Болезни Военный билет Призыв

Сколько десятичных. Как быть, если в одном примере есть оба вида дробей? Как переводить дроби из одного вида в другой

Десятичные дроби - это те же самые обыкновенные дроби, но в так называемой десятичной записи. Десятичная запись используется для дробей со знаменателями 10, 100, 1000 и т. д. При этом вместо дробей 1/10; 1/100; 1/1000; ... пишут 0,1; 0,01; 0,001;... .

К примеру, 0,7 (ноль целых семь десятых ) - это дробь 7/10; 5,43 (пять целых сорок три сотых ) - это смешанная дробь 5 43/100 (или, что то же самое, неправильная дробь 543/100).

Может случиться так, что сразу после запятой стоит один или несколько нулей: 1,03 - это дробь 1 3/100; 17,0087 - это дробь 17 87/10000. Общее правило таково: в знаменателе обыкновенной дроби должно быть столько нулей, сколько цифр стоит после запятой в записи десятичной дроби .

Десятичная дробь может оканчиваться на один или несколько нулей. Оказывается, эти нули «лишние» - их можно попросту убрать: 1,30 = 1,3; 5,4600 = 5,46; 3,000 = 3. Сообрази, почему это так?

Десятичные дроби естественным образом возникают при делении на «круглые» числа - 10, 100, 1000, ... Обязательно разберись в следующих примерах:

27:10 = 27/10 = 2 7/10 = 2,7;

579:100 = 579/100 = 5 79/100 = 5,79;

33791:1000 = 33791/1000 = 33 791/1000 = 33,791;

34,9:10 = 349/10:10 = 349/100 = 3,49;

6,35:100 = 635/100:100 = 635/10000 = 0,0635.

Замечаешь ли ты здесь некую закономерность? Попробуй ее сформулировать. А что будет, если умножить десятичную дробь на 10, 100, 1000?

Чтобы перевести обыкновенную дробь в десятичную, нужно привести ее к какому-нибудь «круглому» знаменателю:

2/5 = 4/10 = 0,4; 11/20 = 55/100 = 0,55; 9/2 = 45/10 = 4,5 и т. д.

Складывать десятичные дроби намного удобнее, чем дроби обыкновенные. Сложение производится так же, как и с обычными числами - по соответствующим разрядам. При сложении в столбик слагаемые нужно записывать так, чтобы их запятые находились на одной вертикали. На этой же вертикали окажется и запятая суммы. Совершенно аналогично выполняется и вычитание десятичных дробей.

Если при сложении или вычитании в одной из дробей количество цифр после запятой меньше, чем в другой, то в конце данной дроби следует дописать нужное число нулей. Можно эти нули и не дописывать, а просто представить их себе в уме.

При умножении десятичных дробей их опять-таки следует перемножить как обычные числа (при этом уже не обязательно записывать запятую под запятой). В полученном результате нужно отделить запятой количество знаков, равное суммарному числу знаков после запятой в обоих множителях.

При делении десятичных дробей можно в делимом и делителе одновременно передвинуть запятую вправо на одно и то же количество знаков: частное от этого не изменится:

2,8:1,4 = 2,8/1,4 = 28/14 = 2;

4,2:0,7 = 4,2/0,7 = 42/7 = 6;

6:1,2 = 6,0/1,2 = 60/12 = 5.

Объясни, почему это так?

