Распределите предложенные вещества на две группы (по своему усмотрению).

Ответ учащихся

Слайд 6

Слайд 7

Слайд 8

Слайд 9

Демонстрация решетки

Слайд 10

Пластилин, жевательная резинка, смола, воск – это аморфные вещества . У них часто нет постоянной температуры плавления, наблюдается текучесть, нет упорядоченного строения.

Напротив, соль NaCl , графит и сахар – кристаллические вещества . Для них характерны четкие температуры плавления, правильные геометрические формы, симметрия, упорядоченное строение.

Исходя из вашего ответа следует вывод ,

что все твердые вещества делятся на аморфные и кристаллические (их характеристика) (Запись в тетради)

Что бы выяснить отличие аморфных и кристаллических веществ мы заглянем внутрь этих веществ.

Кристаллические вещества характеризуются правильным расположением частиц, из которых они построены: атомов, молекул или ионов. Эти частицы расположены в строго определенных точках пространства – называемых узлами . Если соединить узлы прямыми линиями, то образуется пространственный каркас – кристаллическая решетка.

В соответствии с видом частиц можно выделить четыре типа кристаллических решеток: ионная, атомная, молекулярная, металлическая

Установим взаимосвязь между типом решетки, видом химической связи и свойствами веществ (заполнение таблицы)

1 кристаллическая решетка – ИОННАЯ.

Виды частиц в узлах решетки? -ионы

Вид связи между частицами – ионная, прочная.

Какие вещества могут иметь ионную кристаллическую решетку? – соли, оксиды и гидроксиды типичных металлов ( I III групп)

Какими физ. свойствами будут обладать такие вещества? – твердые, прочные, нелетучие, тугоплавкие.

Следующий тип кристаллической решетки – АТОМНАЯ

Виды частиц в узлах решетки – атомы

Вид связи между частицами? –(атомная или) ковалентная

Примеры – графит (его крист. решетка показана на слайде), кварц, алмаз.

Физические свойства веществ – такие же что и у веществ с ионной кристаллической решеткой – твердые, прочные, нелетучие, тугоплавкие, не растворимы в воде.

У алмаза кристаллическая решетка по структуре отличается от решетки графита. Она имеет тетраэдрическое строение. Из за такого своего строения алмаз – твердое, очень прочное вещество.

3 тип крист. решетки – МОЛЕКУЛЯРНАЯ.

В узлах такой решетки находятся – молекулы.

Между молекулами – слабые силы межмолекулярного притяжения, а внутри молекул – прочная ковалентная связь.

Примеры веществ –твердые при особых условиях вещества, которые при обычных условиях газы, жидкости; сера, иод, уксусная кислота.

Характерные физ.свойства таких веществ – непрочные, летучие, легкоплавкие, имеющие малую твердость.

На слайде приведена крист. решетка углекислого газа – оксида углерода ( IV ). В узлах находится молекула, состоящая из атома углерода и двух атомов кислород.

демонстрация крист решетки иода

Демонстрационный опыт.

Слайд 11

раздаточный материал

Слайд 12

Ответ учеников.

Слайд 13

Слайд 14

VI . Обобщение.

Первичное закрепление знаний

Слайд 15, 16

В кристаллических решетках простых веществ, например иода – в узлах находятся двухатомные молекулы иода.

Для веществ с молекулярной решеткой характерно явление возгонки (сублимации).

Возгонка иода. (Возгонка – это превращение (при нагревании) твердого вещества в газ, минуя жидкую фазу, а затем снова кристаллизация в виде инея.)

И последняя крист. решетка – МЕТАЛЛИЧЕСКАЯ

В узлах находятся – атом – ионы (металлов)

Связь – металлическая, осуществляемая свободными обобществленными электронами (которые двигаются между атом – ионами).

Посмотрите на кристаллическую решетка металлов, где показано что между ионами металлов находятся свободные электроны.

Примеры – металлы и сплавы.

Какими физ. свойствами будут обладать такие вещества? – ковкие, пластичные, электро – и теплопроводны, имеют мет. блеск (все свойства металлов).

Рассмотрев типы кристаллических решеток мы с вами установили взаимосвязь между строением атома, химическими связями, кристаллическими решетками и свойствами веществ

Строение химическая связь кристаллическая решетка свойства вещества.

