Болезни Военный билет Призыв

Сложные математические уравнения. Более сложные примеры уравнений

52. Более сложные примеры уравнений .
Пример 1 .

5/(x – 1) – 3/(x + 1) = 15/(x 2 – 1)

Общий знаменатель есть x 2 – 1, так как x 2 – 1 = (x + 1)(x – 1). Умножим обе части этого уравнения на x 2 – 1. Получим:

или, после сокращения,

5(x + 1) – 3(x – 1) = 15

5x + 5 – 3x + 3 = 15

2x = 7 и x = 3½

Рассмотрим еще уравнение:

5/(x-1) – 3/(x+1) = 4(x 2 – 1)

Решая, как выше, получим:

5(x + 1) – 3(x – 1) = 4
5x + 5 – 3x – 3 = 4 или 2x = 2 и x = 1.

Посмотрим, оправдываются ли наши равенства, если заменить в каждом из рассмотренных уравнений x найденным числом.

Для первого примера получим:

Видим, что здесь нет места никаким сомнениям: мы нашли такое число для x, что требуемое равенство оправдалось.

Для второго примера получим:

5/(1-1) – 3/2 = 15/(1-1) или 5/0 – 3/2 = 15/0

Здесь возникают сомнения: мы встречаемся здесь с делением на нуль, которое невозможно. Если в будущем нам удастся придать определенный, хотя бы и косвенный, смысл этому делению, то тогда мы можем согласиться с тем, что найденное решение x – 1 удовлетворяет нашему уравнению. До этой же поры мы должны признать, что наше уравнение вовсе не имеет решения, имеющего прямой смысл.

Подобные случаи могут иметь место тогда, когда неизвестное входит как-либо в знаменатели дробей, имеющихся в уравнении, причем некоторые из этих знаменателей, при найденном решении, обращаются в нуль.

Пример 2 .

Можно сразу видеть, что данное уравнение имеет форму пропорции: отношение числа x + 3 к числу x – 1 равно отношению числа 2x + 3 к числу 2x – 2. Пусть кто-либо, в виду такого обстоятельства, решит применить сюда для освобождения уравнения от дробей основное свойство пропорции (произведение крайних членов равно произведению средних). Тогда он получит:

(x + 3) (2x – 2) = (2x + 3) (x – 1)

2x 2 + 6x – 2x – 6 = 2x 2 + 3x – 2x – 3.

Здесь может возбудить опасения, что мы не справимся с этим уравнением, то обстоятельство, что в уравнение входят члены с x 2 . Однако, мы можем от обеих частей уравнения вычесть по 2x 2 - от этого уравнение не нарушится; тогда члены с x 2 уничтожатся, и мы получим:

6x – 2x – 6 = 3x – 2x – 3

Перенесем неизвестные члены влево, известные вправо - получим:

3x = 3 или x = 1

Вспоминая данное уравнение

(x + 3)/(x – 1) = (2x + 3)/(2x – 2)

мы сейчас же подметим, что найденное значение для x (x = 1) обращает в нуль знаменателей каждой дроби; от такого решения мы, пока не рассмотрели вопроса о делении на нуль, должны отказаться.

Если мы подметим еще, что применение свойства пропорции усложнило дело и что можно было бы получить более простое уравнение, умножая обе части данного на общий знаменатель, а именно на 2(x – 1) - ведь 2x – 2 = 2 (x – 1), то получим:

2(x + 3) = 2x – 3 или 2x + 6 = 2x – 3 или 6 = –3,

что невозможно.

Это обстоятельство указывает, что данное уравнение не имеет таких, имеющих прямой смысл решений, которые не обращали бы знаменателей данного уравнения в нуль.
Решим теперь уравнение:

(3x + 5)/(x – 1) = (2x + 18)/(2x – 2)

Умножим обе части уравнения 2(x – 1), т. е. на общий знаменатель, получим:

6x + 10 = 2x + 18

Найденное решение не обращает в нуль знаменатель и имеет прямой смысл:

или 11 = 11

Если бы кто-либо, вместо умножения обеих частей на 2(x – 1), воспользовался бы свойством пропорции, то получил бы:

(3x + 5)(2x – 2) = (2x + 18)(x – 1) или
6x 2 + 4x – 10 = 2x 2 + 16x – 18.