  1. Нарисуй квадрат 10x10. Закрась какую-нибудь его часть, равную: а) 0,02; б) 0,7; в) 0,57; г) 0,91; д) 0,135 площади всего квадрата.
  2. Что такое 2,43 квадрата? Изобрази на рисунке.
  3. Раздели на 10 числа 37; 795; 4; 2,3; 65,27; 0,48 и результат запиши в виде десятичной дроби. Эти же числа раздели на 100 и на 1000.
  4. Умножь на 10 числа 4,6; 6,52; 23,095; 0,01999. Эти же числа умножь на 100 и на 1000.
  5. Представь десятичную дробь в виде обыкновенной дроби и сократи ее:
    а) 0,5; 0,2; 0,4; 0,6; 0,8;
    б) 0,25; 0,75; 0,05; 0,35; 0,025;
    в) 0,125; 0,375; 0,625; 0,875;
    г) 0,44; 0,26; 0,92; 0,78; 0,666; 0,848.
  6. Представь в виде смешанной дроби: 1,5; 3,2; 6,6; 2,25; 10,75; 4,125; 23,005; 7,0125.
  7. Представь обыкновенную дробь в виде десятичной дроби:
    а) 1/2; 3/2; 7/2; 15/2; 1/5; 3/5; 4/5; 18/5;
    б) 1/4; 3/4; 5/4; 19/4; 1/20; 7/20; 49/20; 1/25; 13/25; 77/25; 1/50; 17/50; 137/50;
    в) 1/8; 3/8; 5/8; 7/8; 11/8; 125/8; 1/16; 5/16; 9/16; 23/16;
    г) 1/500; 3/250; 71/200; 9/125; 27/2500; 1999/2000.
  8. Найди сумму: а) 7,3+12,8; б) 65,14+49,76; в) 3,762+12,85; г) 85,4+129,756; д) 1,44+2,56.
  9. Представь единицу в виде суммы двух десятичных дробей. Найди еще двадцать способов такого представления.
  10. Найди разность: а) 13,4–8,7; б) 74,52–27,04; в) 49,736–43,45; г) 127,24–93,883; д) 67–52,07; е) 35,24–34,9975.
  11. Найди произведение: а) 7,6·3,8; б) 4,8·12,5; в) 2,39·7,4; г) 3,74·9,65.

дробного числа.

Десятичная запись дробного числа представляет собой набор двух и более цифр от $0$ до $9$, между которыми находится так называемая \textit{десятичная запятая}.

Пример 1

Например, $35,02$; $100,7$; $123 \ 456,5$; $54,89$.

Крайняя левая цифра в десятичной записи числа не может быть нулем, исключением является только случай, когда десятичная запятая стоит сразу после первой цифры $0$.

Пример 2

Например, $0,357$; $0,064$.

Часто десятичную запятую заменяют десятичной точкой. Например, $35.02$; $100.7$; $123 \ 456.5$; $54.89$.

Определение десятичной дроби

Определение 1

Десятичные дроби -- это дробные числа, которые представлены в десятичной записи.

Например, $121,05$; $67,9$; $345,6700$.

Десятичные дроби используются для более компактной записи правильных обыкновенных дробей, знаменателями которых являются числа $10$, $100$, $1 \ 000$ и т.д. и смешанные числа, знаменателями дробной части которых являются числа $10$, $100$, $1 \ 000$ и т.д.

Например, обыкновенную дробь $\frac{8}{10}$ можно записать в виде десятичной дроби $0,8$, а смешанное число $405\frac{8}{100}$ -- в виде десятичной дроби $405,08$.

Чтение десятичных дробей

Десятичные дроби, которые соответствуют правильным обыкновенным дробям , читаются также как и обыкновенные дроби, только впереди добавляется фраза «ноль целых». Например, обыкновенной дроби $\frac{25}{100}$ (читается «двадцать пять сотых») отвечает десятичная дробь $0,25$ (читается «нуль целых двадцать пять сотых»).

Десятичные дроби, которые соответствуют смешанным числам, читаются также как и смешанные числа. Например, смешанному числу $43\frac{15}{1000}$ соответствует десятичная дробь $43,015$ (читается «сорок три целых пятнадцать тысячных»).

Разряды в десятичных дробях

В записи десятичной дроби значение каждой цифры зависит от ее позиции. Т.е. в десятичных дробях также имеет место понятие разряда .

Разряды в десятичных дробях до десятичной запятой называются так же, как и разряды в натуральных числах. Разряды в десятичных дробях после запятой вынесены в таблицу:

Рисунок 1.

Пример 3

Например, в десятичной дроби $56,328$ цифра $5$ стоит в разряде десятков, $6$ - в разряде единиц, $3$ - в разряде десятых, $2$ - в разряде сотых, $8$ -- в разряде тысячных.

Разряды в десятичных дробях различают по старшинству. При чтении десятичной дроби движутся слева направо -- от старшего разряда к младшему .