Какой тип кристаллической решетки не встречается в простых веществах?

У простых веществ не бывает ионных решеток.

Откройте учебник на стр. 80, табл. 6 и обратите внимание на типы кристаллических решеток простых веществ в зависимости от их положения в периодической системе.

Для простых веществ-металлов- характерна металлическая кристаллическая решетка;

для неметаллов - атомная или молекулярная.

Остался еще один момент урока – закон постоянства состава вещества, которому подчиняются вещества с молекулярным строением (вещества с молекулярной крист решеткой).

Этот закон открыт французским химиком Ж.Л.Прустом.

Его формулировка такова:

вещества молекулярного строения имеют постоянный состав независимо от способа их получения.

Н-р: вода – не зависимо от того как ее получают, в каком агрегатном состоянии она находится, состав ее не меняется – Н 2 О

Для веществ с ионным строением закон Пруста не всегда выполняется.

Мы заглянули в нутро вещей. Рассмотрели кристаллические решетки

А теперь ответим на вопрос, который был задан в начале урока.

Что общего у предложенных веществ веществ?

Самостоятельная работа

V Подведение итогов.

Рефлексия. Анкета

VI . Домашнее задание

    Какие кристаллические решетки у О 2 , Н 2 О, NaCl, С ?

    Кремний имеет атомную кристаллическую решетку. Каковы его физические свойства?

    Оксид СО 2 имеет низкую t пл , а кварц SiO 2 – очень высокую (кварц плавится при 1725°С). Какие кристаллические решетки они должны иметь?

  • На уроке я работал активно/пассивно

  • Своей работой на уроке я доволен/не доволен

  • Урок для меня показался коротким/длинным

  • За урок я не устал/устал

  • Материал урока мне был понятен/не понятен

полезен/бесполезен

интересен/скучен

§ 22, упр. 6


Кристаллические решетки, вид связи и свойства веществ

Молекулярная

Вещество, как вам известно, может существовать в трёх агрегатных состояниях: газообразном, жидком и твёрдом (рис. 70). Например, кислород, который при обычных условиях представляет собой газ, при температуре -194 °С превращается в жидкость голубого цвета, а при температуре -218,8 °С затвердевает в снегообразную массу, состоящую из кристаллов синего цвета.

Рис. 70.
Агрегатные состояния воды

Твёрдые вещества делят на кристаллические и аморфные.

Аморфные вещества не имеют чёткой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. К аморфным веществам относится большинство пластмасс (например, полиэтилен), воск, шоколад, пластилин, различные смолы и жевательные резинки (рис. 71).

Рис. 71.
Аморфные вещества и материалы

Кристаллические вещества характеризуются правильным расположением составляющих их частиц в строго определённых точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решёткой. Точки, в которых размещены частицы кристалла, называют узлами решётки.

В узлах воображаемой кристаллической решётки могут находиться одноатомные ионы, атомы, молекулы. Эти частицы совершают колебательные движения. С повышением температуры размах этих колебаний возрастает, что приводит, как правило, к тепловому расширению тел.

В зависимости от типа частиц, расположенных в узлах кристаллической решётки, и характера связи между ними различают четыре типа кристаллических решёток: ионные, атомные, молекулярные и металлические (табл. 6).

Таблица 6
Положение элементов в Периодической системе Д. И. Менделеева и типы кристаллических решёток их простых веществ

Простые вещества, образованные элементами, не представленными в таблице, имеют металлическую решётку.

Ионными называют кристаллические решётки, в узлах которых находятся ионы. Их образуют вещества с ионной связью, которой могут быть связаны как простые ионы Na + , Cl - , так и сложные , ОН - . Следовательно, ионные кристаллические решётки имеют соли, основания (щёлочи), некоторые оксиды. Например, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Сl - , образующих решётку в форме куба (рис. 72). Связи между ионами в таком кристалле очень прочны. Поэтому вещества с ионной решёткой обладают сравнительно высокой твёрдостью и прочностью, они тугоплавки и нелетучи.

Рис. 72.
Ионная кристаллическая решётка (хлорид натрия)

Атомными называют кристаллические решётки, в узлах которых находятся отдельные атомы. В таких решётках атомы соединены между собой очень прочными ковалентными связями.