Здесь уже члены с x 2 не уничтожались бы. Перенеся все неизвестные члены в левую часть, а известные в правую, получили бы

4x 2 – 12x = –8

x 2 – 3x = –2

Это уравнение мы теперь решить не сумеем. В дальнейшем мы научимся решать такие уравнения и найдем для него два решения: 1) можно взять x = 2 и 2) можно взять x = 1. Легко проверить оба решения:

1) 2 2 – 3 · 2 = –2 и 2) 1 2 – 3 · 1 = –2

Если мы вспомним начальное уравнение

(3x + 5) / (x – 1) = (2x + 18) / (2x – 2),

то увидим, что теперь мы получим оба его решения: 1) x = 2 есть то решение, которое имеет прямой смысл и не обращает знаменателя в нуль, 2) x = 1 есть то решение, которое обращает знаменателя в нуль и не имеет прямого смысла.

Пример 3 .

Найдем общего знаменателя дробей, входящих в это уравнение, для чего разложим на множители каждого из знаменателей:

1) x 2 – 5x + 6 = x 2 – 3x – 2x + 6 = x(x – 3) – 2(x – 3) = (x – 3)(x – 2),

2) x 2 – x – 2 = x 2 – 2x + x – 2 = x (x – 2) + (x – 2) = (x – 2)(x + 1),

3) x 2 – 2x – 3 = x 2 – 3x + x – 3 = x (x – 3) + (x – 3) = (x – 3) (x + 1).

Общий знаменатель равен (x – 3)(x – 2)(x + 1).

Умножим обе части данного уравнения (а его мы теперь можем переписать в виде:

на общего знаменателя (x – 3) (x – 2) (x + 1). Тогда, после сокращения каждой дроби получим:

3(x + 1) – 2(x – 3) = 2(x – 2) или
3x + 3 – 2x + 6 = 2x – 4.

Отсюда получим:

–x = –13 и x = 13.

Это решение имеет прямой смысл: оно не обращает в нуль ни одного из знаменателей.

Если бы мы взяли уравнение:

то, поступая совершенно так же, как выше, получили бы

3(x + 1) – 2(x – 3) = x – 2

3x + 3 – 2x + 6 = x – 2

3x – 2x – x = –3 – 6 – 2,

откуда получили бы

что невозможно. Это обстоятельство показывает, что нельзя найти для последнего уравнения решения, имеющего прямой смысл.

Математик Ян Стюарт (Ian Stewart) в своей новой книге «В поисках неизвестного: 17 уравнений, которые изменили мир» рассматривает несколько наиболее важных уравнений всех времен и приводит примеры их практического применения.

Согласно Теореме Пифагора в прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов.

Важность : Теорема Пифагора — важнейшее уравнение в геометрии, которое связывает ее с алгеброй и является основой тригонометрии. Без него было бы невозможно создать точную картографию и навигацию.

Современное использование : Триангуляция используется и по сей день, чтобы точно определить относительное расположение для GPS навигации.

Логарифм - это степень, в которую надо возвести основание, чтобы получить аргумент.

Важность : Логарифмы стали настоящей революцией, позволив астрономам и инженерам делать расчеты более быстро и точно. С появлением компьютеров они не потеряли своего значения, поскольку все еще существенны для ученых.

Современное использование : Логарифмы важная составляющая для понимания радиоактивного распада.

Основная теорема анализа или формула Ньютона - Лейбница дает соотношение между двумя операциями: взятием определенного интеграла и вычислением первообразной.

Важность : Теорема анализа фактически создала современный мир. Исчисление имеет важное значение в нашем понимание того, как измерять тела, кривые и площади. Она является основой многих природных законов и источником дифференциальных уравнений.

Современное использование : Любая математическая проблема, где требуется оптимальное решение. Существенное значение для медицины, экономики и информатики.

Классическая теория тяготения Ньютона описывает гравитационное взаимодействие.

Важность : Теория позволяет рассчитать силу гравитации между двумя объектами. Хотя позднее она была вытеснена теорией относительности Эйнштейна, теория все равно необходима для практического описания того, как объекты взаимодействуют друг с другом. Мы используем ее и по сей день для проектирования орбит спутников и космических аппаратов.

Современное использование : Позволяет найти наиболее энергоэффективные пути для вывода спутников и космических зондов. Также делает возможным спутниковое телевидение.

Комплексные числа

Комплексные числа — расширение поля вещественных чисел.

Важность : Многие современные технологии, в том числе цифровые фотокамеры, не могли быть изобретены без комплексных чисел. Кроме того, они позволяют проводить анализ, который нужен инженерам для решения практических задач в авиации.

Современное использование : Широко используется в электротехнике и сложных математических теориях.

Важность : Внесла вклад в понимание топологического пространства, в котором рассматриваются только свойства непрерывности. Необходимый инструмент для инженеров и биологов.

Современное использование : Топология используется, чтобы понять поведение и функции ДНК.

Важность : Уравнение является основой современной статистики. Естественные и социальные науки не могли бы существовать в своей нынешней форме без него.

Современное использование : Используется в клинических испытаниях для определения эффективности лекарств по сравнению с отрицательными побочными эффектами.

Дифференциальное уравнение, описывающее поведение волн.

Важность : Волны исследуются с целью определения времени и места землетрясений, а также для прогнозирования поведения океана.

Современное использование : Нефтяные компании используют взрывчатку, а затем считывают данные от последующих звуковых волн для определения геологических формаций.

Важность : Уравнение позволяет разбивать, очищать и анализировать сложные шаблоны.

Современное использование : Используется при сжатии информации изображений в формате JPEG, а так же для обнаружения структуры молекул.

Уравнения Навье-Стокса

Уравнения Навье-Стокса

В левой части уравнения — ускорение небольшого количества жидкости, в правой — силы, которые воздействуют на него.

Важность : Как только компьютеры стали достаточно мощными, чтобы решить это уравнение, они открыли сложную и очень полезную области физики. Она особенно полезна для создания более качественной аэродинамики у транспортных средств.

Современное использование : Среди прочего, уравнение помогло в усовершенствовании современных пассажирских самолетов.

Описывают электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

Важность : Помогли в понимании электромагнитных волн, что способствовало созданию многих технологий, которые мы используем сегодня.

Современное использование : Радар, телевидение и современные средства связи.

Вся энергия и тепло со временем исчезнет.

Важность : Имеет существенное значение для нашего понимания энергии и Вселенной через понятие энтропии. Открытие закона помогло улучшить паровой двигатель.

Современное использование : Помог доказать, что материя состоит из атомов, физики до сих пор пользуются этим знанием.

Энергия равна массе, умноженной на квадрат скорости света.

Важность : Наверное, самое известное уравнение в истории. Оно полностью изменило нашу точку зрения на материю и реальность.

Современное использование : Помогло создать ядерное оружие. Используется в GPS навигации.

Уравнение Шрёдингера

Описывает материю как волну, а не как частицу.

Важность : Перевернула представления физиков — частицы могут существовать в диапазоне возможных состояний.

Современное использование : Существенный вклад в использование полупроводников и транзисторов, и, таким образом, в большинство современных компьютерных технологий.

Оценивает количество данных в куске кода путем расчета вероятности его символов.

Важность : Это уравнение, которое открыло дверь в Информационную Эпоху.

Современное использование : В значительной степени все, что связано с обнаружением ошибок в кодировании (программировании).

Оценка изменений в популяции живых существ из поколения в поколение с ограниченными ресурсами.

Важность : Помогла в развитии , которая полностью изменила наше понимание того, как работают природные системы.

Современное использование : Используется для моделирования землетрясений и прогноза погоды.

Модель Блэка-Скоулза

Одна из моделей ценообразования опционов.

Важность : Помогла создать несколько триллионов долларов. Согласно некоторым экспертам, неправильное использование формулы (и ее производных) способствовало финансовому кризису. В частности, уравнение имеет несколько предположений, которые не справедливы на реальных финансовых рынках.

Современное использование : Даже после кризиса используются для определения цен.

Вместо заключения

В мире существует множество других важных уравнений и формул, которые изменили судьбу человечества в целом и нашу личную жизнь в частности. Среди них, модель Ходжкина-Хаксли, Фильтр Калмана и, конечно, уравнение поисковой системы Google. Мы надеемся, что нам удалось показать насколько важна математика, и насколько бесценен ее вклад для всех людей.

Математические уравнения не только полезны - они также могут быть и красивы. И многие ученые признают, что они часто любят определенные формулы не только за их функциональность, но еще и за их форму, некую особую поэтичность. Есть те уравнения, которые известны на весь мир, как, например, E = mc^2. Другие не столь широко распространены, но красота уравнения не зависит от его популярности.

Общая теория относительности

Уравнение, описанное выше, было сформулировано Альбертом Эйнштейном в 1915 году как часть инновационной общей теории относительности. Теория на самом деле произвела революцию в мире науки. Это удивительно, как одним уравнением можно описать абсолютно все, что есть вокруг, в том числе пространство и время. Весь истинный гений Эйнштейна воплощен в нем. Это очень элегантное уравнение, которое кратко описывает, как все вокруг вас связано - например, как присутствие Солнца в галактике искривляет пространство и время так, чтобы Земля вращалась вокруг него.

Стандартная модель

Стандартная модель - это еще одна из важнейших теорий физики, в ней описываются все элементарные частицы, из которых состоит вселенная. Существуют различные уравнения, способные описать эту теорию, однако чаще всего пользуются уравнением Лагранжа, французского математика и астронома 18 века. Он успешно описал абсолютно все частицы и силы, которые на них воздействуют, за исключением гравитации. Это также включает недавно открытый бозон Хиггса. Оно в полной мере сочетается с квантовой механикой и общей теорией относительности.

Математический анализ

В то время как первые два уравнения описывают конкретные аспекты вселенной, данное уравнение может быть использовано во всех возможных ситуациях. Фундаментальная теорема математического анализа формирует основу математического метода, известного как исчисление, и связывает две свои основные идеи - концепцию интеграла и понятие производной. Зародился математический анализ еще в древности, однако все теории были собраны воедино Исааком Ньютоном в 17 веке - он использовал их для вычисления и описания движения планет вокруг Солнца.

Теорема Пифагора

Старым добрым известным всем уравнением выражается знаменитая теорема Пифагора, которую учат все школьники на уроках геометрии. Это формула описывает, что в любом прямоугольном треугольнике квадрат длины гипотенузы, самой длинной из всех сторон (c), равен сумме квадратов двух других сторон, катетов (a и b). В итоге, уравнение выглядит следующим образом: a^2 + b^2 = c^2. Эта теорема удивляет многих начинающих математиков и физиков, когда они только учатся в школе и еще не знают, что им готовит новый мир.

1 = 0.999999999….

Это простое уравнение указывает на то, что число 0.999 с бесконечным количеством девяток после запятой, на самом деле, равно единице. Это уравнение замечательно тем, что оно крайне простое, невероятно наглядное, но все же умудряется удивить и поразить многих. Некоторые люди не могут поверить в то, что это на самом деле так. Более того, красиво и само по себе уравнение - левая его часть представляет собой простейшую основу математики, а правая скрывает в себе тайны и загадки бесконечности.

Специальная теория относительности

Альберт Эйнштейн снова попадает в список, на этот раз со своей специальной теорией относительности, которая описывает, как время и пространство являются не абсолютными понятиями, а относительными - к скорости смотрящего. Это уравнение показывает, как время «расширяется», тем сильнее замедляясь, чем быстрее человек движется. На самом деле, уравнение не является таким уж сложным, простые производные, линейная алгебра. Однако то, что оно собой воплощает, представляет абсолютно новый способ смотреть на мир.

Уравнение Эйлера

Эта простая формула включает в себя основные знания о природе сфер. Она говорит о том, что если вы разрезаете сферу и получаете грани, ребра и вершины, то если F принять за число граней, E - за число ребер, а V - за число вершин, то вы всегда получите одно и то же: V - E + F = 2. Именно так и выглядит данное уравнение. Поражает то, что какую бы сферическую форму вы ни взяли - будь-то тетраэдр, пирамида или любая другая комбинация граней, ребер и вершин, у вас всегда получится одинаковый результат. Эта комбинаторика рассказывает людям нечто фундаментальное о сферических формах.

Уравнение Эйлера-Лагранжа и теорема Нетер

Эти понятия являются довольно абстрактными, но очень сильными. Самое интересное заключается в том, что данный новый способ мышления о физике смог пережить несколько революций в данной науке, таких как открытие квантовой механики, теории относительности и так далее. Здесь L означает уравнение Лагранжа, которое является мерой энергии в физической системе. А решение этого уравнения расскажет вам о том, как конкретная система будет развиваться с течением времени. Вариантом уравнения Лагранжа является теорема Нетер, которая является фундаментальной для физики и роли симметрии. Суть теоремы заключается в том, что если ваша система симметрична, то в ней действует соответствующий закон сохранения. Собственно говоря, главная идея этой теоремы заключается в том, что законы физики действуют повсеместно.

Уравнение ренормгруппы

Это уравнение также называется по имени его создателей, уравнением Каллана-Симанчика. Оно является жизненно важным базовым уравнением, написанным в 1970 году. Оно служит для того, чтобы продемонстрировать, как наивные ожидания рушатся в квантовом мире. Уравнение также имеет множество приложений, позволяющих оценить массу и размер протона и нейтрона, которые составляют ядро атома.

Уравнение минимальной поверхности

Данное уравнение невероятным образом вычисляет и кодирует те самые красивые мыльные пленки, которые образуются на проволоке, когда ее окунают в мыльную воду. Данное уравнение, однако, сильно отличается от привычных линейных уравнений из той же области, например, уравнения тепла, образования волн и так далее. Это уравнение - нелинейно, оно включает в себя воздействие сторонних сил и производных продуктов.

Прямая Эйлера

Возьмите любой треугольник, нарисуйте наименьший круг, который может включить в себя треугольник, и отыщите его центр. Найдите центр массы треугольника - ту точку, которая позволила бы треугольнику балансировать, например, на острие карандаша, если бы его можно было вырезать из бумаги. Нарисуйте три высоты этого треугольника (линии, которые были бы перпендикулярны тем сторонам треугольника, от которых они рисуются) и найдите точку их пересечения. Суть теоремы заключается в том, что все три точки будут находиться на одной прямой, именно это и есть прямая Эйлера. Теорема заключает в себе всю красоту и мощь математики, открывая удивительные закономерности в самых простых вещах.

Часто, беседуя со старшеклассниками об исследовательских работах по математике, слышу следующее: "Что можно нового открыть в математике?" А действительно: может быть все великие открытия сделаны, а теоремы доказаны?

8 августа 1900 года на международном математическом конгрессе в Париже математик Дэвид Гилберт (David Hilbert) изложил список проблем, которые, как он полагал, предстояло решить в ХХ веке. В списке было 23 пункта. Двадцать один из них на данный момент решены. Последней решенной проблемой из списка Гилберта была знаменитая теорема Ферма, с которой ученые не могли справиться в течение 358 лет. В 1994 году свое решение предложил британец Эндрю Уайлз. Оно и оказалось верным.

По примеру Гилберта в конце прошлого века многие математики пытались сформулировать подобные стратегические задачи на ХХI век. Один из таких списков приобрел широкую известность благодаря бостонскому миллиардеру Лэндону Клэю (Landon T. Clay). В 1998 году на его средства в Кембридже (Массачусетс, США) был основан Математический институт Клэя (Clay Mathematics Institute) и установлены премии за решение ряда важнейших проблем современной математики. 24 мая 2000 года эксперты института выбрали семь проблем - по числу миллионов долларов, выделенных на премии. Список получил название Millennium Prize Problems:

1. Проблема Кука (сформулирована в 1971 году)

Допустим, что вы, находясь в большой компании, хотите убедиться, что там же находится ваш знакомый. Если вам скажут, что он сидит в углу, то достаточно будет доли секунды, чтобы, бросив взгляд, убедиться в истинности информации. В отсутствие этой информации вы будете вынуждены обойти всю комнату, рассматривая гостей. Это говорит о том, что решение какой-либо задачи часто занимает больше времени, чем проверка правильности решения.

Стивен Кук сформулировал проблему: может ли проверка правильности решения задачи быть более длительной, чем само получение решения, независимо от алгоритма проверки. Эта проблема также является одной из нерешенных задач из области логики и информатики. Ее решение могло бы революционным образом изменить основы криптографии, используемой при передаче и хранении данных.

2. Гипотеза Римана (сформулирована в 1859 году)

Некоторые целые числа не могут быть выражены как произведение двух меньших целых чисел, например 2, 3, 5, 7 и так далее. Такие числа называются простыми и играют важную роль в чистой математике и ее приложениях. Распределение простых чисел среди ряда всех натуральных чисел не подчиняется никакой закономерности. Однако немецкий математик Риман высказал предположение, касающееся свойств последовательности простых чисел. Если гипотеза Римана будет доказана, то это приведет к революционному изменению наших знаний в области шифрования и к невиданному прорыву в области безопасности Интернета.

3. Гипотеза Берча и Свиннертон-Дайера (сформулирована в 1960 году)

Связана с описанием множества решений некоторых алгебраических уравнений от нескольких переменных с целыми коэффициентами. Примером подобного уравнения является выражение x2 + y2 = z2. Эвклид дал полное описание решений этого уравнения, но для более сложных уравнений поиск решений становится чрезвычайно трудным.

4. Гипотеза Ходжа (сформулирована в 1941 году)

В ХХ веке математики открыли мощный метод исследования формы сложных объектов. Основная идея заключается в том, чтобы использовать вместо самого объекта простые "кирпичики", которые склеиваются между собой и образуют его подобие. Гипотеза Ходжа связана с некоторыми предположениями относительно свойств таких "кирпичиков" и объектов.

5. Уравнения Навье - Стокса (сформулированы в 1822 году)

Если плыть в лодке по озеру, то возникнут волны, а если лететь в самолете, в воздухе возникнут турбулентные потоки. Предполагается, что эти и другие явления описываются уравнениями, известными как уравнения Навье - Стокса. Решения этих уравнений неизвестны, и при этом даже неизвестно, как их решать. Необходимо показать, что решение существует и является достаточно гладкой функцией. Решение этой проблемы позволит существенно изменить способы проведения гидро- и аэродинамических расчетов.

6. Проблема Пуанкаре (сформулирована в 1904 году)

Если натянуть резиновую ленту на яблоко, то можно, медленно перемещая ленту без отрыва от поверхности, сжать ее до точки. С другой стороны, если ту же самую резиновую ленту соответствующим образом натянуть вокруг бублика, то никаким способом невозможно сжать ленту в точку, не разрывая ленту или не ломая бублик. Говорят, что поверхность яблока односвязна, а поверхность бублика - нет. Доказать, что односвязна только сфера, оказалось настолько трудно, что математики ищут правильный ответ до сих пор.

7. Уравнения Янга - Миллса (сформулированы в 1954 году)

Уравнения квантовой физики описывают мир элементарных частиц. Физики Янг и Миллс, обнаружив связь между геометрией и физикой элементарных частиц, написали свои уравнения. Тем самым они нашли путь к объединению теорий электромагнитного, слабого и сильного взаимодействий. Из уравнений Янга - Миллса следовало существование частиц, которые действительно наблюдались в лабораториях во всем мире, поэтому теория Янга - Миллса принята большинством физиков несмотря на то, что в рамках этой теории до сих пор не удается предсказывать массы элементарных частиц.


Думаю, что этот материал, опубликованный в блоге