Пример 4

Например, в десятичной дроби $56,328$ старшим (высшим) разрядом является разряд десятков, а младшим (низшим) -- разряд тысячных.

Десятичную дробь можно разложить по разрядам аналогично разложению по разрядам натурального числа.

Пример 5

Например, разложим по разрядам десятичную дробь $37,851$:

$37,851=30+7+0,8+0,05+0,001$

Конечные десятичные дроби

Определение 2

Конечными десятичными дробями называют десятичные дроби, в записях которых содержится конечное число знаков (цифр).

Например, $0,138$; $5,34$; $56,123456$; $350 972,54$.

Любую конечную десятичную дробь можно перевести в обыкновенную дробь или смешанное число.

Пример 6

Например, конечной десятичной дроби $7,39$ отвечает дробное число $7\frac{39}{100}$, а конечной десятичной дроби $0,5$ соответствует правильная обыкновенная дробь $\frac{5}{10}$ (или любая дробь, которая равна ей, например, $\frac{1}{2}$ или $\frac{10}{20}$.

Перевод обыкновенной дроби в десятичную дробь

Перевод обыкновенных дробей со знаменателями $10, 100, \dots$ в десятичные дроби

Перед переводом некоторых правильных обыкновенных дробей в десятичные их нужно предварительно «подготовить». Результатом такой подготовки должно быть одинаковое количество цифр в числителе и количество нулей в знаменателе.

Суть «предварительной подготовки» правильных обыкновенных дробей к переводу в десятичные дроби -- дописывание слева в числителе такого числа нулей, чтобы общее количество цифр стало равно числу нулей в знаменателе.

Пример 7

Например, подготовим обыкновенную дробь $\frac{43}{1000}$ к переводу в десятичную и получим $\frac{043}{1000}$. А обыкновенная дробь $\frac{83}{100}$ в подготовке не нуждается.

Сформулируем правило перевода правильной обыкновенной дроби со знаменателем $10$, или $100$, или $1 \ 000$, $\dots$ в десятичную дробь :

    записать $0$;

    после него поставить десятичную запятую;

    записать число из числителя (вместе с дописанными нулями после подготовки, если она была нужна).

Пример 8

Перевести правильную обыкновенную дробь $\frac{23}{100}$ в десятичную.

Решение.

В знаменателе стоит число $100$, которое содержит $2$ два нуля. В числителе стоит число $23$, в записи которого $2$.цифры. значит, подготовку для этой дроби к переводу в десятичную проводить не нужно.

Запишем $0$, поставим десятичную запятую и запишем число $23$ из числителя. Получим десятичную дробь $0,23$.

Ответ : $0,23$.

Пример 9

Записать правильную дробь $\frac{351}{100000}$ в виде десятичной дроби.

Решение.

В числителе данной дроби $3$ цифры, а число нулей в знаменателе -- $5$, поэтому данную обыкновенную дробь нужно подготовить к переводу в десятичную. Для этого необходимо дописать $5-3=2$ нуля слева в числителе: $\frac{00351}{100000}$.

Теперь можем составить нужную десятичную дробь. Для этого запишем $0$, затем поставим запятую и запишем число из числителя. Получим десятичную дробь $0,00351$.

Ответ : $0,00351$.

Сформулируем правило перевода неправильных обыкновенных дробей со знаменателями $10$, $100$, $\dots$ в десятичные дроби :

    записать число из числителя;

    отделить десятичной запятой столько цифр справа, сколько нулей в знаменателе исходной дроби.

Пример 10

Перевести неправильную обыкновенную дробь $\frac{12756}{100}$ в десятичную дробь.

Решение.

Запишем число из числителя $12756$, затем отделим десятичной запятой $2$ цифры справа, т.к. в знаменателе исходной дроби $2$ нуля. Получим десятичную дробь $127,56$.

Чтобы рациональное число m/n записать в виде десятичной дроби, нужно числитель разделить на знаменатель. При этом частное записывается конечной или бесконечной десятичной дробью.

Записать данное число в виде десятичной дроби.

Решение. Разделим в столбик числитель каждой дроби на ее знаменатель: а) делим 6 на 25; б) делим 2 на 3; в) делим 1 на 2, а затем получившуюся дробь припишем к единице — целой части данного смешанного числа.

Несократимые обыкновенные дроби, знаменатели которых не содержат других простых делителей, кроме 2 и 5 , записываются конечной десятичной дробью.

В примере 1 в случае а) знаменатель 25=5·5; в случае в) знаменатель равен 2, поэтому, мы получили конечные десятичные дроби 0,24 и 1,5 . В случае б) знаменатель равен 3, поэтому результат нельзя записать в виде конечной десятичной дроби.

А можно ли без деления в столбик обратить в десятичную дробь такую обыкновенную дробь, знаменатель которой не содержит других делителей, кроме 2 и 5? Разберемся! Какую дробь называют десятичной и записывают без дробной черты? Ответ: дробь со знаменателем 10; 100; 1000 и т.д. А каждое из этих чисел — это произведение равного количества «двоек» и «пятерок». На самом деле: 10=2 ·5 ; 100=2 ·5 ·2 ·5 ; 1000=2 ·5 ·2 ·5 ·2 ·5 и т.д.

Следовательно, знаменатель несократимой обыкновенной дроби нужно будет представить в виде произведения «двоек» и «пятерок», а затем домножить на 2 и (или) на 5 так, чтобы «двоек» и «пятерок» стало поровну. Тогда знаменатель дроби будет равен 10 или 100 или 1000 и т.д. Чтобы значение дроби не изменилось — числитель дроби умножим на то же число, на которое умножили знаменатель.

Представить в виде десятичной дроби следующие обыкновенные дроби:

Решение. Каждая из данных дробей является несократимой. Разложим знаменатель каждой дроби на простые множители.

20=2·2·5. Вывод: не хватает одной «пятерки».

8=2·2·2. Вывод: не хватает трех «пятерок».

25=5·5. Вывод: не хватает двух «двоек».

Замечание. На практике чаще не используют разложение знаменателя на множители, а просто задаются вопросом: на сколько нужно умножить знаменатель, чтобы в результате получилась единица с нулями (10 или 100 или 1000 и т.д.). А затем на это же число умножают и числитель.

Так, в случае а) (пример 2 ) из числа 20 можно получить 100 умножением на 5, поэтому, на 5 нужно умножить числитель и знаменатель.

В случае б) (пример 2 ) из числа 8 число 100 не получится, но получится число 1000 умножением на 125. На 125 умножается и числитель (3) и знаменатель (8) дроби.

В случае в) (пример 2 ) из 25 получится 100, если умножить на 4. Значит, и числитель 8 нужно умножить на 4.

Бесконечная десятичная дробь, у которой одна или несколько цифр неизменно повторяются в одной и той же последовательности, называется периодической десятичной дробью. Совокупность повторяющихся цифр называется периодом этой дроби. Для краткости период дроби записывают один раз, заключая его в круглые скобки.

В случае б) (пример 1 ) повторяющаяся цифра одна и равна 6. Поэтому, наш результат 0,66... запишется так: 0,(6) . Читают: нуль целых, шесть в периоде.

Если между запятой и первым периодом есть одна или несколько не повторяющихся цифр, то такая периодическая дробь называется смешанной периодической дробью.

Несократимая обыкновенная дробь, знаменатель которой вместе с другими множителями содержит множитель 2 или 5 , обращается в смешанную периодическую дробь.

Урок: Де-ся-тич-ная за-пись дроб-ных чисел

Дробные числа

Зна-ме-на-тель дроби может быть вы-ра-жен любым на-ту-раль-ным чис-лом. Дроб-ные числа, в ко-то-рых зна-ме-на-тель вы-ра-жен чис-лом 10; 100; 1000;… усло-ви-лись за-пи-сы-вать без зна-ме-на-те-ля. Любое дроб-ное число, в зна-ме-на-те-ле ко-то-ро-го 10; 100; 1000 и т.д. (то есть еди-ни-ца с несколь-ки-ми ну-ля-ми), можно пред-ста-вить в виде де-ся-тич-ной за-пи-си (в виде де-ся-тич-ной дроби). Сна-ча-ла пишут целую часть, затем чис-ли-тель дроб-ной части, и целую часть от дроб-ной от-де-ля-ют за-пя-той.

На-при-мер,

Если целая часть от-сут-ству-ет, т.е. дробь пра-виль-ная, тогда целую часть за-пи-сы-ва-ют в виде 0.

Запись десятичной дроби

Чтобы пра-виль-но за-пи-сать де-ся-тич-ную дробь, чис-ли-тель дроб-ной части дол-жен иметь столь-ко же зна-ков, сколь-ко нулей в дроб-ной части.

1. За-пи-ши-те в виде де-ся-тич-ной дроби.

2. Пред-ста-вить де-ся-тич-ную дробь в виде дроби или сме-шан-но-го числа.

3. Про-чи-тай-те де-ся-тич-ные дроби.

12,4 - 12 целых 4 де-ся-тых;

0,3 - 0 целых 3 де-ся-тых;

1,14 - 1 целая 14 сотых;

2,07 - 2 целых 7 сотых;

0,06 - 0 целых 6 сотых;

0,25 - 0 целых 25 сотых;

1,234 - 1 целая 234 ты-сяч-ных;

1,230 - 1 целая 230 ты-сяч-ных;

1,034 - 1 целая 34 ты-сяч-ных;

1,004 - 1 целая 4 ты-сяч-ных;

1,030 - 1 целая 30 ты-сяч-ных;

0,010101 - 0 целых 10101 мил-ли-он-ных.

4. Пе-ре-не-си-те за-пя-тую в каж-дой цифре на 1 раз-ряд влево и про-чи-тай-те числа.

34,1; 310,2; 11,01; 10,507; 2,7; 3,41; 31,02; 1,101; 1,0507; 0,27.

5. Пе-ре-не-си-те за-пя-тую в каж-дом из чисел на 1 раз-ряд впра-во и про-чи-тай-те по-лу-чив-ше-е-ся число.

1,37; 0,1401; 3,017; 1,7; 350,4; 13,7; 1,401; 30,17; 17; 3504.

6. Вы-ра-зи-те в мет-рах и сан-ти-мет-рах.

3,28 м = 3 м + .

7. Вы-ра-зи-те в тон-нах и ки-ло-грам-мах.

24,030 т = 24 т .

8. За-пи-ши-те в виде де-ся-тич-ной дроби част-ное.

1710: 100 = ;

64: 10000 =

803: 100 =

407: 10 =

Данный материал мы посвятим такой важной теме, как десятичные дроби. Сначала определимся с основными определениями, приведем примеры и остановимся на правилах десятичной записи, а также на том, что из себя представляют разряды десятичных дробей. Далее выделим основные виды: конечные и бесконечные, периодические и непериодические дроби. В финальной части мы покажем, как точки, соответствующие дробным числам, расположены на оси координат.

Yandex.RTB R-A-339285-1

Что такое десятичная запись дробных чисел

Так называемая десятичная запись дробных чисел может быть использована как для натуральных, так и для дробных чисел. Она выглядит как набор из двух и более цифр, между которыми есть запятая.

Десятичная запятая нужна для того, чтобы отделять целую часть от дробной. Как правило, последняя цифра десятичной дроби не бывает нулем, за исключением случаев, когда десятичная запятая стоит сразу после первого же нуля.

Какие можно привести примеры дробных чисел в десятичной записи? Это может быть 34 , 21 , 0 , 35035044 , 0 , 0001 , 11 231 552 , 9 и др.

В некоторых учебниках можно встретить использование точки вместо запятой (5 . 67 , 6789 . 1011 и др.) Это вариант считается равнозначным, но он более характерен для англоязычных источников.

Определение десятичных дробей

Основываясь на указанном выше понятии десятичной записи, мы можем сформулировать следующее определение десятичных дробей:

Определение 1

Десятичные дроби представляют собой дробные числа в десятичной записи.

Для чего нам нужна запись дробей в такой форме? Она дает нам некоторые преимущества перед обыкновенными, например, более компактную запись, особенно в тех случаях, когда в знаменателе стоят 1000 , 100 , 10 и др. или смешанное число. Например, вместо 6 10 мы можем указать 0 , 6 , вместо 25 10000 – 0 , 0023 , вместо 512 3 100 – 512 , 03 .

О том, как правильно представить в десятичном виде обыкновенные дроби с десятками, сотнями, тысячами в знаменателе, будет рассказано в рамках отдельного материала.

Как правильно читать десятичные дроби

Существуют некоторые правила чтения записей десятичных дробей. Так, те десятичные дроби, которым соответствуют их правильные обыкновенные эквиваленты, читаются почти так же, но с добавлением слов «ноль десятых» в начале. Так, запись 0 , 14 , которой соответствует 14 100 , читается как «ноль целых четырнадцать сотых».

Если же десятичной дроби можно поставить в соответствие смешанное число, то она читается тем же образом, как и это число. Так, если у нас есть дробь 56 , 002 , которой соответствует 56 2 1000 , мы читаем такую запись как «пятьдесят шесть целых две тысячных».

Значение цифры в записи десятичной дроби зависит от того, на каком месте она расположена (так же, как и в случае с натуральными числами). Так, в десятичной дроби 0 , 7 семерка – это десятые доли, в 0 , 0007 – десятитысячные, а в дроби 70 000 , 345 она означает семь десятков тысяч целых единиц. Таким образом, в десятичных дробях тоже существует понятие разряда числа.

Названия разрядов, расположенных до запятой, аналогичны тем, что существуют в натуральных числах. Названия тех, что расположены после, наглядно представлены в таблице:

Разберем пример.

Пример 1

У нас есть десятичная дробь 43 , 098 . У нее в разряде десятков находится четверка, в разряде единиц тройка, в разряде десятых – ноль, сотых – 9 , тысячных – 8 .

Принято различать разряды десятичных дробей по старшинству. Если мы движемся по цифрам слева направо, то мы будем идти от старших разрядов к младшим. Получается, что сотни старше десятков, а миллионные доли младше, чем сотые. Если взять ту конечную десятичную дробь, которую мы приводили в качестве примера выше, то в ней старшим, или высшим будет разряд сотен, а младшим, или низшим – разряд 10 -тысячных.

Любую десятичную дробь можно разложить по отдельным разрядам, то есть представить в виде суммы. Это действие выполняется так же, как и для натуральных чисел.

Пример 2

Попробуем разложить дробь 56 , 0455 по разрядам.

У нас получится:

56 , 0455 = 50 + 6 + 0 , 4 + 0 , 005 + 0 , 0005

Если мы вспомним свойства сложения, то сможем представить эту дробь и в других видах, например, как сумму 56 + 0 , 0455 , или 56 , 0055 + 0 , 4 и др.

Что такое конечные десятичные дроби

Все дроби, о которых мы говорили выше, являются конечными десятичными дробями. Это означает, что количество цифр, расположенное у них после запятой, является конечным. Выведем определение:

Определение 1

Конечные десятичные дроби представляют собой вид десятичных дробей, у которых после знака запятой стоит конечное число знаков.

Примерами таких дробей могут быть 0 , 367 , 3 , 7 , 55 , 102567958 , 231 032 , 49 и др.

Любую из этих дробей можно перевести либо в смешанное число (если значение их дробной части отличается от нуля), либо в обыкновенную дробь (при нулевой целой части). Тому, как это делается, мы посвятили отдельный материал. Здесь просто укажем пару примеров: так, конечную десятичную дробь 5 , 63 мы можем привести к виду 5 63 100 , а 0 , 2 соответствует 2 10 (или любая другая равная ей дробь, например, 4 20 или 1 5 .)

Но обратный процесс, т.е. запись обыкновенной дроби в десятичном виде, может быть выполнен не всегда. Так, 5 13 нельзя заменить на равную дробь с знаменателем 100 , 10 и др., значит, конечная десятичная дробь из нее не получится.

Основные виды бесконечных десятичных дробей: периодические и непериодические дроби

Мы указывали выше, что конечные дроби называются так потому, что после запятой у них стоит конечное число цифр. Однако оно вполне может быть и бесконечным, и в этом случае сами дроби также будут называться бесконечными.

Определение 2

Бесконечными десятичными дробями называются такие, у которых после запятой стоит бесконечное количество цифр.

Очевидно, что полностью такие числа записаны быть просто не могут, поэтому мы указываем лишь часть из них и дальше ставим многоточие. Это знак говорит о бесконечном продолжении последовательности знаков после запятой. Примерами бесконечных десятичных дробей могут быть 0 , 143346732 … , 3 , 1415989032 … , 153 , 0245005 … , 2 , 66666666666 … , 69 , 748768152 … . и т.д.

В «хвосте» такой дроби могут стоять не только случайные на первый взгляд последовательности цифр, но постоянное повторение одного и того же знака или группы знаков. Дроби с чередованием после десятичной запятой называются периодическими.

Определение 3

Периодическими десятичными дробями называются такие бесконечные десятичные дроби, у которых после запятой повторяется одна цифра или группа из нескольких цифр. Повторяющаяся часть называется периодом дроби.

К примеру, для дроби 3 , 444444 … . периодом будет цифра 4 , а для 76 , 134134134134 … – группа 134 .

Какое же минимальное количество знаков допустимо оставить в записи периодической дроби? Для периодических дробей достаточно будет записать весь период один раз в круглых скобках. Так, дробь 3 , 444444 … . правильно будет записать как 3 , (4) , а 76 , 134134134134 … – как 76 , (134) .

В целом записи с несколькими периодами в скобках будут иметь точно такой же смысл: к примеру, периодическая дробь 0 , 677777 – это то же самое, что 0 , 6 (7) и 0 , 6 (77) и т.д. Также допустимы записи вида 0 , 67777 (7) , 0 , 67 (7777) и др.

Во избежание ошибок введем однообразие обозначений. Условимся записывать только один период (максимально короткую последовательность цифр), который стоит ближе всего к десятичной запятой, и заключать его в круглые скобки.

То есть для указанной выше дроби основной будем считать запись 0 , 6 (7) , а, например, в случае с дробью 8 , 9134343434 будем писать 8 , 91 (34) .

Если знаменатель обыкновенной дроби содержит простые множители, не равные 5 и 2 , то при переводе в десятичную запись из них получатся бесконечные дроби.

В принципе, любую конечную дробь мы можем записать в виде периодической. Для этого нам просто нужно добавить справа бесконечно много нулей. Как это выглядит в записи? Допустим, у нас есть конечная дробь 45 , 32 . В периодическом виде она будет выглядеть как 45 , 32 (0) . Это действие возможно потому, что добавление нулей справа в любую десятичную дробь дает нам в результате равную ей дробь.

Отдельно следует остановиться на периодических дробях с периодом 9 , например, 4 , 89 (9) , 31 , 6 (9) . Они являются альтернативной записью схожих дробей с периодом 0 , поэтому их часто заменяют при письме именно дробями с нулевым периодом. При этом к значению следующего разряда добавляют единицу, а в круглых скобках указывают (0) . Равенство получившихся чисел легко проверить, представив их в виде обыкновенных дробей.

К примеру, дробь 8 , 31 (9) можно заменить на соответствующую ей дробь 8 , 32 (0) . Или 4 , (9) = 5 , (0) = 5 .

Бесконечные десятичные периодические дроби относятся к рациональным числам. Иначе говоря, любую периодическую дробь можно представить в виде обыкновенной, и наоборот.

Существуют и дроби, у которых после запятой бесконечно повторяющаяся последовательность отсутствует. В таком случае их называют непериодическими дробями.

Определение 4

К непериодическим десятичным дробям относятся те бесконечные десятичные дроби, в которых после запятой не содержится периода, т.е. повторяющейся группы цифр.

Иногда непериодические дроби выглядят очень похожими на периодические. Например, 9 , 03003000300003 … на первый взгляд кажется имеющей период, однако подробный анализ знаков после запятой подтверждает, что это все же непериодическая дробь. С такими числами надо быть очень внимательным.

Непериодические дроби относятся к иррациональным числам. В обыкновенные дроби их не переводят.

Основные действия с десятичными дробями

С десятичными дробями можно производить следующие действия: сравнение, вычитание, сложение, деление и умножение. Разберем каждое из них отдельно.

Сравнение десятичных дробей может быть сведено к сравнению обыкновенных дробей, которые соответствуют исходным десятичным. Но бесконечные непериодические дроби свести к такому виду нельзя, а перевод десятичных дробей в обыкновенные зачастую является трудоемкой задачей. Как же быстро произвести действие сравнения, если нам нужно сделать это по ходу решения задачи? Удобно сравнивать десятичные дроби по разрядам таким же образом, как мы сравниваем натуральные числа. Этому методу мы посвятим отдельную статью.

Чтобы складывать одни десятичные дроби с другими, удобно использовать метод сложения столбиком, как для натуральных чисел. Чтобы складывать периодические десятичные дроби, необходимо предварительно заменить их обыкновенными и считать по стандартной схеме. Если же по условиям задачи нам надо сложить бесконечные непериодические дроби, то нужно перед этим округлить их до некоторого разряда, а потом уже складывать. Чем меньше разряд, до которого мы округляем, тем выше будет точность вычисления. Для вычитания, умножения и деления бесконечных дробей предварительное округление также необходимо.

Нахождение разности десятичных дробей обратно действию сложения. По сути, с помощью вычитания мы можем найти такое число, сумма которого с вычитаемой дробью даст нам уменьшаемую. Подробнее об этом расскажем в рамках отдельного материала.

Умножение десятичных дробей производится так же, как и для натуральных чисел. Для этого тоже подходит метод вычисления столбиком. Это действие с периодическими дробями мы опять же сводим к умножению обыкновенных дробей по уже изученным правилам. Бесконечные дроби, как мы помним, надо округлить перед подсчетами.

Процесс деления десятичных дробей является обратным процессу умножения. При решении задач мы также пользуемся подсчетами в столбик.

Можно установить точное соответствие между конечной десятичной дробью и точкой на оси координат. Выясним, как отметить точку на оси, которая будет точно соответствовать необходимой десятичной дроби.

Мы уже изучали, как построить точки, соответствующие обыкновенным дробям, а ведь десятичные дроби можно привести к такому виду. Например, обыкновенная дробь 14 10 – это то же самое, что и 1 , 4 , поэтому соответствующая ей точка будет удалена от начала отсчета в положительном направлении ровно на такое же расстояние:

Можно обойтись без замены десятичной дроби на обыкновенную, а взять на основу метод разложения по разрядам. Так, если нам надо отметить точку, координата которой будет равна 15 , 4008 , то мы предварительно представим это число в виде суммы 15 + 0 , 4 + , 0008 . Для начала отложим от начала отсчета 15 целых единичных отрезков в положительном направлении, потом 4 десятых доли одного отрезка, а потом 8 десятитысячных долей одного отрезка. В итоге мы получим точку координат, которой соответствует дробь 15 , 4008 .

Для бесконечной десятичной дроби лучше пользоваться именно этим способом, поскольку он позволяет приблизиться к нужной точке сколь угодно близко. В некоторых случаях можно построить и точное соответствие бесконечной дроби на оси координат: так, 2 = 1 , 41421 . . . , и с этой дробью может быть соотнесена точка на координатном луче, удаленная от 0 на длину диагонали квадрата, сторона которого будет равна одному единичному отрезку.

Если мы находим не точку на оси, а десятичную дробь, соответствующую ей, то это действие называется десятичным измерением отрезка. Посмотрим, как правильно это сделать.

Допустим, нам нужно попасть от нуля в заданную точку на оси координат (или максимально приблизиться в случае с бесконечной дробью). Для этого мы постепенно откладываем единичные отрезки от начала координат, пока не попадем в нужную точку. После целых отрезков при необходимости отмеряем десятые, сотые и более мелкие доли, чтобы соответствие было максимально точным. В итоге мы получили десятичную дробь, которая соответствует заданной точке на оси координат.

Выше мы приводили рисунок с точкой M . Посмотрите на него еще раз: чтобы попасть в эту точку, нужно отмерить от нуля один единичный отрезок и четыре десятых доли от его, поскольку этой точке соответствует десятичная дробь 1 , 4 .

Если мы не можем попасть в точку в процессе десятичного измерения, то значит, что ей соответствует бесконечная десятичная дробь.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter