Болезни Военный билет Призыв

Теоремы которые не нужно доказывать. Ученики по своему желанию доказывают теорему у доски. Учимся доказывать теорему

Е.В. Петрова,учитель математики СОШ №25 г. Владимира

Доказательство - это рассуждение, которое убеждает. (Ю.А. Шиханович)

Изучение и доказательство теорем.

Реализация современной роли математики предполагает улучшение математической подготовки учащихся, важное место в котором отводится умению открывать закономерности, обосновывать их и применять на практике. Формирование алгоритмического, эвристического, абстрактного мышления учащихся осуществляется также главным образом в процессе доказательства. Обучение математике предполагает обучение способам деятельности по приобретению знаний, что требует выявления и освоения в процессе обучения математике различных схем используемых в математике рассуждений. В опытных науках мы постоянно обращаемся к наблюдениям и экспериментам, чтобы проверить те или иные утверждения. Совершенно иначе дело обстоит в математике. Теорема считается доказанной только в том случае, если она логически выведена из других предложений. Поэтому проблема обучения учащихся доказательству всегда являлась одной из центральных в методике преподавания математики.

В настоящее время, идущий процесс гуманизации образования предполагает направленность обучения на развитие личности, на формирование нравственности, чему способствует обучение доказательству, где важная роль отводится обучению поиска способов доказательства, их сравнения, выбора наиболее простого из них.

Что значит доказать теорему, что такое доказательство?

Когда вы убеждаете своего товарища в чем-либо или отстаиваете в споре с ним свое мнение, свою точку зрения, то вы по существу производите доказательство (умело или неумело - это уже другой вопрос).

Математическое доказательство должно представлять собой цепочку логических следствий из исходных аксиом, определений, условий теоремы и ранее доказанных теорем до требуемого заключения. Основную нагрузку по формированию у учащихся умения доказывать несёт курс геометрии. Д. Пойа указывал на важную роль, которую играют доказательства при построении геометрической системы: «Геометрическая система цементирована доказательствами. Каждая теорема связана с предшествующими аксиомами, определениями и теоремами каким-нибудь доказательством. Без понимания таких доказательств нельзя понять самую сущность системы». Исторически сложилось так, что геометрия как учебный предмет имеет большое значение для изучения окружающего мира и создаёт благоприятные условия для приобщения учащихся к творческой исследовательской деятельности. Изучение геометрии способствует развитию умения доказывать, т.е. умения логически мыслить и рассуждать. Развитие логического мышления происходит в ходе изучения приводимых в учебниках и учителем доказательств теорем, при решении задач. Что значит доказать теорему, что такое доказательство? Доказательство в широком смысле - это логическое рассуждение, в процессе которого истинность какой-либо мысли обосновывается с помощью других положений. В математике недопустимо ссылаться, например, на очевидные отношения, иллюстрируемые чертежом. Математическое доказательство должно представлять собой цепочку логических следствий из исходных аксиом, определений, условий теоремы и ранее доказанных теорем до требуемого заключения.

Таким образом, при доказательстве теоремы мы сводим ее к ранее доказанным теоремам, а те в свою очередь еще к другим и т.д. Очевидно, что этот процесс сведения должен быть конечным, и поэтому всякое доказательство в конце концов сводит доказываемою теорему к исходным определениям и принятым без доказательства аксиомам.

Процесс доказательства – сложный процесс мышления, и он формируется лишь постепенно, от простых к более сложным структурам. Следовательно, обучение доказательству представляет собой сложную систему, структура которой обусловлена многочисленными связями между различными ее составляющими.

К 13 – 14 годам мозг школьника становится способным овладеть абстрактным, обоснованным, рассуждающим мышлением. Развитие доказательного мышления, отмечает П. П. Блонский, проходит две стадии. В подростковом возрасте школьник скорее усваивает доказательства, чем самостоятельно пользуется ими, и еще меньше он создает их: в этом возрасте доказывание скорее дело памяти. В юношеском же возрасте уже заметно выступают критическое мышление к даваемым доказательствам и стремление к своим доказательствам. Все вышесказанное приводит к выводу о необходимости исследования индивидуальных познавательных стратегий школьников при изучении и доказательстве теорем.

Над этой проблемой я работаю первый год. Сначала я определила цель, задачи и гипотезу исследования.

Цель: выявить и развить индивидуальные стратегии изучения и доказательства теоремы в 8 классе.

Задачи:

1. Выявить индивидуальные стратегии изучения и доказательства теорем на основе вопросника (с элементами листа анализа).

2. Развить индивидуальные стратегии учащихся через обсуждение полученных результатов, создание банка успешных действий при выполнении изучения и доказательства теорем.

3. Разработать советы по успешному изучению теорем по геометрии.

4. Проанализировать результаты освоения учащимися теорем до и после применения технологии ЦРПС, разработать и апробировать памятку успешной деятельности учеников.

Гипотеза: осмысление учащимися собственных действий при изучении теорем позволит развить навыки доказательстваирешения задач по геометрии, достичь более высоких результатов обучения.

Школьные учебники геометрии показывают готовое доказательство теорем, но не обучают самому процессу доказательства. Учащиеся нередко испытывают трудности в усвоении теорем и воспроизведении их доказательств . Хорошо известен страх многих учащихся перед словом «теорема». Преодолеть его помогает целенаправленная работа в соответствии с теорией поэтапного формирования умственных действий П.Я. Гальперина. Чтобы обеспечить усвоение теорем, их доказательств и научить самостоятельно решать задачи по геометрии, в соответствии с этой теорией необходимо организовать самостоятельную деятельность учащихся. Необходимо научить учащихся доказывать теорему самостоятельно.

Под обучением доказательству надо понимать обучение учащихся анализу готовых доказательств, их воспроизведению, самостоятельному открытию фактов, поиску других путей доказательств, а также опровержению выдвинутых предложений.

Свой эксперимент я начала с вопроса, на который получила неожиданный ответ.

На первом этапе учащимся было предложено описать действия, которые они совершают при знакомстве и доказательстве теоремы. В результате были получены следующие варианты:

***

    Читаю по учебнику теорему.

    Учу.

    В классе доказываю теорему.

***

Учу, как стихотворение. Когда рассказываю, то боюсь сбиться.

. ***

1.Учу по учебнику теорему.

2. Кратко записываю для себя доказательство.

3. Доказываю теорему, используя записи.

4. Рассказываю доказательство маме.

5. В классе доказываю теорему учителю.

После анализа индивидуальных стратегий я поняла, почему ребятам сложно доказать теорему. Это происходит потому, что они в принципе не понимают, что значит « выучить теорему». Далее, я выявила причины затруднений. Это и плохое качество знаний, неумение их применять, неосознанность умственных операций, неумение устанавливать связи между логическими шагами, слабая мотивация и т.д. Реализация требования «доказать теорему» предполагает ряд действий. Без овладения этими действиями в мышлении ученика не возникнет ассоциаций, которые позволили бы ему продвигаться в доказательстве теорем. К числу таких мыслительных операций относятся: выделить условие и заключение теоремы, зафиксировать их словесно и графически, разбить доказательство на части, каждую из которых проанализировать, сделать выводы и двигаться дальше. Следовательно, необходимо сформировать у учащихся в мышлении нужные для осуществления доказательства действия.

При изучении теоремы« Первый признак подобия треугольников», я составила для учащихся вопросник. Эти вопросы заставили задуматься над содержанием теоремы, над этапами доказательства, вызвав при этом в мышлении учащихся нужные ассоциации.

Вопросник.

    С какого действия начали знакомство с теоремой?

    Как вы понимаете, что это теорема?

    Что мотивирует вас на изучение доказательства теоремы?

    Сколько раз прочитали теорему?

    Что дано?

    Что надо доказать?

    Поможет ли чертеж при доказательстве теоремы?

    С чего вы начали изучать доказательство теоремы?

    Можно ли доказательство теоремы разбить на части?

    Знание каких фактов,теорем, определений вам пригодилось?

    Что вам мешало при доказательстве теоремы?

    А что помогало доказать теорему?

    Как вы поняли, что теорема доказана?

    Какое открытие вы для себя сделали?

    Вы довольны? Что вы при этом испытываете?

    Какие советы вы могли бы дать тем,кому предстоит изучать теорему ?

Вот некоторые из ответов на данные вопросы.

Юля:

    Открыла учебник, нашла теорему, познакомилась зрительно.

    Прочитала.

    Стала изучать, т. К. мне интересно.

    2 раза прочла теорему.

    Дан первый признак подобия треугольников.

    Что, если 2 угла одного треугольника равны 2 соответственным углам другого треугольника, то такие треугольники подобны.

    Да.

    С текста.

    Да.

    Да.

    Несосредоточенность, много новых слов.

    Чертеж.

    Когда поняла о чем теорема, посмотрела доказательство.

    -----------

Антон:

    С открытия учебника.

    Там написано, что это теорема.

    Знание теоремы и оценка.

    2 раза.

    Два треугольника.

    Подобие треугольников.

    Да.

    С прочтения.

    Да.

    Теорема об отношении площадей подобных треугольников.

    Незнание некоторых нужных фактов.

    Помогла память.

    В учебнике написано, что теорема доказана.

    Я узнал новую теорему.

    Да, я доволен.

    Быть внимательным.

Алина:

    Я ищу нужную мне теорему в учебнике, читаю ее, пытаюсь вникнуть в текст.

    Я понимаю, что это теорема, т. к. к правилу дано доказательство этого факта.

    Умение и понимание решения задач.

    Я перечитываю теорему, пока не запомню ее, раза 4 -6.

    Даны 2 треугольника, обозначены равные углы.

    Подобие этих двух треугольников.

    Чертеж поможет мне лучше понять, что нужно доказать и разобраться с условием.

    Сначала я прочитаю все доказательство, потом сделаю чертеж и, внимательно вчитываясь, начну разбирать доказательство.

    Что дано – подход к решению проблемы – доказательство – вывод.

    Мне помогла с доказательством теорема о сумме углов треугольника, определение подобных треугольников, теорема об отношении площадей подобных треугольников.

    Ничего не мешало.

    Знание определения о подобных треугольниках, знание других теорем и фактов.

    Дан вывод, и когда мы получили то, что нужно было доказать, заканчиваю словами «теорема доказана».

    Я открыла для себя новый признак подобия треугольников и впервые сама смогла разобрать доказательство новой теоремы.

    Учите теорему в тишине, вникая в текст. Сначала выучите формулировку теоремы, вспомните материал, который может помочь при доказательстве.

Виктория:

    Открыла учебник, нашла нужную мне теорему, прочитала ее, стараясь запомнить ее.

    Это предложение, которое надо доказать.

    Меня мотивирует: а) получение хорошей оценки, т. к. это очень важно моим родителям и моему будущему; б) Изучение теорем развивает логическое мышление, а логика нужна при решении задач по геометрии. Значит, изучая теоремы, я учусь решать задачи.

    Дано: 2 треугольника, равные углы в них.

    Надо доказать, что два треугольника подобны.

    Да. Чертеж мне очень помогает при доказательстве теорем и решении задач. Иногда чертеж подсказывает решение задачи.

    Я прочитала несколько раз доказательство теоремы по учебнику, кратко записала его в тетрадь, а затем попыталась устно повторить теорему и доказательство.

    Можно, на 2 части.

    Мне пригодились знания, которые были получены мною ранее, даже из 7 класса.

    Мне ничего не мешало. Главное знать, зачем все это надо.

    В доказательстве теоремы мне помог учебник и огромное желание знать то, что еще мне не ведомо.

    Логически определила, что доказывать больше нечего.

    Сама теорема для меня уже открытие, я же не знала этого свойства раньше.

    Довольна, что смогла доказать теорему, чувство удовлетворения, чувство гордости, что я все поняла.

    Внимательно прочитай теорему и доказательство, попытайся понять их, прочитай несколько раз, докажи теорему кому-нибудь или зеркалу, я бы посоветовала иметь этот вопросник перед собой – помогает.

Используя этот вопросник ребята сами доказывали теорему. Для учеников данная работа была необычной, интересной и трудной. Мы рассмотрели и обобщили все ответы, отметив их разнообразие, выявили наиболее рациональные действия при выполнении данной работы. На следующий урок все опрошенные учащиеся смогли доказать теорему на положительные отметки.

Далее мы с учениками обсудили стратегии изучения и доказательства теоремы, выявили общие и различные закономерности их действий, создали банк успешных действий, назвав итоговую работу «Мои шаги».

Второй признак подобия треугольников ребята доказали сами, используя перечень «Мои шаги». А вот при изучении третьего признакаподобия (этот урок записан на видео, а конспект урока приведен ниже),мы смогли составить памятку доказательства теоремы, которую успешно применяли при доказательстве других теорем как в этом классе так и в другом классе данной параллели.

Памятка.

При изучении и доказательстве теорем надо:

    Заменить термины в теореме определениями понятий, которые они обозначают или их признаками.

    Развести элементы условия и заключения словами «дано» и «доказать».

    Записать все известные величины в графу «Дано».

    В графу «Доказательство» записать, что необходимо доказать.

    Сделать четкий и аккуратный чертеж. Отметить на нем латинскими буквами то, что изначально известно.

    Разбить теорему на части.

    Доказать каждую часть по отдельности.

    Закончить доказательство выводом «следовательно, первоначальное утверждение верно, теорема доказана».

    Закрой учебник, докажи кому-нибудь теорему, попробуй.

Положив памятку перед собой, теперь любой ребенок может самостоятельно разобраться с теоремой и доказать ее. Эта памятка помогает извлекать информацию из условия теоремы, вычленять отдельные элементы, комбинировать их, делать самостоятельные выводы, формировать требования каждого этапа доказательства, в процессе работы оценивать свои знания, ликвидировать «пробелы». Не меньший интерес наша работа вызвала у моих коллег – математиков.

Использование технологии ЦРПС позволило добиться положительной динамики в изучении и доказательстве теорем в геометрии. Теперь все ученики 8 класса понимают, что означают слова учителя «выучить теорему». Ребят стала привлекать самостоятельная познавательная деятельность, у них изменилась мотивация, появилась уверенность в себе и собственных силах, возникло ответственное отношение к собственной деятельности. Вот одна из стратегий успешного изучения и доказательства теоремы после знакомства с основными принципами ЦРПС:

Саша:

    Внимательно читаю теорему по учебнику.

    Вчитываюсь в каждое слово, отмечая новые термины, словосочетания.

    Читаю доказательство.

    Определяюсь, понятно ли мне все.

    Если что-то непонятно, вновь читаю, обращая внимание на каждое слово.

    Если все понятно, то выясняю и записываю, что дано и что надо доказать.

    Делаю чертеж, соответствующий условию теоремы с указанием всех данных.

    Перечитываю вновь внимательно доказательство.

    Стараюсь поделить доказательство на логические части.

    Доказываю теорему по частям, делая необходимые выводы.

    Еще раз читаю теорему.

    Закрыв учебник, используя чертеж, доказываю теорему.

    Все, теорему выучил и доказал!

    Теперь постараюсь применить знания, полученные в ходе изучения теоремы.

Проведенные наблюдения, анализ стратегий, беседы с учащимися позволили определить и перспективы работы – необходимость исследования стратегии эвристического доказательства теорем, доказательства методом «от противного».

Разработка урока

Предмет: геометрия.

Учитель: Петрова Елена Владимировна

Класс: 8 «г»

Тема урока: третий признак подобия треугольников.

Цель урока: составить памятку по изучению и доказательству теорем, апробировать ее при изучении третьего признака подобия треугольников.

Задачи урока, сформулированные на деятельностной основе:

- воспитательная: развитие мотивации для изучения геометрии; формирование уважительного отношения к иному мнению, к иной точке зрения; развитие самостоятельности в решении личностных проблем.

-учебная : Составить памятку, способствующую успешному изучению и доказательству теорем, применить ее для самостоятельного изучения

третьего признака подобия треугольников.

- развивающая: формировать умение анализировать, выделять главное, сравнивать, обобщать, систематизировать, объяснять понятия и доказывать их.

Этап

Название этапа

Задачи

Деятельность учителя (методы и приёмы обучения)

Деятельность ученика (формы организации УПД)

Ожидаемый результат (знания, умения, способы деятельности)

Мотивирование к учебной деятельности

Создать условия для возникновения внутренней потребности включения в учебную деятельность

У меня есть два треугольника. Стороны одного из них 3 см, 5см и 4 см, а другого 12 см, 20 см и 16 см. Как выяснить, подобны ли эти треугольники?

Проанализировать ситуацию, потытаться решить проблему.

Ученики задумаются над решением этой задачи, но решить не смогут.

Выявление места и причины затруднения.

Выяснить причины: почему мы не можем ответить на поставленный вопрос?

Организовать деятельность учеников так, чтобы подвести их к причине затруднения.

В процессе обсуждения ученики выясняют, что им мешает решить эту задачу, а что могло бы помочь выйти из затруднительного положения.

Ученики осознают, что для решения проблемы, у них недостаточно знаний

Построение проекта выхода из затруднения.

Помочь ученикам найти выход из ситуации

Учитель помогает в постановке цели с помощью подводящего диалога, побуждения к действию.

Учащиеся ставят цели и выбирают способ для достижения цели – изучить еще один признак подобия треугольников.

Проанализировав ситуацию, приходим к выводу о необходимости создания памятки по изучению и доказательству теорем.

Реализация намеченного плана

Создать универсальную памятку.

Учитель руководит процессом

Учащиеся составляют индивидуально свою памятку на основе «мои шаги», выявленных на предыдущих уроках, чтоб успешно изучить теорему; а затем в процессе обсуждения создаем универсальную памятку.

Создание памятки для успешного доказательства лябой теоремы по учебнику.

Реализация построенного проекта.

Разобрать по учебнику третий признак подобия треугольников.

Учитель руководит процессом

Ученики по учебнику разбирают новую для нх теорему и с помощью памятки описывают ее доказательство в тетрадь.

Теорема разобрана и ее доказательство записано в тетрадь.

Первичное закрепление с программированием во внешней речи

Выяснить все непонятные моменты в теореме

Учитель помогает учащимся, фиксируя преодоление возникших затруднений.

Соотносят записи в тетради с планом доказательства, выясняют возникшие вопросы и делают выводы.

.Проанализировать проделанную работу и устно разобрать доказательство

Включение в систему знаний и повторение.

Доказать третий признак подобия треугольников.

Учитель предлагает, используя составленную памятку, доказать теорему у доски.

Ученики по своему желанию доказывают теорему у доски.

Кто-то из ребят сможет ответить у доски.

Рефлексия учебной деятельности на уроке.

Фиксирует степень достижения цели.

Ученики понимают, что теперь и эта задача решаема, т.е. поднимается самооценка ученика.

Ученикам понравится такой вид деятельности и они поймут, что именно такой подход к изучению и доказательству теоремы наиболее эффективен.

Доказательство математического утверждения, как правило, представляет собой цепочку правильных рассуждений, использующих аксиомы и теоремы, справедливость которых установлена ранее. Рассуждение называется правильным, если из истинности всех посылок следует истинность заключения. Пусть высказывания \(A_1,A_2, \ldots,A_n\) - посылки, а высказывание \(A\) - заключение. Рассуждение проводится по схеме \(\frac{A_1,A_2,\ldots, A_n}{B}\) , т.е. из предположений \(A_1,A_2,\ldots,A_n\) следует заключение \(B\) . Это рассуждение является правильным, если формула \((A_1\And A_2\And \ldots\And A_n)\Rightarrow B\) тождественно-истинная, т.е. истинна для любых истинностных значений входящих в нее высказываний \(A_1,A_2,\ldots,A_n,B\) .

Правильным рассуждениям соответствуют, например, схемы:

\(\frac{A\Rightarrow B,A}{B}\) - правило вывода (modus ponens );

\(\frac{A\Rightarrow B,B\Rightarrow C}{A \Rightarrow C}\) - правило силлогизма;

\(\frac{A\Rightarrow B,\lnot B}{\lnot A}\) - правило контрапозиции.

По первой и третьей схемам построены следующие рассуждения:

– если натуральное число \(n\) делится на 4, то оно четное. Число \(n\) делится на 4. Следовательно, число п четное;

– если натуральное число \(n\) делится на 4, то оно четное. Число \(n\) нечетное. Следовательно, число \(n\) не делится на 4.

Оба рассуждения правильные для любых натуральных чисел \(n\) . В самом деле, даже при \(n=1\) , несмотря на кажущуюся противоречивость, имеем правильное рассуждение: "если число 1 делится на 4, то оно четное. Число 1 делится на 4. Следовательно, число 1 четное", поскольку из ложных посылок можно делать какие угодно заключения.

Рассмотрим пример рассуждения по схеме \(\frac{A\Rightarrow B,B}{A}:\)

– если натуральное число \(n\) делится на 4, то оно четное. Число \(\) четное. Следовательно, число \(n\) делится на 4.

При \(n=6\) и \(n=8\) соответственно получаем:

– если натуральное число 6 делится на 4, то оно четное. Число 6 четное. Следовательно, число 6 делится на 4;

– если натуральное число 8 делится на 4, то оно четное. Число 8 четное. Следовательно, число 8 делится на 4.

Оба рассуждения неправильные, хотя заключение второго рассуждения истинно (число 8 действительно делится на 4), т.е. схема \(\frac{A\Rightarrow B,B}{A}\) не соответствует правильным рассуждениям.

Часто вместо доказательства теоремы вида \(A\Rightarrow B\) доказывают истинность некоторого другого утверждения, эквивалентного исходному. Такие формы доказательства называют косвенными. Одним из них является способ доказательства от противного. Чтобы доказать истинность высказывания \(A\Rightarrow B\) предполагаем, что это утверждение ложно. Исходя из такого предположения, приходим к противоречию, а именно доказываем, что некоторое утверждение выполняется и не выполняется одновременно. Отсюда делается вывод о том, что предположение неверно, а исходное высказывание истинно.

Пользуясь описанным способом, докажем утверждение:

если \(n\) нечетное число, то и число \(n^2\) - нечетное.

Предположим противное, т.е. пусть имеется такое нечетное число \(n\) , что число \(n^2\) - четное. Тогда, с одной стороны, разность \(n^2-n\) будет нечетным числом, а с другой стороны, число \(n^2-n=n(n-1)\) заведомо четное, как произведение двух последовательных целых чисел. Получено противоречие, а именно: число \(n^2-n\) является четным и нечетным одновременно. Это доказывает, что сделанное предположение неверно и, следовательно, исходное утверждение справедливо.

Рассмотренная схема доказательства от противного не единственная. Применяются также другие схемы доказательства от противного:

\(\frac{A,\lnot B}{\lnot A}\) или \(\frac{A,\lnot B}{B}\) .

Еще одна схема косвенного доказательства (по закону контрапозиции) основана на эквивалентности двух утверждений \(A\Rightarrow B\) и \(B\Rightarrow \lnot A\) . В самом деле, эти утверждения либо оба истинны, либо оба ложны. Например, высказывания "если идет дождь, то на небе есть тучи" и "если на небе нет туч, то не идет дождь" оба истинны, а высказывания "если на небе есть тучи, то идет дождь" и "если не идет дождь, то на небе нет туч" оба ложны.

Во многих задачах нужно доказать справедливость некоторого утверждения (формулы) для любого натурального числа \(n\) . Непосредственная проверка таких утверждений для каждого значения п невозможна, поскольку множество натуральных чисел бесконечно. Для доказательства таких утверждений (формул) применяется метод математической индукции , суть которого заключается в следующем. Пусть требуется доказать истинность высказывания \(A(n)\) для всех \(n\in \mathbb{N}\) . Для этого достаточно доказать два утверждения:

1) высказывание \(A(n)\) истинно для \(n=1\) . Эта часть доказательства называется базой индукции;

2) для любого натурального \(k\) из того, что высказывание истинно для \(n=k\) (индукционное предположение) следует, что оно истинно и для следующего числа \(n=k+1\) , т.е. \(A(k)\Rightarrow A(k+1)\) . Эта часть доказательства называется индукционным шагом.

Если пункты 1, 2 доказаны, можно сделать вывод об истинности высказывания \(A(n)\) для любого натурального \(n\) .

В самом деле, если высказывание \(A(1)\) истинно (см. пункт 1), то высказывание \(A(2)\) тоже истинно (см. пункт 2 при \(n=1\) ). Поскольку \(A(2)\) истинно, то \(A(3)\) тоже истинно (см. пункт 2 при \(n=2\) ) и т.д. Таким образом можно дойти до любого натурального числа \(n\) , убеждаясь в справедливости \(A(n)\) .

Замечание В.6. В ряде случаев бывает необходимо доказать справедливость некоторого утверждения \(A(n)\) не для всех натуральных \(n\) , а лишь для \(n\geqslant p\) , т.е. начиная с некоторого фиксированного числа \(p\) . Тогда метод математической индукции модифицируется следующим образом:

1) база индукции: доказать истинность \(A(p)\) ;

2) индукционный шаг: доказать \(A(k)\Rightarrow A(k+1)\) для любого фиксированного \(k\geqslant p\) .

Из пунктов 1, 2 следует, что утверждение \(A(n)\) верно для всех натуральных \(n\geqslant p\) .

Пример В.16. Доказать справедливость равенства \(1+3+5+\ldots+(2n-1)=n^2\) для любого натурального числа \(n\) .

Решение. Обозначим сумму первых \(n\) нечетных чисел через \(S_n=1+3+\ldots+(2n-1)\) . Требуется доказать утверждение \(A(n):\) "равенство \(S_n=n^2\) верно для любого \(n\in \mathbb{N}\) ". Доказательство проведем по индукции.

1) Поскольку \(S_1=1=1^2\) , то при \(n=1\) равенство \(S_n=n^2\) верное, т.е. высказывание \(A(1)\) истинно. База индукции доказана.

2) Пусть \(k\) - любое натуральное число. Выполним индукционный шаг \(A(k)\Rightarrow A(k+1)\) . Предположив, что утверждение \(A(n)\) истинно при \(n=k\) , т.е. \(S_k=k^2\) , докажем, что утверждение \(A(n)\) истинно для следующего натурального числа \(n=k+1\) , то есть \(S_{k+1}=(k+1)^2\) . Действительно,

\(S_{k+1}= \underbrace{1+3+5+\ldots+(2k-1)}_{S_k}+ \bigl= S_k+2k+1= k^2+2k+1= (k+1)^2.\)

Поэтому \(A(k)\Rightarrow A(k+1)\) и на основании метода математической индукции заключаем, что высказывание \(A(n)\) истинно для любого натурального \(n\) , то есть формула \(S_n=n^2\) верна для любого \(n\in \mathbb{N}\) .

Пример В.17. Перестановкой из \(n\) чисел называется набор первых \(n\) натуральных чисел, взятых в некотором порядке. Доказать, что количество различных перестановок равно \(n!\) . Выражение \(n!\) (читается " \(n\) факториал") равно \(n!= 1\cdot2 \cdot3\cdot \ldots\cdot (n-1)\cdot n\) . Две перестановки \((i_1,i_2,\ldots,i_n)\) и \((j_1,j_2,\ldots,j_n)\) из \(n\) чисел считаются равными, если \(i_1=j_1, i_2=j_2,\ldots,i_n=j_n\) , а в случае нарушения хотя бы одного из равенств перестановки считаются различными.

Решение. Проведем доказательство методом математической индукции.

1) Для \(n=1\) имеется всего одна перестановка \((1)\) , т.е. \(1!=1\) и утверждение верно.

2) Предположим, что для любого \(k\) количество перестановок равно \(k!\) . Докажем, что количество перестановок из \((k+1)\) чисел равно \((k+1)!\) . В самом деле, зафиксируем число \((k+1)\) на любом месте в перестановке из \((k+1)\) чисел, а первые \(k\) натуральных чисел разместим на оставшихся \(k\) местах. Количество таких перестановок равно количеству перестановок из \(k\) чисел, т.е. \(k!\) по индуктивному предположению. Так как число \((k+1)\) можно было поставить на любое из (к +1) мест в перестановке, заключаем, что количество различных перестановок из \((k+1)\) чисел равно \((k+1)\cdot(k!)=(k+1)!\) . Таким образом, предположив, что утверждение верно для \(n=k\) , удалось доказать, что оно верно для \(n=k+1\) .

Из пунктов 1 и 2 следует, что утверждение верно для любого натурального числа \(n\) .

Замечание В.7. Формальные методы вывода теорем, использующие многочисленные схемы правильных рассуждений, изучаются в математической логике. Как правило, эти методы порождают лишь новые формулировки теорем, отражающих старое содержание. Поэтому для развития математической теории они малоэффективны. Однако, законы математической логики и схемы правильных рассуждений, должны обязательно соблюдаться при изучении любой математической проблемы.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Как мы уже отмечали выше, структура доказательства как логическая конструкция состоит из тезиса, аргументов и демонстрации.

В демонстрации отражается характер логических связей между тезисом и аргументами. В зависимости от вида демонстрации в методической литературе часто употребляются термины «способ доказательства» и «метод доказательства». Покажем, в чем состоит их отличие.

Если доказательство утверждения отличается от другого доказательства того же самого утверждения не логической основой, а последовательностью умозаключений, то будем говорить, что утверждение доказывается двумя различными способами. Если же одно доказательство отличается от другого логической основой, то будем говорить о различных методах доказательства.

Покажем отличие метода от способа доказательства (или решения) на задачах, приведенных ниже.

На рисунке 2 KM LN, ∠POM + ∠LOR = 75° и ∠KOR = 58°. Вычислить ∠РОМ и ∠LOP.

Дано: KM LN, ∠РОМ + ∠LOR = 75°, ∠KOR = 58°.

Найти: ∠РОМ и ∠LOP.

1) ∠ROL = 90° - ∠KOR = 90° - 58° = 32°.

2) ∠РОМ = 75° - ∠ROL = 75° - 32° = 43°.

3) ∠POL = ∠LOM + ∠MOP = 90°+ 43° = 133°.

1) ∠ROL = 90° - 58° = 32°.

2) ∠РОМ = 75° - 32° = 43°.

3) ∠NOP = 90°- 43° = 47°.

4) ∠POL = 180° - ∠NOP = 180°- 43° = 133°.

1) ∠NOР = 360° - 90° - 90° - 58° - 75° = 47°.

2) ∠POL = 180° - ∠NОР = 180° - 47° = 133°.

3) ∠РОМ = 90° - ∠NОР = 90° - 47° = 43°.

Как мы видим, в этих способах решения отличными являются лишь последовательности умозаключений.

Задача 2. Дан квадрат ABCD (рис. 3). Вершина квадрата D соединена с точками М и Р, которые соответственно являются серединами сторон АВ и ВС. Точка М соединена с точкой N, являющейся серединой стороны DC. Докажите, что .

Из чертежа имеем . Отнимем от обеих частей равенства . Получим - = - , откуда имеем .

Из чертежа имеем

Вычтем из равенства (1) равенство (2). Получим - = - - - + +

Учитывая, что = , последнее равенство будет иметь вид: - = - . Прямоугольник AMND разделен диагональю DM на два равных треугольника: ∆ADM=∆DMN, тогда - . Учитывая это, получим - = 0, откуда окончательно имеем = .

Задача 3. К плоскости прямоугольника ABCD через точку А проведен перпендикуляр, на котором взята точка К, соединенная с точками В, С и D (рис. 4). Найти АК, если KB = 6 м, КС = 7 м, KD = 5 м.


Дано: ABCD - прямоугольник; AK ⊥ (АВС)

Найти: АК.

1) Рассмотрим прямоугольный треугольник КDC (∠KDC = 90° по теореме о трех перпендикулярах). По теореме Пифагора имеем DC = (м).

2) По свойству прямоугольника имеем AB = DC = (м).

3) Из прямоугольного треугольника АВК имеем AK = (м).

Введем обозначения: АВ = х, AC = z, AD = y.

1) Из прямоугольного треугольника АКВ .

2) Из прямоугольного треугольника КАС .

3) Из прямоугольного треугольника KAD .

4) Получим систему уравнений:

5) Учитывая, что , система примет вид:

Решив систему, получим - = -12, откуда AK (м).

Мы видим, что в основе этих двух решений лежат совершенно разные логические основы, а значит, речь должна идти о двух разных методах решения: геометрическом и алгебраическом.

Задача 4. Доказать, что если в выпуклом четырехугольнике каждая из его диагоналей делит его площадь пополам, то он является параллелограммом.

В четырехугольнике ABCD (рис. 5), в котором АС и BD - диагонали, проведем BN ⊥ AC и DM АС.

По условию . Учитывая, что = AC BN, а =

AC DM, имеем AC BN = AC DM , откуда следует, что BN = DM. ∠MOD = ∠NOB как вертикальные, следовательно, прямоугольные треугольники BON и MOD равны по катету и острому углу, откуда имеем

Аналогично доказывается равенство OC = OA. Следовательно, мы получили, что в выпуклом четырехугольнике его диагонали в точке пересечения делятся пополам, а это и означает, что четырехугольник – параллелограмм.

Обозначим площадь четырехугольника буквой S. Тогда по условию задачи и , откуда . И так как площади треугольников BCD и ACD равны и основанием у них является один и тот же отрезок CD, то и высоты этих треугольников будут равными. То есть мы доказали, что все точки отрезка АВ отстоят на одинаковом расстоянии от отрезка CD, а значит, АВ ∥ CD. Аналогично доказывается параллельность отрезков AD и ВС. Из того что в четырехугольнике противоположные стороны оказались попарно параллельны, мы заключаем, что он является параллелограммом.

Построим к предложенной задаче новый чертеж (рис. 6). Проведем через точки В и D прямые , параллельные АС, через точки А л С - прямые и , параллельные BD.

Так как по условию задачи и АС - общее основание треугольников AВС и ADC, то высоты этих треугольников равны и прямые находятся на равных расстояниях от прямой . Аналогично рассуждение о прямых и .

При центральной симметрии с центром О прямая переходит в прямую , прямая переходит в прямую , а прямые и перходят сами в себя как прямые, проходящие через центр симметрии. Тогда эта центральная симметрия переведет точку В в точку D, а точка А в точку С. В силу свойства центральной симметрии AB = CD и BC = DA, а значит, по признаку параллелограмма четырехугольник ABCD - параллелограмм.

Доказательство в математике и других дедуктивных науках есть цепочка правильных умозаключений, идущих от исходных для данной теории посылок, признанных истинными, к доказываемому утверждению.

Основным инструментом доказательства теорем являются умозаключения. Умозаключение - рассуждение, в ходе которого из одного или нескольких суждений (называемых посылками умозаключения) выводится новое суждение (называемое заключением или следствием), логически вытекающее из посылок.

Формой дедуктивных умозаключений, используемых при доказательстве теоремы, является силлогизм. В силлогизме содержится три понятия, а состоит он из двух посылок и вывода. Его структуру можно представить в таком виде:

Все М есть Р - большая посылка (БП);

К есть М - меньшая посылка (МП);

К есть Р - вывод (В).

Приведем пример силлогизма: «Все ромбы (М) есть параллелограммы (Р). Квадрат (К) есть ромб (М). Следовательно, квадрат (К) есть параллелограмм (Р)».

Цепочка последовательно связанных силлогизмов, устанавливающая истинность теоремы, называется доказательством теоремы. В качестве примера такой цепочки силлогизмов рассмотрим доказательство теоремы из курса 8 класса: «Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды».

Дано: АВ, CD - хорды, Е - точка пересечения хорд.

Доказать: AE BE = CE DE (рис. 7).

Доказательство

Силлогизм 1

БП: Вписанные углы, опирающиеся на одну и ту же дугу окружности, равны.

МП: Вписанные углы (∠1 и ∠2) опираются на одну и ту же дугу BMD.

В: ∠1 = ∠2.

Силлогизм 2

БП: Вертикальные углы равны.

МП: ∠3 и ∠4- вертикальные.

В: ∠3 = ∠4.

Силлогизм 3

БП: Если два угла одного треугольника соответственно равны двум углам другого, то треугольники подобны.

МП: Два угла (∠1 = ∠3) треугольника AED соответственно равны двум углам (∠2 = ∠4) треугольника СЕВ.

В: ∆AED ∆СЕВ.

Силлогизм 4

БП: В подобных треугольниках сходственные стороны пропорциональны.

МП: Стороны АЕ, DE и СЕ, BE - сходственные стороны подобных треугольников AED и СЕВ.

Силлогизм 5

БП: Произведение крайних членов пропорции равно произведению средних членов пропорции.

МП: АЕ и BE - крайние члены, a DE и СЕ - средние члены одной и той же пропорции.

В: AE BE = DE CE.

Проведение любого доказательства опирается на три блока знаний и умений: содержательный, структурный, логический.

В содержательный блок входят элементы, связанные с ранее изученными математическими понятиями и фактами, которые использованы или в формулировке утверждения, или в качестве аргументов при проведении рассуждений. Эти элементы существенно зависят от логической структуры курса, от его аксиоматики, от методических особенностей изложения и т. д., а поэтому для одной и той же теоремы в различных учебниках содержательный блок может оказаться различным.

В структурный блок входят знания и умения, связанные со структурой утверждения и возможностями ее преобразования. В этот блок входят умения выделять условие и заключение теоремы, преобразовывать логическую форму теоремы с целью получения более простых под теорем и т. д.

Логический блок содержит знания и умения, связанные с правилами логических рассуждений.

По способу связи аргументов от условия к заключению доказательства подразделяются на прямые и косвенные .

Прямое доказательство основано на каком-нибудь несомненном начале, из которого непосредственно устанавливается истинность теоремы.

Методы прямого доказательства:

– синтетический,

– аналитический,

– метод математической индукции.

Синтетический метод : при построении цепочки силлогизмов мысль движется от условия теоремы к ее заключению.

В учебниках приводятся преимущественно синтетические доказательства. Их преимущества – полнота, сжатость, краткость. Недостатки – отсутствие мотивации шагов, обоснования дополнительных построений; они носят значительно более формальный характер, чем аналитические доказательства.

Пример

Теорема. Если две хорды окружности пересекаются, то произведения отрезков одной хорды равно произведению отрезков другой хорды.


Дано: АВ и СД – хорды окружности, Е – точка их пересечения.

Доказать: АЕ×ВЕ = СЕ×ДЕ. (1)

Доказательство (синтетическое)

Рассмотрим треугольники АДЕ и СВЕ. В этих треугольниках углы 1 и 2 равны, так как они вписанные и опираются на одну и ту же дугу ВМД, а углы 3 и 4 равны как вертикальные. По первому признаку подобия треугольников DАДЕ ~ DСВЕ. Отсюда следует, что , или АЕ×ВЕ = СЕ×ДЕ. Теорема доказана .

Аналитический метод : при поиске доказательства мысль движется от заключения теоремы к ее условию. Преимущества этого метода – есть отправное звено доказательства, дополнительные построения мотивированы, увеличивается творческая активность учащихся. Недостатки – большие потери времени, искусственные дополнительные построения трудно обосновать.

Пример . Теорема о хордах окружности.

Доказательство (аналитическое)

Чтобы доказать равенство (1), достаточно показать, что (2).

Для того, чтобы найти пропорцию (2), достаточно доказать подобие треугольников, стороны которых являются членами этой пропорции. Для получения таких треугольников соединяем точки С и В, А и Д.

Чтобы обосновать верность пропорции (2), достаточно доказать, что DАДЕ ~ DСВЕ. Эти треугольники подобны по первому признаку подобия треугольников: Ð1 = Ð2 как вписанные углы, опирающиеся на одну и ту же дугу ВМД, а Ð3 = Ð4 как вертикальные. Следовательно, теорема верна .

Любое аналитическое доказательство обратимо в синтетическое и наоборот. Это широко используется в учебном процессе. Технологии могут быть таковы:

1) синтетическое доказательство предваряется аналитическими поисками его плана;

2) синтетическое доказательство заменяется аналитическим, в качестве домашнего задания – изучение синтетического доказательства по учебнику;

3) при использовании лекционного метода (преимущественно за пределами курса основной школы) часто используется чисто синтетический метод доказательства.

Метод математической индукции не имеет распространения в геометрии, так как основан на свойствах множества натуральных чисел, выходит за рамки основной школы, поэтому мы не будет подвергать его специальному изучению.

Косвенное доказательство : истинность теоремы устанавливается посредством опровержения некоторых суждений, содержащихся в теореме.

Наиболее распространенный и единственно применимый в курсе планиметрии метод косвенного доказательства – доказательство от противного .

Логико-математическая сущность метода от противного: вместо прямой (р Þ q) доказывается обратная противоположной теорема ().

Поэтому доказательство методом от противного строится по следующей схеме:

1) пусть неверно q, то есть истинно ;

2) докажем, что ложно р, то есть истинно ;

3) убедились, что из ;

4) следовательно, р Þ q (в силу равносильности импликаций р Þ q и ), что и требовалось доказать.

Курс геометрии основной школы широко применяет доказательства от противного, начиная буквально с первых уроков в седьмом классе. При этом необходимо использовать алгоритмический подход.

Алгоритм доказательства от противного .

1. Допускаем, что заключение теоремы ложно. Тогда будет верно противоречащее ему утверждение.

2. Вычленяем возможные случаи.

3. Убеждаемся, что в каждом случае приходим к следствию, которое противоречит:

– условию теоремы,

– ранее установленным математическим фактам.

4. Наличие противоречия заставляет отказаться от принятого заключения.

5. Признаем справедливость заключения доказываемой теоремы.

Мы охарактеризовали основные логические методы доказательства теорем: прямые и косвенные, которые в свою очередь могут быть аналитическими и синтетическими, доказательствами от противного.

Можно говорить об основных математических методах доказательства теорем. В геометрии к ним можно отнести следующие базовые методы:

1) метод геометрических преобразований : эффективен, соответствует современной концепции обучения геометрии в школе, но требует развитого абстрактного и пространственного мышления; методика его использования в школе недостаточно отработана;

2) метод равенства и подобия треугольников – соответствует классической концепции обучения геометрии в школе, известен со времен Евклида, поэтому методика его хорошо разработана; навыки его применения формируются постепенно, в процессе решения задач и доказательства теорем.

Кроме указанных базовых математических методов доказательства теорем планиметрии можно говорить о более частных методах: метод симметрии, метод поворота, векторный метод, алгебраический метод, метод подобия, координатный метод и др.

Методы доказательства, используемые в курсе геометрии основной школы, можно обобщить в виде схемы I.

Когда-то геометрия олицетворяла всю математику. Геометрия, как и всякая наука, возникла под влиянием жизненных потребностей. Необходимость повседневного удовлетворения их ставит человека перед целым рядом вопросов о форме окружающих его предметов, вычислениях, связанных с землемерием, строительным делом и т. д. Слово "геометрия" означает "землемерие" и ясно указывает на источник его происхождения.

Имеются вполне достоверные сведения о значительном развитии геометрических знаний в Египте более чем за две тысячи лет до нашей эры. Узкая плодородная полоса земли между пустыней и рекой Нилом ежегодно подвергалась затоплению, и каждый раз разлив смывал границы участков, принадлежавших отдельным лицам. После спада воды требовалось с возможно большей точностью восстановить эти границы, ибо каждый из участков ценился весьма высоко. Это заставило египтян заниматься вопросами измерения, то есть землемерием. Помимо этого, они вели развитую торговлю и поэтому нуждались в умении измерять емкость сосудов. Искусство кораблевождения привело их к астрономическим сведениям. Выдающиеся постройки египтян - пирамиды, которые сохранились до нашего времени, свидетельствуют, что их сооружение требовало знания пространственных форм. Все это указывает на чисто опытное происхождение геометрии.

Но математика росла и развивалась, особенно бурно последние 200 лет. Возникли новые направления: математический анализ, теория множеств, топология, совсем иначе стала выглядеть алгебра. Конечно, развивалась и геометрия, однако некоторые математики начали в последнее время относить ее к числу второстепенных математических направлений. Это мнение нашло свое отражение и в содержании школьных программ по математике, как в США, так и в ряде других стран.

Возможно тот факт, что в школьной программе геометрия занимает одно из последних мест, объясняется тем, что педагоги мало знают о природе геометрии и об успехах, которые были достигнуты ее исследователями. Я имею в виду многие блестящие результаты, такие, как теорема Фейрбаха, теореме Чевы, теорема Менелая и т. д.

Элементарная геометрия – часть геометрии, входящая в элементарную математику. Границы элементарной геометрии, как и вообще элементарной математики, не являются строго очерченными. Говорят, что элементарная геометрия есть та часть геометрии, которая изучается в средней школе; это определение, однако, не только не вскрывает содержания и характера элементарной геометрии, но и никак ее не исчерпывает, так как в не включается обширный материал, лежащий вне школьных программ (например, аксиоматика, сферическая геометрия). можно сказать, что элементарная геометрия есть исторически и, соответственно, логически первая глава геометрии (поскольку из нее развились другие геометрические направления); в свои основах она сложилась в Древней Греции, и изложение ее основ дают уже «Начала» Евклида (3 в. до н. э.). Такое историческое определение закономерно, но и оно также не уточняет общего содержания и характера элементарной геометрии, тем более, что развитие ее продолжается и в настоящее время. Потому определение элементарной геометрии может быть раскрыто и дополнено.

Элементарная геометрия исходит из простейших фигур – точка, отрезок, прямая, угол, плоскость, и основного понятия о равенстве отрезков или углов или вообще о совмещении фигур при наложении, чем определяется их равенство.

Предмет элементарной геометрии составляют:

1) фигуры, определяемые конечным числом простейших фигур;

2) фигуры, определенные тем или иным свойством, формулируемым в исходных понятиях.

Изучаемая в школе геометрия является иллюстрацией метода построения теории, которая получила название аксиоматического метода.

К началу III в. до н. э. в работах древнегреческого ученого Аристотеля была сформулирована идея построения научной теории. Применительно к геометрии ее реализовал Евклид в своей работе «Начала». На основании накопленных к тому времени фактов и знаний он выделил и сформулировал несколько утверждений (постулатов), принимаемых без доказательства, из которых выводились их логические следствия в виде теорем. система Эвклида явилась первым опытом применения аксиоматического метода и просуществовала без изменения до XIX века н. э. Однако она обладала рядом недостатков с современной точки зрения на аксиоматический метод, и на рубеже XIX – XX веков была построена геометрическая система, свободная от этих недостатков.

К середине XIX века, как уже было отмечено, основания евклидовой геометрии оставались на том же уровне, как они были изложены в работах Евклида. Однако общая тенденция к повышению математической строгости во второй половине XIX века побудила многих авторов к пересмотру основ геометрии с целью предложить полную, непротиворечивую, независимую систему аксиом. наибольшее признание среди различных сформулированных систем получила аксиоматика немецкого Давида Гильберта, изложенная в его книге «Основания геометрии» в 1899 г. Ему удалось построить аксиоматику геометрии, расчлененную настолько естественны образом, что логическая структура геометрии становилась совершенно прозрачной: три группы аксиом управляют каждая своим основным отношением – принадлежности, порядка, равенства. Такое расчленение позволило, во-первых, формировать аксиомы кратким и простым образом; во-вторых, исследовать, как далеко можно развить геометрию, если положить в основу не всю аксиоматику, а только ту или иную ее группу. При этом система задавала действительно абстрактную теорию, в которой объекты и отношения между ними – это просто какие-то мыслимые «вещи», про которые известно только то, что они удовлетворяют аксиомам.

Элементарная геометрия включает те вопросы геометрии, которые в своей постановке и решении не включают общей концепции бесконечного множества, но лишь конструктивно определенные множества (геометрические места). Когда говорят, что евклидова геометрия основана, скажем, на системе аксиом Гильберта или на иной, близкой по характеру системе аксиом то забывают, что при введении общих понятий кривой выпуклого тела длины и др. Фактически используют способы образования понятий, вовсе не предусмотренные в аксиомах, а опирающихся на общую концепцию множества, последовательности и предела, отображения или функций. То, что выводится из аксиом Гильберта без таких добавлений, и составляет элементарную часть евклидовой геометрии. Это разграничение можно уточнить в терминах математической логики. Вместе с тем, соответственно такому пониманию элементарной геометрии, можно говорить об элементарной геометрии n-мерного эвклидова пространства, о элементарной геометрии Лобачевского и др. При этом имеются в виду те разделы, теоремы и выводы этих геометрических теорий, которые характеризуются теми же чертами.

Тема моей работы: «Различные доказательства теорем элементарной геометрии не изучаемых в школе». Она рассматривает «именные теоремы, или теоремы великих ученых. Эта тема интересна тем, что доказывая теоремы школьного курса геометрии мы не всегда знаем, что они основаны на доказательстве какой-либо теоремы, доказанной еще в древние времена.

Рассмотрим доказательства именных теорем, не забывая о великих математиках, доказавших их.

1. Чева Джованни (Ceva Giovanni) (3. 3. 1648, Милан,- 13. 12. 1734, Мантуя) - итальянский инженер и математик. Окончил Пизанский университет. Основные работы по геометрии и механике. Доказал (1678) теорему о соотношении отрезков некоторых прямых, пересекающих треугольник (теорема Чевы). Построил учение о секущих, которое положило начало синтетической геометрии; оно изложено в соч. "О взаимно пересекающихся прямых" ("De line is rectis se inuicem secantibus", Mediolani, 1678).

Теорема. Пусть дан треугольник АВС и три прямые, проходящие через его вершины. Прямая, проходящая через его вершинуА, пересекает прямую ВС в точке А1, прямая, проходящая через вершину В пересекает сторону АС в точке В1, прямая, проходящая через вершину С, пересекает сторону АВ в точке С1. Эти прямые проходят через одну точку тогда и только тогда, когда

Доказательство

Необходимость.

Для случая пересекающихся прямых

Рассмотрим треугольник АВВ1 и прямую СС1, которая его пересекает.

По теореме Менелая

Рассмотрим треугольник СВВ1 и прямую АА1, которая его пересекает.

По теореме Менелая

Разделим первое соотношение на второе

Для случая непересекающихся прямых

По теореме Фалеса запишем пропорции: и

Перемножим пропорции: , значит

Достаточность.

По уже доказанному.

Но тогда, что означает, что А и А’ совпадут ч. т. д.

2. Теоре́ма Менела́я - это классическая теорема аффинной геометрии.

Подобный результат в сферической геометрии упоминается в трактате «Sphaerica» Менелая Александрийского (приблизительно 100-ый год нашей эры) и по-видимому, аналогичный результат на плоскости был уже известен. Эта теорема носит имя Менелая, поскольку более ранних письменных упоминаний об этом результате не сохранилось.

Хотя обоих математиков - древнегреческого и итальянского - разделяют 17 веков, теоремы, названные их именами, обладают двойственностью. Если в любой из них заменить прямую точкой и точку прямой, то теорема Менелая станет теоремой Чевы, и наоборот. Полезны они вот почему: те задачи, которые традиционно решаются довольно сложно с помощью аппарата векторной алгебры, решаются буквально в одну строчку с помощью теорем Менелая и Чевы. Это касается и обратных теорем. Доказательство принадлежности трех точек одной прямой решается очень просто с помощью теоремы, обратной теореме Менелая, доказательство того, что три прямые пересекаются в одной точке, так же легко решается с помощью теоремы, обратной теореме Чевы. Это наиболее важное событие в истории геометрии (открытие этих теорем), оказавшее влияние как на процесс развития математики, так и на развитие техники и смежных областей науки!

Теорема. Пусть на прямых BC, CA, AB, содержащих стороны треугольника ABC, даны соответственно точки A", B", C". Для того, чтобы эти точки лежали на одной прямой, необходимо и достаточно, чтобы имело место равенство

Доказательство.

Необходимость.

Проведем BKA"B". Из подобия треугольников CA"/A"B=CB"/B"K; BC"/C"A=KB"/B"A. Тогда AB"/B"C*CA"/A"B*BC"/C"A= =AB"/CB"*CB"/KB"*KB"/AB"=1. Если записать тоже самое в векторах, то с учетом направленности вектора получим требуемое равенство.

Достаточность.

Пусть A", B", C" не лежат на одной прямой, но верно равенство (1). Тогда пусть A"B" пересекается с AB в точке C". Тогда верно равенство (1) и для точек A", B", C". Но тогда при записи равенства один, сокращением на AB"/CB"*CA"/BA" (2), получаем, что BC"/AC"=BC"/AC". Если записать все это в векторах, то получится равенство (2) с векторами. Отсюда C"=C", т. е. A", B", C" лежат на одной прямой.

Если точки A",B" и C" лежат соответственно на прямых BC,CA и AB треугольника, то они коллинеарны, тогда и только тогда когда

Проведем через точку С прямую, параллельую прямой AB, и обозначим через K точку пересечения этой прямой с прямой B"C". Поскольку треугольники и подобны (по двум углам), то и, значит -

С тругой стороны, так как подобными являются также и треугольники и, то и, следовательно -

Но в таком случае

Остаётся заметить возможны два расположения точек A",B" и C", либо две из них лежат на соответствующих сторонах треугольник а одна на продолженни, либо все три лежат на продолжениях соответствующих сторон, отсюда для отношений направленных отрезков имеем ч. т. д.

Теорема. Если стороны ВС, СА, АВ треугольника АВС пересекаются в одной и той же точках a, b,c, то между отрезками, определенными таким образом на сторонах, имеем соотношение:

Доказательство.

Чтобы это доказать, проведем через вершины треугольника до пересечения с трансверсалью (трансверсалью называется любая прямая, пересекающая стороны треугольника) три прямые, параллельные какому-нибудь одному и тому же направлению, на которых установим одно и то же положительное направление.

Пусть α, β, γ – расстояния вершин от трансверсали, считая по проведенным параллельным прямым; имеем

Откуда, перемножая, получим:

Если бы трансверсаль была параллельна стороне ВС, то точку а следовало бы рассматривать как лежащую в бесконечности, а отношение как равное 1. Искомое соотношение обратилось бы при этом в, т. е. в теорему о прямой, параллельной какой-либо стороне треугольника. Если бы две стороны АВ и АС треугольника сделались параллельными, то точка А лежала бы в бесконечности; написав выражение в виде, мы заменили бы через 1 и получили бы теорему о прямой, параллельной одной из сторон треугольника.

Обратная теорема. Если не сторонах ВС, СА, АВ треугольника АВС взяты три точки a, b, c, удовлетворяющие соотношению то эти три точки лежат на одной прямой.

Действительно, прямая ab пересекает сторону АВ в некоторой точке c" так, что имеет место равенство:

Это равенство при сравнении его с предыдущим, показывает, что и что, следовательно, точки с и с" совпадают.

Примечание. Эта теорема, в сущности, сводится к теореме о прямой параллельной какой-либо стороне треугольника. Действительно, можно найти такие три отрезка α, δ и γ (заданные по величине и по знаку), что имеют место равенства:

Откуда в силу соотношения следует

Вследствие этого три попарно гомотетичные фигуры, в которых точки А, В и С будут тремя соответвенными точками и α, δ, γ – тремя соответственными отрезками, будут иметь точки a, b, c центрами подобия.

3. Теорема Фейербаха. Доказанная в 1822 году теорема Карла Вильгельма Фейербаха (1800–1834) утверждает, что окружность девяти точек (окружность, проходящая через середины сторон, основания высот и середины отрезков, соединяющих ортоцентр с вершинами) касается вписанной окружности треугольника и трёх его вневписанных окружностей. Эта теорема - один из самых красивых фактов элементарной геометрии.

Теорема Фейербаха. Окружность Эйлера касается вписанной и вневписанных окружностей.

Доказательство.

Пусть центр вписанной окружности - I, центр вневписанной окружности, касающейся BC - I", точки их касания с BC - L" и L", середины сторон DABC - A", B", C". GH - отрезок, симметричный отрезку BC относительно AI. Т. к. I, I" лежат на AI, BC - внутренняя касательная к этим 2-м окружностям, то GH тоже внутренняя касательная. Пусть GH∩A"B" - M, GH∩A"C" - N. Пусть GH∩BC=P, тогда P лежат на AI. Т. к. GH симметрична BC, то AG=AC, т. е. AI пересекает GC в середине. A"B", как средняя линия пересекает CG в середине, т. е. AI, A"B", CG пересекаются в одной точке. Назовем ее K. Из св-в вневписанной и вписанной окружностей получаем CL"=BL"; L"L"=AB-AC (обозначим вершины так, чтобы AB>AC). A"L"=(AB-AC)/2=BG/2=A"K(ср. лин.). DA"PK~DAPB, т. е. A"M/A"K=BG/BA; DA"CB"~DACB, т. е. BG/BA=A"K/A"B", т. е. A"M/A"K=A"K/A"B". Отсюда A"M*A"B"=A"K2=A"L"2=A"L"2. Из этого соотношения A"M=(c-b)2/(2c). Т. к. c>b, то A"M

4. Птолемей (Птоломей) Клавдий, знаменитый греческий геометр, астроном и физик; жил в Александрии в первой пол. II в. Главный труд "Великое Собрание", более известный в арабск. переводе под назв. "Альмагест". В геометрии имя П. носит теорема о произведении диагоналей вписанного четырехугольника. В астрономии П. дана теория эпициклов для объяснения видимого движения небесн. светил вокруг неподвижной земли (Птолемеева система). Другие соч: "География", "Harmonicorum libri III" (учение о гармонии) вполне сохранились, и "Оптика" (часть и в арабском переводе; в ней содержится учение об отражении и преломлении света); также 3 книги о музыке, важный источник сведений о древней музыке.

Теорема. Для того, чтобы около четырехугольника можно было описать окружность, необходимо и достаточно, чтобы сумма произведений противоположных сторон равнялась произведению его диагоналей.

Доказательство.

Необходимость.

Пусть a=AB; b=BC; c=CD; d=DA; e=AC; f=BD, тогда, пользуясь соотношением Бретшнайдера(В любом четырехугольнике (ef)2=(ac)2+(bd)2-2abcdcos(A+C), где e=AC; f=BD; a=AB; b=BC; c=CD; d=DA, ÐBAC=ÐA; ÐBCD=ÐC.), получаем: (ef)2=(ac)2+(bd)2-2abcdcos(A+C). Т. к. ABCD вписан в окружность, то ÐA+ÐC=180o, т. е. cos(A+C)=-1, т. е. (ef)2=(ac)2+(bd)2+2abcd. Отсюда (ef)2=(ac+bd)2, т. е. ef=ac+bd.

Достаточность.

ef=ac+bd, т. е. (ef)2=(ac)2+(bd)2+2abcd. По соотношению Бретшнайдера (ef)2=(ac)2+(bd)2-2abcdcos(A+C). Отсюда cos(A+C)=-1. Т. к. A+C

Теорема. Сумма произведений противоположных сторон вписанного четырехугольника равна произведению их диагоналей.

Проведем СМ так, чтобыМСD=ВАС.

ΔАВС~ΔDМС

ΔАDС~ΔВСМ

Сложим полученные равенства АВ*DC+BC*AD=AC*DM+AC*BM ч. т. д.

5. Блез Паскаль родился в 1623 г. в провинциальном городке. Блез оказался одарённым блестящим умом. В 14 лет он начал посещать математический кружок (из которого впоследствии выросла Французская академия наук), а в 16 - уже написал работу о конических сечениях («теорема Паскаля»), названную коллегами «наиболее сильным и ценным вкладом в математическую науку со дней Архимеда».

Теорема. У вписанного в окружность шестиугольника точки пересечения противоположных (если они есть) лежат на прямой, называемой прямой Паскаля вписанного шестиугольника.

Доказательство.

Пусть наш шестиугольник - AB"CA"BC". Пусть M=(AB")∩(A"B); P=(BC")∩(B"C); N=(CA")∩(C"A); X=(AB")∩(CA"); P=(BC")∩(CA"); N=(CA")∩(BC"). По свойству секущих XA*XB"=XC*XA" (1); YB*YC"=YC*YA" (2); ZB*ZC"=ZA*ZB" (3). По теореме Менелая к DXYZ и к тройкам точек (A; C"; N); (C; B"; P); (B; A"; M) получаем:

После перемножений данных выражений и применения формул (1); (2); (3) получаем, что:

Отсюда по теореме Менелая следует, что M, N, P коллинеарны.

Теорема. Во всяком шестиугольнике, вписанном в окружность, точки пересечения противоположных сторон лежат на одной прямой.

Доказательство.

Пусть ABCDEF – шестиугольник, противоположные стороны которого AB и DE пересекаются в точке L, стороны BC и EF – в М, стороны CD и FA – в N. рассмотрим треугольник IJK, образованный сторонами AB, CD, EF, другими словами, сторонами данного шестиугольника, взятыми через одну.

Точки L, М, и N расположены соответственно на сторонах JK, KI, IJ этого треугольника. Эти точки лежат на одной прямой, если имеет место соотношение:

Но, если мы пересечем последовательно треугольник IJK каждой из оставшихся сторон DE, BC, FA шестиугольника, мы получим соотношения:

Перемножив почленно эти три равенства, мы можем написать, группируя надлежащим образом множители числителя и знаменателя:

Но каждая из трех последних дробей, которые входят в левую часть, равна 1. Например, произведения CI*DI и EI*FI равны как произведения отрезков, отсеченных окружностью на секущих, выходящих из точки I. Таким образом, получается соотношение и теорема доказана.

Примечание. Предыдущее доказательство остается в силе, если точки A и B, C и D, E и F попарно совпадают и стороны треугольника IJK являются касательными к кругу.

При этом теорема принимает следующую форму: Касательные, проведенные через вершины треугольника, вписанного в круг, пересекают соответствующие стороны в трех точках, лежащих на одной прямой.

6. Жерар Дезарг родился в 1593 году (по другим источникам - в 1591г.). Паскаль называл его старшим свом современником и именно под влиянием работ Дезарга занялся проективной геометрией. В эпоху, когда не существовало еще научных журналов, активность таких математиков как Дезарг находила свое выражение в переписке ученых и деятельности дискуссионных кружков. Он состоял в переписке c Мареном Мерсенном, Декартом, Ферма, Паскалем и многими другими учеными. Из дискуссионных кружков ученых вырастали академии. Свою "теорему Дезарга" о перспективном отображении треугольников он обнародовал в 1648 году. Плодотворность этих идей в полной мере раскрылась лишь в девятнадцатом столетии. Так, Виктора Понселе, ученика Гаспара Монжа, директора Политехнической школы в Париже, в 1813 году привлекла система представлений, которую на два столетия раньше создавал Дезарг. Научные труды Дезарга легли в основу проективной геометрии. Проективно - геометрические идеи Дезарга привлекли интересы ряда ученых.

Теорема. Треугольники А1В1С1 и А2В2С2 расположены на плоскости так, что прямые А1А2, В1В2 и С1С2 имеют общую точку О. Пусть А – точка пересечения прямых В1С1 и В2С2, В – точка пересечения прямых А1С1 и А2С2, С – точка пересечения прямых А1В1 и А2В2. Тогда точки А, В, и С лежат на одной прямой.

Доказательство.

Применим теорему Менелая к треугольнику ОВ1С1 и прямой АВ2С2.

Аналогично для треугольников ОС1А1 и ОА1В1, пересекаемых прямыми ВС2А2 и СА2В2 соответственно.

Перемножив, после сокращений получим

Точки А, В и С лежат на сторонах или продолжениях сторон треугольника А1В1С1 и по теореме Менелая лежат на одной прямой.

Для того, чтобы доказать теорему Дезарга следующим способом надо вспомнить три пространственные аксиомы:

1. Две плоскости определяют одну и только одну прямую; три плоскости, не проходящие через одну прямую, определяют одну и только одну точку.

2. Две пересекающиеся прямые определяют одну и только одну точку и одну и только одну плоскость.

3. Две точки определяют одну и только одну прямую. Три точки, не лежащие на одной прямой, определяют одну и только одну плоскость.

Эта система аксиом остается неизменной, если обменять местами слова «точка» и «плоскость» (при этом первая аксиома поменяется местами с третьей, а вторая останется неизменной).

Теорема. Пусть даны в пространстве два треугольника АВС и А"B"C". Пусть эти треугольники расположены так, что прямые, соединяющие соответствующие вершины, пересекаются в одной точке О. Тогда, во-первых, три пары соответствующих сторон треугольников пересекаются в трех точках R, S, T и, во-вторых, эти три точки лежат на одной прямой.

Доказательство.

Первая часть этой теоремы доказывается весьма просто. Две пересекающиеся прямые АА" и ВВ" определяют согласно второй пространственной аксиоме некоторую плоскость. Но в этой плоскости расположены также прямые АВ и А"В" так, что согласно второй плоскостной аксиоме они пересекаются в некоторой точке R. Остается неопределенным, лежит ли точка R в конечной части пространства или в бесконечности. Существование двух других точек пересечения S и T можно доказать таким же образом.

Вторую часть теоремы легко установить в том случае, когда треугольники расположены в различных плоскостях. Тогда эти плоскости определяют одну – конечную или бесконечно удаленную – прямую пересечения (по первой пространственной аксиоме). Из каждой пары соответствующих сторон треугольника: одна расположена в одной плоскости, другая – в другой. А так как обе стороны пересекаются, то точка их пересечения должна лежать на прямой, принадлежащей обеим плоскостям. Таким образом мы доказали теорему Дезарга для общего случая.

Однако особенно важен как раз тот частный случай, когда оба треугольника лежат в одной плоскости. В этом случае доказательство можно провести при помощи проектирования в пространстве, подобно тому как доказывалась теорема Брианшона. Нам следует только доказать, что всякая плоская дезаргова фигура может быть представлена как проекция некоторой пространственной дезорговой фигуры. Для этой цели соединим все точки и прямые плоской дезарговой фигуры с некоторой точкой S, лежащей вне плоскости фигуры. Далее проведем через прямую АС плоскость; пусть эта плоскость пересекается с прямой ВS в точке В0, отличной от точки S. Затем проведем прямую ОВ0. Эта прямая лежит в одной плоскости с прямой В"S, и таким образом обе прямые пересекаются в точке В0". Но тогда треугольники АВ0С и А"В0"С" образуют пространственную дезаргову фигуру, так как прямые, соединяющие соответствующие вершины, проходят чрез точку О. Линия пересечения плоскостей обоих треугольников изображается при проектировании из точки S в виде прямой на плоскости проекций, причем точки пересечения соответствующих пар сторон рассмотренных первоначально треугольников АВС и А"В"С" должны лежать на этой прямой. Теорема Дезарга доказана полностью.

7. Папп Александрийский греческий геометр. Жил в конце III в. после Рождества Христова, стоял во главе философской школы, о которой, кроме факта ее существования, нет других сведений. Из не дошедших до нас сочинений Паппа известны по имени, а иногда и по некоторым сведениям о содержании: "Замечания" или комментарий на Альмагест Птолемея, комментарий к "Аналемме" Диодора и комментарий к "Элементам" Эвклида. Важнейшим из сочинений Паппа является известное под именем "Собрания" (συναγωγή), излагающее содержание тех математических сочинений, которые особенно ценились современниками.

Теорема. Если на одной прямой взяты точки A1, B1, C1, а на другой - точки A2, B2, C2, то прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в трех коллинеарных точках.

Доказательство.

Пусть прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в точках C, A, B соответственно, а прямые A1B2 и A2C1, B1C2 и B2A1, C1A2 и C2B1 пересекаются в точках A0, B0, C0 соответственно. Теперь применим теорему Менелая к следующим пяти тройкам точек: (A, B2, C1), (B, C2, A1), (C, A2, B1), (A1, B1, C1) и (A2, B2, C2). В результате получим:

После перемножения пяти данных равенств получим, т. е. точки A, B и C коллинеарны.

8. Гаусс Карл Фридрих (1777-1855). С именем К. Ф. Гаусса связаны многие замечательные страницы в истории математики. Он дал доказательство основной теоремы алгебры (всякое алгебраическое уравнение с действительными коэффициентами имеет корень). Гаусс создал теорию поверхностей. До него были изучены геометрии только на двух поверхностях: на плоскости (планиметрия Евклида) и на сфере (сферическая геометрия). Гаусс нашел способ построения геометрии на любой поверхности, определил, какие линии играют на поверхности роль прямых, как мерить расстояния между точками на поверхности и т. д. Теория Гаусса получила название внутренней геометрии. Он не опубликовал своих работ по неевклидовой геометрии и теории эллиптических функций. Эти результаты были открыты заново его младшими современниками: русским математиком Я. И. Лобачевским и венгерским математиком Я. Больяй в первом случае и норвежским математиком Г. X. Абелем и немецким математиком К. Г. Якоби во втором.

Теорема. Для того, чтобы три точки, лежащие на прямых, содержащих стороны треугольника BC, CA, AB (A", B", C" соответственно) были коллинеарны, необходимо и достаточно, чтобы середины отрезков AA", BB", CC" были бы коллинеарными.

Доказательство.

Необходимость.

Пусть M, N, P – середины соответственно AA", BB", CC" соответственно, A", B", C" – середины BC, CA, AB соответственно. По свойству средней линии PAB; MBC; NCA. Также по свойству средних линий имеем: (1).

По теореме Менелая. Пользуясь (1), получаем, что, откуда A", B", C" коллинеарны по теореме Менелая.

Достаточность.

Пусть A", B", C" коллинеарны, тогда по т. Менелая (2). По свойству средних линий имеем: (3). По (2) и (3) получаем, что, т. е. по теореме Менелая A", B", C" коллинеарны.

Изучая данную тему я пришла к заключению, что данные теоремы в основном рассматривают геометрию треугольника. И многие имена остались в истории математики только благодаря этим теоремам. Геометрия треугольника – это основа всей планиметрии. Теоремы сложны в доказательствах и восприятии, но на основе этих теорем доказываются многие теоремы школьного курса планиметрии и решаются практические задачи.