Рис. 73.
Атомная кристаллическая решётка (алмаз)

Такой тип кристаллической решётки имеет алмаз (рис. 73) - одно из аллотропных видоизменений углерода. Огранённые и отшлифованные алмазы называют бриллиантами. Их широко применяют в ювелирном деле (рис. 74).

Рис. 74.
Две императорские короны с алмазами:
а - корона Британской империи; б - Большая императорская корона Российской империи

К веществам с атомной кристаллической решёткой относятся кристаллические бор, кремний и германий, а также сложные вещества, например такие, как кремнезем, кварц, песок, горный хрусталь, в состав которых входит оксид кремния (IV) SiO 2 (рис. 75).

Рис. 75.
Атомная кристаллическая решётка (оксид кремния (IV))

Большинство веществ с атомной кристаллической решёткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С, у кремния - 1415 °С, у кремнезёма - 1728 °С), они прочны и тверды, практически нерастворимы.

Молекулярными называют кристаллические решётки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и ковалентными полярными (хлороводород НСl, вода Н 2 0), и ковалентными неполярными (азот N 2 , озон 0 3). Несмотря на то что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения. Поэтому вещества с молекулярными кристаллическими решётками имеют малую твёрдость, низкие температуры плавления, летучи.

Примерами веществ с молекулярными кристаллическими решётками являются твёрдая вода - лёд, твёрдый оксид углерода (IV) С) 2 - «сухой лёд» (рис. 76), твёрдые хлороводород НСl и сероводород H 2 S, твёрдые простые вещества, образованные одно- (благородные газы: гелий, неон, аргон, криптон), двух- (водород Н 2 , кислород O 2 , хлор Сl 2 , азот N 2 , иод 1 2), трёх- (озон O 3), четырёх- (белый фосфор Р 4), восьмиатомными (сера S 7) молекулами. Большинство твёрдых органических соединений имеют молекулярные кристаллические решётки (нафталин, глюкоза, сахар).

Рис. 76.
Молекулярная кристаллическая решётка (углекислый газ)

Вещества с металлической связью имеют металлические кристаллические решётки (рис. 77). В узлах таких решёток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны в общее пользование). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, металлический блеск.

Рис. 77.
Металлическая кристаллическая решётка (железо)

Лабораторный опыт № 13
Ознакомление с коллекцией веществ с разным типом кристаллической решётки. Изготовление моделей кристаллических решёток

    Ознакомьтесь с коллекцией выданных вам образцов веществ. Запишите их формулы, охарактеризуйте физические свойства и на их основе определите тип кристаллической решётки.

    Соберите модель одной из кристаллических решёток.

Для веществ, имеющих молекулярное строение, справедлив открытый французским химиком Ж. Л. Прустом (1799-1803) закон постоянства состава. В настоящее время этот закон формулируют так:

Закон Пруста - один из основных законов химии. Однако для веществ немолекулярного строения, например ионного, этот закон не всегда справедлив.

Ключевые слова и словосочетания

  1. Твёрдое, жидкое и газообразное состояния вещества.
  2. Твёрдые вещества: аморфные и кристаллические.
  3. Кристаллические решётки: ионные, атомные, молекулярные и металлические.
  4. Физические свойства веществ с различными типами кристаллических решёток.
  5. Закон постоянства состава.

Работа с компьютером

  1. Обратитесь к электронному приложению. Изучите материал урока и выполните предложенные задания.
  2. Найдите в Интернете электронные адреса, которые могут служить дополнительными источниками, раскрывающими содержание ключевых слов и словосочетаний параграфа. Предложите учителю свою помощь в подготовке нового урока - сделайте сообщение по ключевым словам и словосочетаниям следующего параграфа.

Вопросы и задания

  1. В каком агрегатном состоянии будет находиться кислород при -205 °С?
  2. Вспомните произведение А. Беляева «Продавец воздуха» и охарактеризуйте свойства твёрдого кислорода, используя его описание, приведённое в книге.
  3. К какому типу веществ (кристаллические или аморфные) относятся пластмассы? Какие свойства пластмасс лежат в основе их промышленного применения?
  4. К какому типу относится кристаллическая решетка алмаза? Перечислите характерные для алмаза физические свойства.
  5. К какому типу относится кристаллическая решетка иода? Перечислите характерные для иода физические свойства.
  6. Почему температура плавления металлов изменяется в очень широких пределах? Для подготовки ответа на этот вопрос используйте дополнительную литературу.
  7. Почему изделие из кремния при ударе раскалывается на кусочки, а изделие из свинца только расплющивается? В каком из указанных случаев происходит разрушение химической связи, а в каком - нет? Почему?

Темы кодификатора ЕГЭ: Вещества молекулярного и немолекулярного строения. Тип кристаллической решетки. Зависимость свойств веществ от их состава и строения.

Молекулярно-кинетическая теория

Все молекулы состоят из мельчайших частиц – атомов. Все открытые на настоящий момент атомы собраны в таблице Менделеева.

Атом – это мельчайшая, химически неделимая частица вещества, сохраняющая его химические свойства. Атомы соединяются между собой химическими связями . Ранее мы уже рассматривали а. Обязательно озучите теорию по теме: Типы химических связей, перед тем, как изучать эту статью!

Теперь рассмотрим, как могут соединяться частицы в веществе.

В зависимости от расположения частиц друг относительно друга свойства образуемых ими веществ могут очень сильно различаться. Так, если частицы расположены друг от друга далеко (расстояние между частицами намного больше размеров самих частиц), между собой практически не взаимодействуют, перемещаются в пространстве хаотично и непрерывно, то мы имеем дело с газом .

Если частицы расположены близко друг к другу, но хаотично , больше взаимодействуют между собой , совершают интенсивные колебательные движения в одном положении, но могут перескакивать в другое положение, то это модель строения жидкости .

Если же частицы расположены близко к друг другу, но более упорядоченно , и больше взаимодействуют между собой, а двигаются только в пределах одного положения равновесия, практически не перемещаясь в другиеположения, то мы имеем дело с твердым веществом .

Большинство известных химических веществ и смесей могут существовать в твердом, жидком и газообразном состояниях. Самый простой пример – это вода . При нормальных условиях она жидкая , при 0 о С она замерзает – переходит из жидкого состояния в твердое , и при 100 о С закипает – переходит в газовую фазу – водяной пар. При этом многие вещества при нормальных условиях – газы, жидкости или твердые. Например, воздух – смесь азота и кислорода – это газ при нормальных условиях. Но при высоком давлении и низкой температуре азот и кислород конденсируются и переходят в жидкую фазу. Жидкий азот активно используют в промышленности. Иногда выделяют плазму , а также жидкие кристаллы, как отдельные фазы.

Очень многие свойства индивидуальных веществ и смесей объясняются взаимным расположением частиц в пространстве друг относительно друга!

Данная статья рассматривает свойства твердых тел , в зависимости от их строения. Основные физические свойства твердых веществ: температура плавления, электропроводность, теплопроводность, механическая прочность, пластичность и др.

Температура плавления – это такая температура, при которой вещество переходит из твердой фазы в жидкую, и наоборот.

– это способность вещества деформироваться без разрушения.

Электропроводность – это способность вещества проводить ток.

Ток – это упорядоченное движение заряженных частиц . Таким образом, ток могут проводить только такие вещества, в которых присутствуют подвижные заряженные частицы . По способности проводить ток вещества делят на проводники и диэлектрики. Проводники – это вещества, которые могут проводить ток (т.е. содержат подвижные заряженные частицы). Диэлектрики – это вещества, которые практически не проводят ток.

В твердом веществе частицы вещества могут располагаться хаотично , либо более упорядоченн о. Если частицы твердого вещества расположены в пространстве хаотично , вещество называют аморфным . Примеры аморфных веществ – уголь, слюдяное стекло .

Если частицы твердого вещества расположены в пространстве упорядоченно, т.е. образуют повторяющиеся трехмерные геометрические структуры, такое вещество называют кристаллом , а саму структуру – кристаллической решеткой . Большинство известных нам веществ – кристаллы. Сами частицы при этом расположены в узлах кристаллической решетки.

Кристаллические вещества различают, в частности, по типу химической связи между частицами в кристалле – атомные, молекулярные, металлические, ионные; по геометрической форме простейшей ячейки кристаллической решетки – кубическая, гексагональная и др.

В зависимости от типа частиц, образующих кристаллическую решетку , различают атомную, молекулярную, ионную и металлическую кристаллическую структуру .

Атомная кристаллическая решетка

Атомная кристаллическая решетка образуется, когда в узлах кристалла расположены атомы . Атомы соединены между собой прочными ковалентными химическими связями . Соответственно, такая кристаллическая решетка будет очень прочной , разрушить ее непросто. Атомную кристаллическую решетку могут образовывать атомы с высокой валентностью, т.е. с большим числом связей с соседними атомами (4 или больше). Как правило, это неметаллы: простые вещества — кремния, бора, углерода (аллотропные модификации алмаз, графит), и их соединения (бороуглерод, оксид кремния (IV) и др .). Поскольку между неметаллами возникает преимущественно ковалентная химическая связь, свободных электронов (как и других заряженных частиц) в веществах с атомной кристаллической решеткой в большинстве случаев нет . Следовательно, такие вещества, как правило, очень плохо проводят электрический ток, т.е. являются диэлектриками . Это общие закономерности, из которых есть ряд исключений.

Связь между частицами в атомных кристалалах: .

В узлах кристалла с атомной кристаллической структурой расположены атомы .

Фазовое состояние атомных кристаллов при нормальных условиях: как правило, твердые вещества .

Вещества , образующие в твердом состоянии атомные кристаллы:

  1. Простые вещества с высокой валентностью (расположены в середине таблицы Менделеева): бор, углерод, кремний, и др.
  2. Сложные вещества, образованные этими неметаллами: кремнезем (оксид кремния, кварцевый песок) SiO 2 ; карбид кремния (корунд) SiC; карбид бора, нитрид бора и др.

Физические свойства веществ с атомной кристаллической решеткой:

прочность;

— тугоплавкость (высокая температура плавления);

— низкая электропроводность;

— низкая теплопроводность;

— химическая инертность (неактивные вещества);

— нерастворимость в растворителях.

Молекулярная кристаллическая решетка – это такая решетка, в узлах которой располагаются молекулы . Удерживают молекулы в кристалле слабые силы межмолекулярного притяжения (силы Ван-дер-Ваальса , водродные связи, или электростатическое притяжение). Соответственно, такую кристаллическую решетку, как правило, довольно легко разрушить . Вещества с молекулярной кристаллической решеткой – легкоплавкие, непрочные . Чем больше сила притяжения между молекулами, тем выше температура плавления вещества . Как правило, температуры плавления веществ с молекулярной кристаллической решеткой не выше 200-300К. Поэтому при нормальных условиях большинство веществ с молекулярной кристаллической решеткой существует в виде газов или жидкостей . Молекулярную кристаллическую решетку, как правило, образуют в твердом виде кислоты, оксиды неметаллов, прочие бинарные соединения неметаллов, простые вещества, образующие устойчивые молекулы (кислород О 2 , азот N 2 , вода H 2 O и др.), органические вещества. Как правило, это вещества с ковалентной полярной (реже неполярной) связью. Т.к. электроны задействованы в химических связях, вещества с молекулярной кристаллической решеткой – диэлектрики, плохо проводят тепло .

Связь между частицами в молекулярных кристалалах: межмолекулярные , электростатические или межмолекулярные силы притяжения .

В узлах кристалла с молекулярной кристаллической структурой расположены молекулы .

Фазовое состояние молекулярных кристаллов при нормальных условиях: газы, жидкости и твердые вещества .

Вещества , образующие в твердом состоянии молекулярные кристаллы :

  1. Простые вещества-неметаллы, образующие маленькие прочные молекулы (O 2 , N 2 , H 2 , S 8 и др.);
  2. Сложные вещества (соединения неметаллов) с ковалентными полярными связями (кроме оксидов кремния и бора, соединений кремния и углерода) — вода H 2 O, оксид серы SO 3 и др.
  3. Одноатомные инертные газы (гелий, неон, аргон, криптон и др.) ;
  4. Большинство органических веществ, в которых нет ионных связей метан CH 4 , бензол С 6 Н 6 и др.

Физические свойства веществ с молекулярной кристаллической решеткой:

— легкоплавкость (низкая температура плавления):

— высокая сжимаемость;

— молекулярные кристаллы в твердом виде, а также в растворах и расплавах не проводят ток;

— фазовое состояние при нормальных условиях – газы, жидкости, твердые вещества;

— высокая летучесть;

— малая твердость.

Ионная кристаллическая решетка

В случае, если в узлах кристалла находятся заряженные частицы – ионы , мы можем говорить о ионной кристаллической решетке . Как правило, с ионных кристаллах чередуются положительные ионы (катионы) и отрицательные ионы (анионы), поэтому частицы в кристалле удерживаются силами электростатического притяжения . В зависимости от типа кристалла и типа ионов, образующих кристалл, такие вещества могут быть довольно прочными и тугоплавкими . В твердом состоянии подвижных заряженных частиц в ионных кристаллах, как правило, нет. Зато при растворении или расплавлении кристалла ионы высвобождаются и могут двигаться под действием внешнего электрического поля. Т.е. проводят ток только растворы или расплавы ионных кристаллов. Ионная кристаллическая решетка характерна для веществ с ионной химической связью . Примеры таких веществ – поваренная соль NaCl, карбонат кальция – CaCO 3 и др. Ионную кристаллическую решетку, как правило, в твердой фазе образуют соли, основания, а также оксиды металлов и бинарные соединения металлов и неметаллов .

Связь между частицами в ионных кристаллах: .

В узлах кристалла с ионной решеткой расположены ионы .

Фазовое состояние ионных кристаллов при нормальных условиях: как правило, твердые вещества .

Химические вещества с ионной кристаллической решеткой:

  1. Соли (органические и неорганические), в том числе соли аммония (например, хлорид аммония NH 4 Cl);
  2. Основания;
  3. Оксиды металлов;
  4. Бинарные соединения, в составе которых есть металлы и неметаллы.

Физические свойства веществ с ионной кристаллической структурой:

— высокая температура плавления (тугоплавкость);

— растворы и расплавы ионных кристаллов – проводники тока;

— большинство соединений растворимы в полярных растворителях (вода);

— твердое фазовое состояние у большинства соединений при нормальных условиях.

И, наконец, металлы характеризуются особым видом пространственной структуры – металлической кристаллической решеткой , которая обусловлена металлической химической связью . Атомы металлов довольно слабо удерживают валентные электроны. В кристалле, образованном металлом, происходят одновременно следующие процессы: часть атомов отдает электроны и становится положительно заряженными ионами ; эти электроны хаотично перемещаются в кристалле ; часть электронов притягивается к ионам . Эти процессы происходят одновременно и хаотично. Таким образом, возникают ионы , как при образовании ионной связи, и образуются общие электроны , как при образовании ковалентной связи. Свободные электроны перемещаются хаотично и непрерывно по всему объему кристалла, как газ. Поэтому иногда их называют «электронным газом ». Из-за наличия большого числа подвижных заряженных частиц металлы проводят ток, тепло . Температура плавления металлов сильно варьируется. Металлы также характеризуются своеобразным металлическим блеском, ковкостью , т.е. способностью изменять форму без разрушения при сильном механическом воздействии, т.к. химические связи при этом не разрушаются.

Связь между частицами : .

В узлах кристалла с металлической решеткой расположены ионы металлов и атомы .

Фазовое состояние металлов при обычных условиях: как правило, твердые вещества (исключение — ртуть, жидкость при обычных условиях).

Химические вещества с металлической кристаллической решеткой — простые вещества-металлы .

Физические свойства веществ с металлической кристаллической решеткой:

— высокая тепло- и электропроводность;

— ковкость и пластичность;

— металлический блеск;

— металлы, как правило, нерастворимы в растворителях;

— большинство металлов – твердые вещества при нормальных условиях.

Сравнение свойств веществ с различными кристаллическими решетками

Тип кристаллической решетки (или отсутствие кристаллической решетки) позволяет оценить основные физические свойства вещества . Для примерного сравнения типичных физических свойств соединений с разными кристаллическими решетками очень удобно использовать химические вещества с характерными свойствами . Для молекулярной решетки это, например, углекислый газ , для атомной кристаллической решетки — алмаз , для металлической — медь , и для ионной кристаллической решетки — поваренная соль , хлорид натрия NaCl.

Сводная таблица по структурам простых веществ, образованных химическими элементами из главных подгрупп таблицы Менделеева (элементы побочных подгрупп являются металлами, следовательно, имеют металлическую кристаллическую решетку).

Итоговая таблица связи свойств веществ со строением: