Болезни Военный билет Призыв

Стохастические, расходящиеся и сходящиеся процессы. Стохастический процесс

Слово стохастический используется математиками и физиками для описания процессов, в которых имеется элемент случайности. Оно происходит непосредственно от греческого слова «атоааизеоа». В этике Аристотеля это слово используется в смысле «способности угадывать». Математики применили это слово, очевидно, на том основании, что при необходимости угадывать появляется элемент случайности. В «Новом международном словаре» Вебстера слово стохастический определено как предположительный. Мы, таким образом, замечаем, что техническое значение этого слова не находится в точном соответствии с его лексическим (словарным) определением. В том же смысле, что и «стохастический процесс», некоторые авторы пользуются выражением «случайный процесс». В дальнейшем мы будем говорить о процессах и сигналах, которые не являются чисто случайными, но содержат в себе случайность в той или иной степени. По этой причине мы предпочитаем слово «стохастический».

Рис. 3.1-1. Сравнение типичного стохастического и предсказуемого сигналов.

На рис. 3.1-1 сравниваются простые формы колебаний стохастического и регулярного сигналов. Если повторить эксперимент по измерению стохастического сигнала, то мы получим колебания новой формы, отличной от предыдущей, но все еще проявляющей некоторое сходство в характерных чертах. Запись колебаний волн океана

является еще одним примером стохастического сигнала. Почему необходимо говорить об этих, довольно необычных, стохастических сигналах? Ответ на этот вопрос основан на том факте, что входные сигналы систем автоматики зачастую не являются полностью предсказуемыми подобно синусоиде или простейшему переходному процессу. В действительности, стохастические сигналы встречаются при исследованиях автоматических систем чаще, чем предсказуемые сигналы. Тем не менее то обстоятельство, что предсказуемые сигналы имеют большое значение до настоящего времени, не является серьезным упущением. Весьма часто можно прийти к приемлемой методике, подбирая сигналы из класса предсказуемых сигналов так, чтобы отобразить характерные особенности истинного сигнала, являющегося по своей природе стохастическим. Примером такого рода является использование нескольких соответственно подобранных синусоид с целью представить стохастические изменения моментов, обусловливающих качку, в задаче об устойчивости корабля. С другой стороны, мы встречаем такие задачи, в которых представление истинного стохастического сигнала с помощью предсказуемой функции весьма затруднительно. В качестве первого примера рассмотрим схему системы автоматического слежения за целью и управления огнем. Здесь наводящее радиолокационное устройство измеряет ошибку наведения не точно, а только приблизительно. Разность между истинной ошибкой наведения и тем, что измеряет радиолокатор, часто называют радиолокационным шумом. Обычно очень трудно аппроксимировать радиолокационный шум несколькими синусоидами или другими простыми функциями. Другим примером является плетение текстильных волокон. В процессе плетения из беспорядочно запутанных связок волокна (называемых пряжей) вытягивается нить. Толщину нити, в некотором смысле, можно рассматривать как входной сигнал при регулировании процесса плетения. Отклонения в этом процессе происходят из-за изменения числа и толщины отдельных волокон в различных переплетающихся участках пряжи. Очевидно, этот тип отклонений является по своей природе стохастическим, и его затруднительно аппроксимировать любыми регулярными функциями.

Предыдущие рассуждения показывают, что стохастические сигналы при исследовании систем регулирования играют важную роль. Пока мы говорили о стохастических сигналах как о сигналах, вызванных процессами, содержащими некоторый элемент случайности. Чтобы перейти к дальнейшему, мы должны уточнить понятия о таких сигналах. Современная физика, в особенности квантовая механика, учит, что все физические процессы при детальном исследовании

оказываются разрывными и недетерминированными. Законы классической механики заменяются статистическими законами, основанными на вероятности событий. Например, мы обычно считаем напряжение колебаний, возникающих на экране вакуумной трубки осциллографа, гладкой функцией. Однако мы знаем, что если исследовать эти колебания при помощи микроскопа, они не будут выглядеть столь гладко из-за дробового шума в трубке, сопровождающего возбуждение колебаний. После некоторого размышления нетрудно склониться к тому, что все сигналы в природе являются стохастическими. Хотя сначала мы предположили, что по сравнению с синусоидой или функцией единичного скачка стохастический сигнал является относительно абстрактным понятием, но в действительности вернее обратное: синусоида, функция единичного скачка и вообще регулярные сигналы представляют абстракцию. Однако, подобно евклидовой геометрии, - это полезная абстракция.

Стохастический сигнал не может быть представлен графически наперед заданным образом, так как он обусловлен процессом, содержащим элемент случайности. Мы не можем сказать, какова величина стохастического сигнала в будущий момент времени. О стохастическом сигнале в будущий момент времени можно сказать только какова вероятность, что его величина попадает в определенный интервал. Мы, таким образом, видим, что понятия функции для стохастического сигнала и для регулярного сигнала совершенно различны. Для регулярной переменной величины идея функции подразумевает определенную зависимость переменной от ее аргумента. С каждой величиной аргумента мы связываем одно или несколько значений переменной. В случае стохастической функции мы не можем связать единственным образом величину переменной с некоторым частным значением аргумента. Все, что мы можем сделать - это связать с частными значениями аргумента некоторые распределения вероятности. В определенном смысле все регулярные сигналы являются тем предельным случаем стохастических сигналов, когда распределения вероятности обладают высокими пиками, так что неопределенность положения переменной для частной величины аргумента равна нулю. На первый взгляд стохастическая переменная может показаться настолько неопределенной, что ее аналитическое рассмотрение невозможно. Однако мы увидим, что анализ стохастических сигналов может быть проведен с помощью функций плотности вероятности и других статистических характеристик, таких как средние величины, среднеквадратичные величины и функции корреляции. Ввиду статистической природы стохастические сигналы зачастую удобно считать элементами множества сигналов, каждый из которых обусловлен одиим и тем же процессом. Это множество сигналов называется ансамблем. Понятие ансамбля для стохастических сигналов соответствует понятию населения в статистике. Характеристики стохастического сигнала

относятся обычно к ансамблю, а не к частному сигналу ансамбля. Таким образом, когда мы говорим об определенных свойствах стохастического сигнала, то обычно подразумеваем, что этими свойствами обладает ансамбль. Вообще невозможно считать, что отдельный стохастический сигнал имеет произвольные свойства (с возможным исключением несущественных свойств). В следующем параграфе мы обсудим важное исключение из этого общего правила.

Рассмотрим переменную, подчиняющуюся марковскому стохастическому процессу. Предположим, что ее текущее значение равно 10, а изменение в течение года описывается функцией 0(0, 1), где а) - нормальное распределение вероятностей с математическим ожиданием // и стандартным отклонением о. Какое распределение вероятностей описывает изменение этой переменной в течение двух лет?
Изменение переменной через два года описывается суммой двух нормальных распределений с нулевыми математическими ожиданиями и единичными стандартными отклонениями. Поскольку переменная является марковской, эти распределения не зависят друг от друга. Складывая два независимых нормальных распределения, мы получим нормальное распределение, математическое ожидание которого равно сумме математических ожиданий каждого из слагаемых, а дисперсия - сумме их дисперсий. Таким образом, математическое ожидание изменений рассматриваемой переменной на протяжении двух лет равно нулю, а дисперсия - 2,0. Следовательно, изменение значения переменной через два года является случайной величиной с распределением вероятностей ф(0, %/2).
Рассмотрим далее изменение переменной за шесть месяцев. Дисперсия изменений этой переменной в течение одного года равна сумме дисперсий этих изменений на протяжении первых и вторых шести месяцев. Предположим, что эти дисперсии одинаковы. Тогда дисперсия изменений переменной на протяжении шести месяцев равна 0,5, а стандартное отклонение - 1/0,5. Следовательно, распределение вероятностей изменения переменной на протяжении шести месяцев равно ф(0, \ДЩ)
Аналогичные рассуждения позволяют доказать, что изменение переменной на протяжении трех месяцев имеет распределение 0(0, ^/0,25). Вообще говоря, изменение переменной на протяжении временного периода, имеющего длину Т, описывается распределением вероятностей ф(0, \[Т) В частности, изменение переменной за очень короткий промежуток времени, имеющий длину АТ, описывается распределением вероятностей ф(0, л/ДТ).
Квадратные корни в этих выражениях могуг показаться странными. Они возникают изза того, что при анализе марковского процесса дисперсии изменений переменной в последовательные моменты времени складываются, а стандартные отклонения - нет. В нашем примере дисперсия изменений переменной в течение одного года равна 1,0, поэтому дисперсия изменений этой переменной в течение длух лет равна 2,0, а через три года3,0. В то же время стандартные отклоне
ния изменений переменных через два и три года равны \/2 и \/3 соответственно. Строго говоря, мы не должны говорить, что стандартное отклонение изменений переменной за один год равно 1,0 в год. Следует говорить, что оно равно “корню квадратному из единицы в год”. Это объясняет, почему величину неопределенности часто считают пропорциональной квадратному корню из времени.
Винеровские процессы
Процесс, которому подчиняется рассмотренная выше переменная, называется винеровским (Wiener process). Он представляет собой частный случай марковского стохастического процесса, когда математическое ожидание изменений переменной равно нулю, а их дисперсия равна 1,0. Этот процесс широко используется в физике для описания движения частицы, участвующей в большом количестве столкновений с молекулами (это явление называется броуновским движением (Brownian motion)).
Говоря формально, переменная z подчиняется винеровскому процессу, если она имеет следующие свойства.
СВОЙСТВО 1. Изменение Az на протяжении малого промежутка времени At удовлетворяет равенству
Az = ey/At, (12.1)
где е - случайная величина, подчиняющаяся стандартизованному нормальному распределению ф(0,1).
Свойство 2. Величины Az на двух малых промежутках времени At являются независимыми.
Из первого свойства следует, что величина Az имеет нормальное распределение, у которого математическое ожидание равно нулю, стандартное отклонение равно VAt, а дисперсия равна At. Второе свойство означает, что величина 2 подчиняется марковскому процессу.
Рассмотрим увеличение переменной z на протяжении относительно долгого периода времени Т. Это изменение можно обозначить как z(T) - z(0). Его можно представить в виде суммы увеличения переменной г на протяжении N относительно малых промежутков времени, имеющих длину At. Здесь
Следовательно,
z(т)z(o) = J2?^t’ (12.2)
г=1
где?г,г = 1,2,...,ЛГслучайные величины, имеющие распределение вероятностей ф(0,1). Из второго свойства винеровского процесса следует, что величины?
?; являются независимыми друг от друга. Из выражения (12.2) следует, что случайная величина z(T) - z(0) имеет нормальное распределение, математическое ожидание которого равно нулю, дисперсия равна NAt = Т, а стандартное отклонение - у/Т. Эти выводы согласуются с результатами, указанными выше. Пример 12.1
Предположим, что значение г случайной переменной, подчиняющейся винеровскому процессу, в первоначальный момент времени равно 25, а время измеряется годами. В конце первого года значение переменной имеет нормальное распределение с математическим ожиданием, равным 25, и стандартным отклонением, равным 1,0. В конце пятого года значение переменной имеет нормальное распределение с математическим ожиданием, равным 25, и стандартным отклонением, равным л/5, т.е. 2,236. Неопределенность значения переменной в определенный момент в будущем, измеренная его стандартным отклонением, возрастает как квадратный корень из длины прогнозируемого интервала. ?
В математическом анализе широко используется переход к пределу, когда величина малых изменений стремится к нулю. Например, при At -> 0 величина Ах = aAt превращается в величину dx = adt. При анализе стохастических процессов используются аналогичные обозначения. Например, при At -> 0 описанный выше процесс Az стремится к винеровскому процессу dz.
На рис. 12.1 показано, как изменяется траектория переменной z при At -> 0. Обратите внимание на то, что этот график является “зазубренным”. Это объясняется тем, что изменение переменной z за время At пропорционально величине v^Af, а когда величина At становится малой, число \/Аt намного больше, чем At. Благодаря этому, винеровский процесс обладает двумя интригующими свойствами.
1. Ожидаемая длина траектории, которую проходит переменная z в течение любого промежутка времени, является бесконечной.
2. Ожидаемое количество совпадений переменной z с любым конкретным значением на любом промежутке времени является бесконечным.
Обобщенный винеровский процесс
Скоростью дрейфа (drift rate), или коэффициентом сноса, стохастического процесса называется средняя величина изменения переменной величины за единицу времени, а дисперсией (variance rate), или коэффициентом диффузии - величина колебаний за единицу времени. Скорость дрейфа основного винеровского процесса dz, рассмотренного выше, равна нулю, а дисперсия равна 1,0. Нулевой дрейф означает, что ожидаемое значение переменной z в любой момент времени равно ее текущему значению. Единичная дисперсия процесса означает, что дисперсия изменения переменной z на интервале времени Т равна его длине.
Рис. 12.1. Изменение цены акции в примере
Обобщенный винеровский процесс (generalized Wiener process) для переменной х можно определить через величину dz следующим образом.
dx - adt + bdz, (12.3)
где а и b - константы.
Чтобы понять смысл уравнения (12.3), полезно рассмотреть два слагаемых в правой части по отдельности. Слагаемое a dt означает, что ожидаемая скорость дрейфа переменной х равна о единиц в единицу времени. Без второго члена уравнение (12.3) превращается в уравнение
dx = adt,
откуда следует, что
dx
Интегрируя это уравнение по времени, получаем
х = хо + а?,
где хо - значение переменной х в нулевой момент времени. Таким образом, за период времени Т переменная х увеличивается на величину ей. Член Ь dz можно рассматривать как шум, или изменчивость траектории, которую проходит переменная х. Величина этого шума в Ь раз больше значения винеровского процесса. Стандартное отклонение винеровского процесса равно 1,0. Отсюда следует, что стандартное отклонение величины Ь dz равно Ь. На небольших промежутках времени АЬ изменение Ах переменной х определяется уравнениями (12.1) и (12.3).
Ах = аАЬ + ЪЕУ/АЬ,
где е, как и прежде, - случайная величина, имеющая стандартизованное нормальное распределение. Итак, величина Ах имеет нормальное распределение, математическое ожидание которого равно аАЬ, стандартное отклонение - 6л/Д7, а дисперсия - Ь2Д/. Аналогичными рассуждениями можно показать, что изменение переменной х в течение произвольного интервала времени Т имеет нормальное распределение с математическим ожиданием с.Т, стандартным отклонением Ьу/Т и дисперсией Ь2Т. Таким образом, ожидаемая скорость дрейфа обобщенного винеровского процесса (12.3) (т.е. среднее изменение дрейфа в единицу времени) равна а, а дисперсия (т.е. дисперсия переменной за единицу времени) - Ь2. Этот процесс изображен на рис. 12.2. Проиллюстрируем скачанное следующим примером.
Пример 12.2
Рассмотрим ситуацию, в которой доля активов компании, вложенных в краткосрочные денежные эквиваленты (cash position), измеренные тысячами долларов, подчиняется обобщенному винеровскому процессу со скоростью дрейфа, равной 20 тыс. долл. в год, и дисперсией, равной 900 тыс. долл. в год. В первый момент времени доля активов равна 50 тыс. долл. Через год эта доля активов будет иметь нормальное распределение с математическим ожиданием, равным 70 тыс. долл., и стандартным отклонением, равным л/900, т.е. 30 долл. Через шесть месяцев она будет иметь нормальное распределение с математическим ожиданием, равным 60 тыс. долл., и стандартным отклонением, равным 30\ДЦ> = 21,21 долл. Неопределенность, связанная с долей активов, вложенных в краткосрочные эквиваленты наличности, измеренная с помощью стандартного отклонения увеличивается как корень квадратный из длины прогнозируемого интервала. Обратите внимание на то, что эта доля активов может стать отрицательной (когда компания делает займы). ?
Процесс Ито
Стохастическим процессом Ито (Ito process) называется обобщенный винеровский процесс, б котором параметры а и Ь являются функциями, зависящими от переменной х и времени t. Процесс Ито можно выразить следующей формулой.
dx = а(х, t)dt + b(x, t)d,z,?
И ожидаемая скорость дрейфа, и дисперсия этого процесса со временем изменяются. За небольшой промежуток времени от t до At переменная изменяется от
х до х + Ах, где
Ах = а{х, t) At + Ъ(х, t)e\fAt.
Это отношение содержит небольшую натяжку. Она связана с тем, что мы считаем дрейф и дисперсию переменной х постоянными величинами, которые на интервале времени от t до At равны а(х, t) и b(x, t)2 соответственно.

В уравнении (17.2) первое слагаемое описывает детерминированный процесс - тренд, а второе - стохастический процесс. На рис. 17.3 представлено некоторое (произвольное) изменение средней цены на товар во времени.  


Поскольку уравнение (17.2) описывает стохастический процесс, то его решение представляет собой распределение плотности вероятностей. Уравнение (17.5) отображает тот факт, что каждой цене на товар в некоторый момент т соответствует своя плотность вероятности р.  

Гносеологическая необходимость в опыте для объективизации оценок подтверждается их вероятностным (стохастическим) характером. Рост числа соглашений или фактов оценки позволяет рассматривать их уже в качестве не детерминированных, а именно стохастических величин, не зависящих друг от друга и от воздействия на них методов измерения . Стохастическими оценки становятся еще и потому, что их расчеты отделяются друг от друга и не корреспондируют между собой. В самом деле, при единичном соглашении об оценке методы покупателя и продавца или нескольких экспертов согласуются или по крайней мере сопоставляются их результаты. При множественности, территориальной и временной разъединенности сделок методы оценок не сравниваются между собой и появляется возможность трактовки оценок как стохастического процесса, в результате которого в качестве объективной оценки принимается ее математическое ожидание.  

Сбор, обработка и сводка информации представляют собой составную часть общего информационно-аналитического процесса маркетинга . Получение информации подчинено задачам управления и имеет целью обеспечить оценку и анализ рыночных процессов для принятия правильных маркетинговых решений . Процесс управления неосуществим без осмысления ретроспективы развития фирмы, оценки ее настоящего и прогноза будущего . Регулирование некоторых рыночных процессов также требует информации о самом этом процессе и факторах, влияющих на него. Информация - средство уменьшения неопределенности, свойственной стохастическим процессам рынка. По словам отца кибернетики Н. Винера, управление фирмой есть процесс преобразования информации в действия. Информация -инструмент маркетинг -менеджмента.  

Стохастические процессы в системах управления запасами . Обычно невозможно указать точно характеристику спроса. Детерминированное описание является только приближенным. Задержки в поставках, потери при транспортировке можно описать с помощью вероятностных параметров. Время поставки меняется из-за непостоянства времени выполнения заказа, оформления сопровождающей документации.  

Рассмотрим теперь модель поведения потенциального вкладчика, то есть вкладчика, еще не открывшего своего счета к моменту времени to-В этой модели предполагается, что счет открывается в некоторый случайный момент времени т > 0 под влиянием обстоятельств, появление которых во времени описывается пуассоновским стохастическим процессом k+(t) с параметром интенсивности Я.+. Таким образом, случайное число + (0, t) = k+ (t) - k (t0) появлений за промежуток времени обстоятельств, способствующих открытию счета потенциальным вкладчиком, имеет распределение Пуассона k+(t0,t)e Pn(k (t-tf>)). Для упрощения модели предполагается, что потенциальный вкладчик не может многократно открывать и закрывать свой счет на промежутке времени .  

Для экономических исследований большое значение имеет также анализ стохастических процессов, в т.ч. "марковских процессов".  

Точно так же можно воссоздать искусственную картину работы самого магазина здесь распределение времени подхода покупателей будет взаимодействовать с распределением времени обслуживания отдельного покупателя. Получаются опять два стохастических процесса. Их взаимодействие даст "очередь" с примерно такими же характеристиками (напр., средней длиной очереди или средним временем ожидания), какими обладает реальная очередь.  

Случайные (стохастические) процессы 294  

Города, особенно крупные, заключают в своих административно-территориальных границах сложнейший комплекс непрерывно протекающих стохастических процессов взаимодействия многочисленных хозяйствующих субъектов друг с другом и с внешними контрагентами.  

Розенблат-Рот М. Энтропия стохастических процессов //ДАН СССР, 1957.  

СТОХАСТИЧЕСКИЕ ПРОЦЕССЫ - события, процессы, на протекание которых оказывают значительное влияние случайные факторы.  

До недавнего времени вопросам определения норм сбытовых запасов в натуральном выражении не уделялось достаточного внимания. Были разработаны вопросы нормирования запасов только для двух видов материальных ресурсов - цемента в и угля в . Кроме того, в настоящее время действует Типовая инструкция , в одном из разделов которой регламентированы вопросы определения норм оборотных средств , авансированных в запасы готовой продукции . В экономической литературе нормированию сбытовых запасов посвящены только две работы - , . Рекомендуемые в них методические подходы к определению норм и алгоритмы приведены в табл. 3.3, из которой видно, что они значительно разнятся между собой. Например, если в Инструкции расчет основан на предположении, что условия формирования сбытового запаса угля являются стохастическим процессом, и применена вероятностная обработка вариаций значений нормообразующих факторов, то в других работах использован детерминированный подход к расчету. Различаются у авторов также взгляды и на структуру самой исчисляемой нормы, т.е. экономическое содержание ее составляющих. Н. Фасоляк в предлагает при расчете нормы определять ее через такие же составляющие, как и в случае производственных запасов , но не раскрывает их физического содержания. Другие авторы все нормообразующие факторы учитывают вместе, не подразделяя их по группам.  

СТОХАСТИЧЕСКИЙ ПРОЦЕСС - см Случайный процесс  

Настоящая книга посвящена изложению гипотезы фрактального рынка , как альтернативе гипотезы эффективного рынка . Фракталы, как следствие геометрии Демиурга присутствуют повсеместно в нашем мире и играют существенную роль, в том числе, и в структуре финансовых рынков , которые локально случайны, но глобально детерминированы, по мнению автора. В книге будут рассмотрены методы фрактального анализа рынков акций, облигаций и валют, методы различения независимого процесса, нелинейного стохастического процесса и нелинейного детерминированного процесса и исследовано влияние этих различий на пользовательские инвестиционные стратегии и способности моделирования. Такие стратегии и способности моделирования тесно связаны с типом активов и инвестиционным горизонтом пользователя.  

Рисунки 2.5 и 2.6 показывают подобные распределения для валютного курса иена/доллар (1971-1990 гг.) и 20-летних доходов по американским казначейским облигациям (1979-1992 гг.) соответственно. Толстые хвосты - не только явление фондового рынка . Другие рынки капитала показывают схожие характеристики. Такие распределения с толстыми хвостами часто являются доказательством системы с долговременной памятью, произведенной нелинейным стохастическим процессом.  

Самое популярное объяснение ограниченности заключается в том, что прибыли являются возвратными к среднему. Стохастический процесс, возвратный к среднему, может произвести ограниченное множество , но не увеличивающийся коэффициент Шарпа . Возвратный к среднему процесс подразумевает игру с нулевой суммой. Исключительно высокие доходы в одном периоде нейтрализуются доходами ниже среднего в более позднем периоде. Коэффициент Шарпа остался бы постоянным, потому что прибыли также были бы ограничены. Таким образом, средняя реверсия в прибылях не является полностью удовлетворительным объяснением ограниченности изменчивости. Независимо от этого процесс, который производит наблюдаемую временную структуру волатильности , явно не гауссов, при этом он недостаточно хорошо описывается нормальным распределением.  

Почему акции и облигации являются ограниченными множествами Возможным объяснением ограниченности является возвратный к среднему стохастический процесс, но он не объясняет растущее быстрее стандартное отклонение . Ограничения и быстро растущие стандартные отклонения обычно вызываются детерминистическими системами с периодическими или непериодическими циклами.  

В данный момент мы можем видеть свидетельство того, что акции, облигации, и валюта являются возможными нелинейными стохастическими процессами в краткосрочной перспективе, что подтверждается их частотными распределениями и временными структурами волатильности . Однако акции и облигации имеют признаки долгосрочного детерминизма. И снова мы видим локальную случайность и глобальный детерминизм.  

В этой книге мы рассмотрим методы различения независимого процесса, нелинейного стохастического процесса и нелинейного детерминированного процесса и исследуем, как эти различия влияют на наши инвестиционные стратегии и наши способности моделирования. Такие стратегии и способности моделирования тесно связаны с типом актива и нашим инвестиционным горизонтом.  

В следующем разделе исследуется R/S-анализ различных типов временных рядов , которые часто используются в моделировании финансовой экономики, а также других видов стохастических процессов. Особое внимание будет уделяться возможности ошибки второго рода (классификация процесса как имеющего долговременную память, тогда как в действительности, процесс имеет кратковременную память).  

Они являются семейством нелинейных стохастических процессов, в  

Авторегрессионный (AR) процесс. Стационарный стохастический процесс, где текущая величина временного ряда соотносится с прошлыми величинами р (р - некоторое целое число), называется AR(p) процессом. Когда текущая величина связана с двумя предыдущими величинами, мы имеем AR(2) процесс. AR(1) процесс имеет бесконечную память.  

Достаточно сказать, кроме формулы для FastK (RAW), все эти Стохастические функции, а следовательно, их производные индикаторы, не соответствуют опубликованному определению Стохастического Процесса Джорджа Лэйна, представляя собой модификации первоначальной формулы. Не забудьте проверить списки этих функций, используя PowerEditor в TradeStaton , чтобы узнать, что именно вы применяете, прежде чем будете принимать основанные на этих индикаторах торговые решения.  

Стохастика (от греч. Sto hasis - догадка) - вероятность событий , обусловленных случайным сочетанием факторов. Стохастическая (возможная, вероятная) совокупность образуется в результате реализации стохастического процесса и представляет собой совокупность возможных комбинаций отбираемых единиц.  

СТОХАСТИЧЕСКИЙ ПРОЦЕСС - процесс называется стохастическим, если он описывается случайными переменными , значения которых меняются во времени. Подробнее см. Случайный процесс.  

СЛУЧАЙНЫЙ ПРОЦЕСС , вероятностный процесс , стохастический процесс (sto hasti pro ess) - случайная ф-ция X(t) от действительного параметра времени teT, значения которой для любого t являются случайными величинами Область определения С п является либо последовательностью, либо конечным или бесконечным интервалом, в первом случае С п называется процессом с дискретным временем, во втором - процессом с непрерывным временем Приме ром С п является поток  

Обнаружение радиолокационных сигналов неопределенно из-за того, что одновременно с ними присутствуют и случайные флуктуации, или "шумы". Если бы можно было предсказать точные значения шумовых напряжений или токов, их можно было бы вычесть из суммарного сигнала и после этого принять определенное решение либо о наличии, либо об отсутствии сигнала. Но такое предсказание невозможно, так как шумовые напряжения появляются вследствие хаотического теплового движения ионов - и электронов в элементах приемника и в пространстве, окружающем антенну. Лучшее, что можно сделать, это описать флуктуации напряжения статистически с помощью распределений вероятностей их значений и использовать эти статистические данные для проектирования приемника, в котором достигалось бы наибольшее возможное число успешных обнаружений при большом числе опытов. В настоящей главе дается статистическое описание шума, а в следующей главе вводятся различные критерии успешного и ошибочного обнаружения в статистических ситуациях, указывающие, какими соображениями следует руководствоваться при поисках оптимальной конструкции приемника.

Если бы напряжение в некоторой точке радиолокационного приемника, например на сетке первой усилительной лампы, было записано как функция времени, запись имела бы совершенно беспорядочный вид и казалось бы, что нет способа вычисления или предсказания значений этого флуктуирующего напряжения. Если бы одновременно были записаны напряжения в соответствующих точках каждого из набора одинаковых приемников, находящихся в одинаковых условиях,

они различались бы в деталях от приемника к приемнику. Однако некоторые грубые или средние свойства записей были бы почти одинаковы. Изучая большое число таких записей и определяя относительные частоты, с которыми рассматриваемые величины принимают различные значения, можно описать поведение флуктуирующих напряжений статистически. Такое описание производится на языке теории вероятностей, позволяющей делать логические заключения о свойствах флуктуирующих напряжений. Краткий обзор теории вероятностей дан в приложении Б. Для более полного ознакомления с ней читателю следует изучить один из учебников, указанных в литературе к приложению Б. В настоящей главе теория вероятностей будет использована для анализа шумовых флуктуаций.

Функция времени, подобная записи флуктуационного напряжения, упомянутой выше, называется временндй последовательностью, а набор временных последовательностей, подобный тому, который получается от большого числа приемников, находящихся в одинаковых условиях, известен как ансамбль. Случайная функция, значения которой описываются только при помощи системы распределений вероятностей, о чем более подробно будет говориться ниже, часто называется стохастическим процессом. Если измерения производятся непрерывно во времени, имеет место непрерывный стохастический процесс. Во многих случаях величины измеряются только в отдельные последовательные моменты времени. При этом получается дискретный стохастический процесс. Пример последнего - ежечасные или ежедневные наблюдения температуры на метеорологических станциях. Мы будем иметь дело в основном с непрерывными процессами, но многие представления могут быть применены в той же мере и к дискретным процессам. Каждый член ансамбля называется реализацией стохастического процесса.

Если член ансамбля временных последовательностей выбран случайно, вероятность, что его значение х в любой данный момент времени лежит в интервале между есть

где функция плотности вероятности переменной х. Под этим мы понимаем в применении к вышеприведенному

примеру следующее. Если напряжения измерены в одинаковых точках в большом числе идентичных приемников, число значений, лежащих в таком интервале, равно длине интервала, умноженной на достаточно малой длине интервала). Во многих случаях не будет зависеть от момента времени, в который производятся измерения. Функция плотности вероятности является основой статистического описания стохастического процесса, но сама по себе она недостаточна, так как ничего не говорит о том, как связано значение х, измеренное в один момент времени, со значениями, измеренными в другие моменты времени.

Обозначим значения временной последовательности измеренные в последовательные моменты времени через Функция плотности совместного распределения вероятностей

определяется утверждением, что вероятность выполнения неравенств

равна Для полного описания непрерывного стохастического процесса требуется задание функций распределения для всех возможных выборов моментов времени для всех положительных целых Все эти функции нормированы так, что выполняется соотношение

в соответствии с определением вероятности. Кроме того, они должны быть согласованы так, чтобы функцию распределения более низкого порядка можно было получить, интегрируя по

интервалу изменения "лишней" переменной. Например,

Любые переменных для которых выполняется равенство

называются статистически независимыми.

Функция плотности совместного распределения операционно определяется с помощью относительных частот осуществления различных комбинаций значений для и рассматриваемых моментов времени. Но, очевидно, определить полную систему функций распределения таким образом невозможно. Вместо этого для получения гипотетических распределений строится теория процессов птем применения законов физики к ситуациям, возникающим в таких областях науки, как статистическая механика или термодинамика. С помощью теории стохастических процессов вычисляются некоторые средние значения, доступные для наблюдения, и вычисленные значения сравниваются с найденными из опыта. Когда ситуация слишком сложна для такого анализа, как, например, в экономике и, вероятно, даже в метеорологии, для стохастического процесса предлагается простая статистическая "модель". Эта модель дает функцию распределения, содержащую несколько неизвестных параметров, значения которых оцениваются на основе доступных данных. Затем строятся логические заключения и, если возможно, производится сравнение с результатами дальнейших наблюдений. К счастью, существует большая теоретическая база, позволяющая рассматривать электрические шумовые процессы, с которыми приходится встречаться в задачах обнаружения сигналов. Некоторые физические основы будут изложены ниже, в разд. 3. Но сначала мы должны обсудить некоторые понятия, которые будут применяться при анализе стохастических процессов.

Пока радиолокационный приемник поддерживается при постоянной температуре и связан с неподвижной антенной,

на которую сигнал не действует, статистическое описание шума в приемнике не будет зависеть от выбора начала отсчета времени. Это значит, что плотность совместного распределения вероятностей зависит только от интервалов между измерениями, а не от самих моментов времени Такие стохастические процессы называют стационарными. Если не будет сделано других утверждений, будем считать, что изучаемые временные последовательности обладают этим свойством временной инвариантности или стационарности.

Длинная запись одиночной реализации стационарной временной последовательности для большинства моментов времени обладает одинаковыми свойствами. По-видимому, большое число отрезков, взятых из одного члена ансамбля, будет создавать ансамбль с такими же статистическими свойствами, как и у основного ансамбля. Если измеряемая переменная связана с механической системой, подобной газу, или электрической, подобной контуру, и если с течением времени система проходит через все состояния, совместимые с внешними условиями, созданными экспериментатором, сделанное выше предположение является обоснованным. В частности, средние, найденные по длинной выборке на одной реализации процесса, равны средним значениям по всем членам ансамбля в какой-либо момент времени. Стохастические процессы, обладающие этим свойством, называются эргодическими.

Например, среднее или "математическое ожидание" стационарной временнбйпоследовательности определяется равенством

где функция плотности распределения вероятностей одиночного наблюдения. Это среднее значение х не зависит от времени. С другой стороны, среднее по времени х можно определить формулой

Из-за условия стационарности это среднее по времени не зависит от момента времени в который начинается усреднение. Если, кроме того, стохастический процесс эргодический, То же самое справедливо для математического ожидания других функций аргумента х.

Легко можно представить себе процессы, не являющиеся эргодическими, например такие, где величина х постепенно перемещается в область, которую она потом не может покинуть, или если есть некоторое количество таких "ловящих" областей. Но в этой книге будет предполагаться, что все изучаемые флуктуационные процессы являются эргодическими. Справедливость такого предположения должна основываться на успехе теорий, в которых оно принято, так как, хотя это допущение и подтверждается интуицией, проверить его экспериментально невозможно. Допущение эргодичности существенно для любых задач, в которых статистические параметры приходится оценивать на основе одиночной экспериментальной реализации процесса.

Любое развитие процесса во времени (неважно, детерминированное или вероятностное) при анализе в терминах вероятностей будет случайным процессом (иными словами, все процессы, имеющие развитие во времени, с точки зрения теории вероятностей, стохастические).

Стохастичность в математике

Использование термина стохастичность в математике относят к работам Владислава Борцкевича , который использовал его в значении выдвигать гипотезы , которое, в свою очередь, отсылает нас к древнегреческим философам, а также к работе Я. Бернулли Ars Conjectandi (лат. искусство загадывать) .

Область исследований случайных в математике , особенно в теории вероятностей , играет большую роль.

Использование методов Монте-Карло требует большого числа случайных величин, что, как следствие, привело к развитию генераторов псевдослучайных чисел , которые были намного быстрее, чем табличные методы генерации, которые ранее использовались для статистической выборки.

Одной из программ, где практически используются методы Монте-Карло, является MCNP .

Биология

В биологических системах было введено понятие "стохастического шума", который помогает усилить сигнал внутренней обратной связи. Применяется для контроля за обменом веществ у диабетиков. Также имеет место понятие «стохастичности речевых сигналов» .

Медицина

Примером подобных стохастических эффектов может служить рак.

Напишите отзыв о статье "Стохастичность"

Примечания

Ссылки

  • from Index Funds Advisors
  • Formalized Music: Thought and Mathematics in Composition by Iannis Xenakis , ISBN 1-57647-079-2
  • Frequency and the Emergence of Linguistic Structure by Joan Bybee and Paul Hopper (eds.), ISBN 1-58811-028-1 /ISBN 90-272-2948-1 (Eur.)

Отрывок, характеризующий Стохастичность

«Нет, она права, – думала старая княгиня, все убеждения которой разрушились пред появлением его высочества. – Она права; но как это мы в нашу невозвратную молодость не знали этого? А это так было просто», – думала, садясь в карету, старая княгиня.

В начале августа дело Элен совершенно определилось, и она написала своему мужу (который ее очень любил, как она думала) письмо, в котором извещала его о своем намерении выйти замуж за NN и о том, что она вступила в единую истинную религию и что она просит его исполнить все те необходимые для развода формальности, о которых передаст ему податель сего письма.
«Sur ce je prie Dieu, mon ami, de vous avoir sous sa sainte et puissante garde. Votre amie Helene».
[«Затем молю бога, да будете вы, мой друг, под святым сильным его покровом. Друг ваш Елена»]
Это письмо было привезено в дом Пьера в то время, как он находился на Бородинском поле.

Во второй раз, уже в конце Бородинского сражения, сбежав с батареи Раевского, Пьер с толпами солдат направился по оврагу к Князькову, дошел до перевязочного пункта и, увидав кровь и услыхав крики и стоны, поспешно пошел дальше, замешавшись в толпы солдат.
Одно, чего желал теперь Пьер всеми силами своей души, было то, чтобы выйти поскорее из тех страшных впечатлений, в которых он жил этот день, вернуться к обычным условиям жизни и заснуть спокойно в комнате на своей постели. Только в обычных условиях жизни он чувствовал, что будет в состоянии понять самого себя и все то, что он видел и испытал. Но этих обычных условий жизни нигде не было.
Хотя ядра и пули не свистали здесь по дороге, по которой он шел, но со всех сторон было то же, что было там, на поле сражения. Те же были страдающие, измученные и иногда странно равнодушные лица, та же кровь, те же солдатские шинели, те же звуки стрельбы, хотя и отдаленной, но все еще наводящей ужас; кроме того, была духота и пыль.
Пройдя версты три по большой Можайской дороге, Пьер сел на краю ее.
Сумерки спустились на землю, и гул орудий затих. Пьер, облокотившись на руку, лег и лежал так долго, глядя на продвигавшиеся мимо него в темноте тени. Беспрестанно ему казалось, что с страшным свистом налетало на него ядро; он вздрагивал и приподнимался. Он не помнил, сколько времени он пробыл тут. В середине ночи трое солдат, притащив сучьев, поместились подле него и стали разводить огонь.
Солдаты, покосившись на Пьера, развели огонь, поставили на него котелок, накрошили в него сухарей и положили сала. Приятный запах съестного и жирного яства слился с запахом дыма. Пьер приподнялся и вздохнул. Солдаты (их было трое) ели, не обращая внимания на Пьера, и разговаривали между собой.
– Да ты из каких будешь? – вдруг обратился к Пьеру один из солдат, очевидно, под этим вопросом подразумевая то, что и думал Пьер, именно: ежели ты есть хочешь, мы дадим, только скажи, честный ли ты человек?
– Я? я?.. – сказал Пьер, чувствуя необходимость умалить как возможно свое общественное положение, чтобы быть ближе и понятнее для солдат. – Я по настоящему ополченный офицер, только моей дружины тут нет; я приезжал на сраженье и потерял своих.
– Вишь ты! – сказал один из солдат.
Другой солдат покачал головой.
– Что ж, поешь, коли хочешь, кавардачку! – сказал первый и подал Пьеру, облизав ее, деревянную ложку.
Пьер подсел к огню и стал есть кавардачок, то кушанье, которое было в котелке и которое ему казалось самым вкусным из всех кушаний, которые он когда либо ел. В то время как он жадно, нагнувшись над котелком, забирая большие ложки, пережевывал одну за другой и лицо его было видно в свете огня, солдаты молча смотрели на него.
– Тебе куды надо то? Ты скажи! – спросил опять один из них.
– Мне в Можайск.
– Ты, стало, барин?
– Да.
– А как звать?
– Петр Кириллович.
– Ну, Петр Кириллович, пойдем, мы тебя отведем. В совершенной темноте солдаты вместе с Пьером пошли к Можайску.
Уже петухи пели, когда они дошли до Можайска и стали подниматься на крутую городскую гору. Пьер шел вместе с солдатами, совершенно забыв, что его постоялый двор был внизу под горою и что он уже прошел его. Он бы не вспомнил этого (в таком он находился состоянии потерянности), ежели бы с ним не столкнулся на половине горы его берейтор, ходивший его отыскивать по городу и возвращавшийся назад к своему постоялому двору. Берейтор узнал Пьера по его шляпе, белевшей в темноте.
– Ваше сиятельство, – проговорил он, – а уж мы отчаялись. Что ж вы пешком? Куда же вы, пожалуйте!
– Ах да, – сказал Пьер.
Солдаты приостановились.
– Ну что, нашел своих? – сказал один из них.
– Ну, прощавай! Петр Кириллович, кажись? Прощавай, Петр Кириллович! – сказали другие голоса.
– Прощайте, – сказал Пьер и направился с своим берейтором к постоялому двору.
«Надо дать им!» – подумал Пьер, взявшись за карман. – «Нет, не надо», – сказал ему какой то голос.
В горницах постоялого двора не было места: все были заняты. Пьер прошел на двор и, укрывшись с головой, лег в свою коляску.

Едва Пьер прилег головой на подушку, как он почувствовал, что засыпает; но вдруг с ясностью почти действительности послышались бум, бум, бум выстрелов, послышались стоны, крики, шлепанье снарядов, запахло кровью и порохом, и чувство ужаса, страха смерти охватило его. Он испуганно открыл глаза и поднял голову из под шинели. Все было тихо на дворе. Только в воротах, разговаривая с дворником и шлепая по грязи, шел какой то денщик. Над головой Пьера, под темной изнанкой тесового навеса, встрепенулись голубки от движения, которое он сделал, приподнимаясь. По всему двору был разлит мирный, радостный для Пьера в эту минуту, крепкий запах постоялого двора, запах сена, навоза и дегтя. Между двумя черными навесами виднелось чистое звездное небо.
«Слава богу, что этого нет больше, – подумал Пьер, опять закрываясь с головой. – О, как ужасен страх и как позорно я отдался ему! А они… они все время, до конца были тверды, спокойны… – подумал он. Они в понятии Пьера были солдаты – те, которые были на батарее, и те, которые кормили его, и те, которые молились на икону. Они – эти странные, неведомые ему доселе они, ясно и резко отделялись в его мысли от всех других людей.