Болезни Военный билет Призыв

Робототехника: с чего начать изучение, где заниматься и каковы перспективы. В какие вузы идти учиться

Роботехника - сравнительно новое и интенсивно развивающееся научное направление, вызванное к жизни необходимостью освоения новых сфер и областей деятельности человека, а также потребностью широкой автоматизации современного производства, направленной на резкое повышение его эффективности. Использование автоматических программируемых устройств - роботов - в исследовании космоса и океанских глубин, а с 60-х гг. нашего столетия и в производственной сфере, быстрый прогресс в области создания и использования роботов в последние годы обусловили необходимость интеграции научных знаний ряда смежных фундаментальных и технических дисциплин в едином научно-техническом направлении - робототехнике .

Идея создания роботов - механических устройств, своим внешним видом и действиями подобных людям или каким-либо живым существам, увлекала человечество с незапамятных времен. Даже в легендах и мифах человек стремился создать образ рукотворных существ, наделенных фантастической физической силой и ловкостью, способных летать, жить под землей и водой, действовать самостоятельно и в то же время беспрекословно подчиняться человеку и выполнять за него самую тяжелую и опасную работу. Еще в "Илиаде" Гомера (VI в. до н. э.) говорится о том, что хромоногий кузнец Гефест, бог огня и покровитель кузнечного ремесла, выковал из золота девушек, которые исполняли его поручения.

Навстречу ему золотые служанки вмиг подбегали, Подобные девам живым, у которых Разум в груди заключен и голос, и сила, Которых самым различным трудам обучали Бессмертные боги...

У современного человека эти "служанки" непременно ассоциируются с антропоморфными, т.е. созданными по образу и подобию человека, автоматическими универсальными устройствами - роботами.

Теория робототехники опирается на такие дисциплины, как электроника, механика, информатика, а также радиотехника и электротехника. Выделяют строительную, промышленную, бытовую, авиационную и экстремальную (военную, космическую, подводную) робототехнику.

Сегодня человечество практически вплотную подошло к тому моменту, когда роботы будут использоваться во всех сферах жизнедеятельности. Поэтому курсы робототехники и компьютерного программирования необходимо вводить в образовательные учреждения.

Изучение робототехники позволяет решить следующие задачи, которые стоят перед информатикой как учебным предметом. А именно, рассмотрение линии алгоритмизация и программирование, исполнитель, основы логики и логические основы компьютера.

Также изучение робототехники возможно в курсе математики (реализация основных математических операций, конструирование роботов), технологии (конструирование роботов, как по стандартным сборкам, так и произвольно), физики (сборка деталей конструктора, необходимых для движения робота-шасси).

Классы роботов

Манипуляционный робот - автоматическая машина (стационарная или передвижная), состоящая из исполнительного устройства в виде манипулятора, имеющего несколько степеней подвижности, и устройства программного управления, которая служит для выполнения в производственном процессе двигательных и управляющих функций. Такие роботы производятся в напольном, подвесном и портальном исполнениях. Получили наибольшее распространение в машиностроительных и приборостроительных отраслях.

Мобильный робот - автоматическая машина, в которой имеется движущееся шасси с автоматически управляемыми приводами. Такие роботы могут быть колёсными, шагающими и гусеничными (существуют также ползающие, плавающие и летающие мобильные робототехнические системы.

Компоненты роботов

Приводы - это «мышцы» роботов. В настоящее время самыми популярными двигателями в приводах являются электрические, но применяются и другие, использующие химические вещества или сжатый воздух.

Двигатели постоянного тока : В настоящий момент большинство роботов используют электродвигатели, которые могут быть нескольких видов.

Шаговые электродвигатели : Как можно предположить из названия, шаговые электродвигатели не вращаются свободно, подобно двигателям постоянного тока. Они поворачиваются пошагово на определённый угол под управлением контроллера. Это позволяет обойтись без датчика положения, так как угол, на который был сделан поворот, заведомо известен контроллеру; поэтому такие двигатели часто используются в приводах многих роботов и станках с ЧПУ.

Пьезодвигатели : Современной альтернативой двигателям постоянного тока являются пьезодвигатели, также известные как ультразвуковые двигатели. Принцип их работы весьма оригинален: крошечные пьезоэлектри

ческие ножки, вибрирующие с частотой более 1000 раз в секунду, заставляют мотор двигаться по окружности или прямой. Преимуществами подобных двигателей являются высокое нанометрическое разрешение, скорость и мощность, несоизмеримая с их размерами. Пьезодвигатели уже доступны на коммерческой основе и также применяются на некоторых роботах.

Воздушные мышцы : Воздушные мышцы - простое, но мощное устройство для обеспечения силы тяги. При накачивании сжатым воздухом мышцы способны сокращаться до 40 % от своей длины. Причиной такого поведения является плетение, видимое с внешней стороны, которое заставляет мышцы быть или длинными и тонкими, или короткими и толстыми[источник не указан 987 дней]. Так как способ их работы схож с биологическими мышцами, их можно использовать для производства роботов с мышцами и скелетом, аналогичными мышцам и скелету животных.

Электроактивные полимеры : Электроактивные полимеры - это вид пластмасс, который изменяет форму в ответ на электрическую стимуляцию. Они могут быть сконструированы таким образом, что могут гнуться, растягиваться или сокращаться. Впрочем, в настоящее время нет ЭАП, пригодных для производства коммерческих роботов, так как все ныне существующие их образцы неэффективны или непрочны.

Эластичные нанотрубки : Это - многообещающая экспериментальная технология, находящаяся на ранней стадии разработки. Отсутствие дефектов в нанотрубках позволяет волокну эластично деформироваться на несколько процентов. Человеческий бицепс может быть заменён проводом из такого материала диаметром 8 мм. Подобные компактные «мышцы» могут помочь роботам в будущем обгонять и перепрыгивать человека.

Способы перемещения

Колёсные и гусеничные роботы

Шагающие роботы

Другие методы перемещения:

  • Летающие роботы (в том числе БПЛА – беспилотные летательные аппараты).
  • Ползающие роботы.
  • Роботы, перемещающиеся по вертикальным поверхностям.
  • Плавающие роботы.

Системы управления

Под управлением роботом понимается решение комплекса задач, связанных с адаптацией робота к кругу решаемых им задач, программированием движений, синтезом системы управления и её программного обеспечения.

По типу управления робототехнические системы подразделяются на:

1. Биотехнические :

1.1. командные (кнопочное и рычажное управление отдельными звеньями робота);

1.2. копирующие (повтор движения человека, возможна реализация обратной связи, передающей прилагаемое усилие, экзоскелеты);

1.3. полуавтоматические (управление одним командным органом, например, рукояткой всей кинематической схемой робота);

2. Автоматические :

2.1. программные (функционируют по заранее заданной программе, в основном предназначены для решения однообразных задач в неизменных условиях окружения);

2.2. адаптивные (решают типовые задачи, но адаптируются под условия функционирования);

2.3. интеллектуальные (наиболее развитые автоматические системы);

3. Интерактивные :

3.1. автоматизированные (возможно чередование автоматических и биотехнических режимов);

3.2. супервизорные (автоматические системы, в которых человек выполняет только целеуказательные функции);

3.3. диалоговые (робот участвует в диалоге с человеком по выбору стратегии поведения, при этом как правило робот оснащается экспертной системой, способной прогнозировать результаты манипуляций и дающей советы по выбору цели).

Среди основных задач управления роботами выделяют такие:

  • планирование положений;
  • планирование движений;
  • планирование сил и моментов;
  • анализ динамической точности;
  • идентификация кинематических и динамических характеристик робота.

В развитии методов управления роботами огромное значение имеют достижения технической кибернетики и теории автоматического управления.

Подвиды современных роботов:

  • Промышленные роботы

  • Медицинские роботы

  • Бытовые роботы
  • Роботы для обеспечения безопасности
  • Боевые роботы
  • Роботы-учёные

К настоящему времени роботы внедрены во многие сферы деятельности человека и продолжают дополнять и иногда заменять людской труд как в опасных видах деятельности, так и в повседневной жизни.

Фантасты 50-х представляли себе 2000 год с летающими машинами и роботами, живущими бок о бок с человеком.
Как мы видим, этого пока не случилось, тем не менее сфера робототехники постепенно развивались в течение десятилетий, иногда стремительно затем ее развитие приутихло, но в настоящее время вновь возобносила небывалый рост. Каждый месяц производятся тысячи различных промышленных роботов, разрабатываются гуманоиды и андроиды, ученые всего мира работают созданием искусственного интеллекта, и все это -только начало.

Робототехника - это не самостоятельная отрасль, прежде всего это синергия всех последних достижений технических, естественных наук и информационных технологий.

Когда мы говорим "робот", то люди далеки от техники его примерно так и представляют как в советских фантастических фильмах с железными руками и ногами. Конечно, мы вкладываем в это понятие гораздо более широкий смысл.

Выделяют следующие группы роботов:

1. Промышленные - когда говорят "роботизация" имеют ввиду прежде всего развитие этой сферы.

2. Военные - единственный вид, который получил развитие в России, к ним же можно отнести роботов ливидаторов различных аварий и природных катаклизмов.

3. Космические - к ним относятся и спутники, планетоходы и антропоморфные роботы, помогающие космонавтам.

4. Бытовые - уборщики, кухонные роботы, роботы - компаньоны.

5. Андроиды, гуманоиды - различные антропоморфные роботы, чьей целью является усовершенствование "человекообразности" роботов для различных социальных целей.

История робототехники

Автоматизация и роботизация производства в капиталистическом мире началась в 50-е годы XX века. Именно к тому времени можно отнести появление первых промышленных роботов. Они осуществляли сборку оборудования, и простейшие монотонные операции.
Первый такой робот был разработан изобретателем самоучкой Джоржем Деволом в 1954 году. Робот-манипулятор весил две тонны и управлялся программой записанной на магнитном барабане. Система получила название Unimate на новое устройство был оформлен патент и а в 1961 изобретатель основал компанию Unimation.

Первый робот был установлен на заводе Дженерал Моторс (на литейном участке) в 1961 году. Затем новинка была опробована заводами Chrysler и Ford,

Система Unimate применялась для работы с литыми металлическими деталями, которые манипулятор извлекал из форм отливки. Захватиное устройство управлялось гидроприводом.
Робот имел 5 степеней свободы и захватное устройство с двумя "пальцами". Точность работы была весьма высока до 1,25 мм. И был эффективнее человека - работал и быстрее и с меньшим количеством брака.

В 1967 промышленные манипуляторы приходят Европу. Они уже расширяют свой функционал, осваивают профессии сварщика, маляра. У робота появляется "техническое зрение" посредством видеокамер и датчиков, он учится определять габариты изделий и место их расположения.

В 1982 году IBM разрабатывает официальный язык для программирования робототехнических систем. В 1984 - компания Adept представила первый робот Scara с электроприводом .
Новая конструкция сделала роботы более простыми и надежными, сохранив высокую скорость.

В 90-е появился контроллер с интуитивным интерфейсом управления, которому мог управлять оператор, он мог изменять параметры и регулировать режим работы. С тех пор возможности управления роботами и их функиции только развивались, увеличивалась их сложность, скорость, число осей, стали использоваться различные материалы, шире становились возможности разработки и управления, было сделано несколько первых уверенных шагов в сторону искусственного интеллекта.

В то же время в СССР был фактически лидером в робототехнике. Началось все еще в 30-е годы. В 1936 году 16–летний советский школьник Вадим Мацкевич создал робота, который умел поднимать правую руку. Для этого он потратил 2 года работы в токарных мастерских новочеркасского Политеха. Ранее, в 12 лет создал маленький радиоуправляемый броневик, стрелявший фейерверками. На "робота" Мацкевича обратили внимание власти и в 1937 году он представлял его на Всемирной выставке 1937 года в Париже.

На рубеже 30 - 40-х гг. XX в. в СССР также появились автоматические линии для обработки деталей подшипников, а в конце 40-х гг. XX в. впервые в мировой практике было создано комплексное производство поршней для тракторных двигателей с автоматизацией всех процессов - от загрузки сырья до упаковки готовой продукции.

В 1966 в Воронеже был изобретен манипулятор для укладки металлических листов, в 1968 в Ленинграде году разработали подводный робот "Манта" с чувствительным захватным устройством - в дальнейшем он совершенствовался. В 1969 году в ЦНИТИ Миноборонпрома приступили к разработке промышленного робота «Универсал-50». В дальнейшем активно внедрялись автоматизированные системы на крупные производства.

В 1985 году уже использовалось 40 тыс промышленых роботов и в несколько раз превосходило количество, используемых в США. Автоматизированые линии вовсю работали на АвтоВазе в 80-е года и даже подвергались атакам работников-"хакеров".

Были крупные военные и космические разработки. Уникальным достижением по тем временам был беспилотный разведчик ДБР-1, который был принят на вооружение ВВС СССР еще в 1964 году. Такой аппарат мог выполнять разведывательные задачи над всей территорией Западной и Центральной Европы.

Одним из самых заметных достижений отечественной робототехники и науки стало создание в КБ им. Лавочкина «Лунохода-1». Именно советский аппарат стал первым в мире планетоходом, который успешно выполнил свою миссию на поверхности другого небесного тела.

В 1983 году на вооружение ВМФ СССР был принят уникальный противокорабельный комплекс П-700 «Гранит». Его особенностью стало то, что при залповом пуске ракеты могли самостоятельно выстраиваться в боевой порядок и во время полета обмениваться между собой информацией, самостоятельно распределяя цели. При этом одна из ракет комплекса могла играть роль лидера, занимая более высокий эшелон атаки.

Развивались и "роботы-гуманоиды": в 1962 году появился первый робот экскурсовод Рэкс - он проводил экскурсии для детей в Политехническом музее. Говорят, он все еще там "работает".

В Советском Союзе было выпущено более 100 тыс. единиц промышленной робототехники. Они заменили более одного миллиона рабочих, но в 90-е годы эти роботы исчезли.

В дальнейшем развитие робототехники идет ударными темпами, потому что развивается ключевые отрасли - физика, химия, электротехника и главное - электроника. На смену вакуумным лампам пришла силовая электроника, позже микросхемы, затем микроконтроллеры... Появляются новые материалы, новые способы автоматизации и методы программирования.

Но к России и СНГ это не уже не относится. Прежде всего развитие происходит в США, в Юго-Восточной Азии и Западной Европе.

На производствах внедряются управляемые роботизированные линии, роботы манипуляторы используются во всех отраслях промышленности, в сельском хозяйстве, медицине, в космосе и, конечно, в быту.

В некоторых отраслях до 50% работ выполняют промышленные роботы, например в автомобилестроении они могут сварить, покрасить, и переместить детали на другой участок сборки, где ими займутся другие роботы.

Существуют даже 100% автоматизированные фабрики. В Японии есть завод где роботы сами собирают роботов. И даже готовят еду для 2000 человек - офисного центра, обслуживающего этот завод.

В 90-е годы наблюдался некоторый спад. Внедрение роботов, использующих существующие в то время технологии, на производство не принесло ожидаемой прибыли и финансирование некоторых крупномасштабных проектов было приостановлено. По ряду причин - и экономических, и социальных - ожидаемого бума не произошло, они остались как нишевая продукция для автосборочных и ряда других производств.

Резкий скачок произошел только в середине нулевых и это развитие продолжается. Прежде всего из-за того, что в робототехнике заинтересовались военные...

Остановить уже развитие невозможно и все странам, желающим быть в авангарде мировой промышленности приходится это принимать и догонять.

Устройство робота и задачи робототехники

Выделяют шесть общих задач роботехники:

  1. Перемещение - передвижение в любой среде
  2. Ориентация - осознавать свое местоположение
  3. Манипуляция - свободно манипулировать предметами окружающей среды
  4. Взаимодействие - контактировать с себеподобными
  5. Коммуникация - свободно общаться с человеком
  6. Искусственный интеллект - робот должен самостоятельно решать как ему выполнить команду человека

Самое оптимальное перемещение робота на колесах и гусеничной платформе. Именно эти способы обеспечивают наибольшую устойчивость и проходимость.
У колесных платформ с проходимостью сложнее - колесо не может преодолеть препятствие выше, чем его радиус. Колесные схемы постоянно совершенствуются, используются мощные серводвигатели , разрабатывается независимые подвески, применяются покрышки с грунтозацепами.

Устойчивы четырехноние и инсектоморфные роботы (это значит в форме насекомых, несколько "ног", обычно 6) Такие устройства часто используются для военных целей.

Ходить на двух ногах робот учился очень долго. Из всех существующих с этим хорошо справляется только гуманоид ASIMO от Honda он умеет не только устойчиво ходить, но и подниматься по ступеням, компания его разрабатывала более 25 лет
Большинство же человекоподобных роботов пока передвигаются на платформе.

Кроме хождения по земле опреденные модели могут ползать, плавать и летать.

Ориентрируется в пространстве робот с помощью датчиков, сенсоров, видеокамер, имеет способность "видеть" в инфракрасном диапазоне, улаваливать ультразвуковые колебания и воспринимать тепловое излучение.
Управлять может и оператор, он может находиться в той же комнате или за несколько километров.

Все озвученные задачи робототехники в той или иной мере решаются. Робот становится совершеннее, он умеет сотрудничать с другими роботами, учится общаться человеком и лучше его понимать.

Интересная схема обучения космического робота-спутника, вероятно этот же принцип используется для настройки других робототехнических систем. "Эмоциональное обучение", как называют его разработчики. Суть его в том, что в нем закладывается "аппарат эмоций", который сообщает спутнику что для него "хорошо", а что "плохо". Хорошо - если он нацеливается на конкретный заданный обьект - это увеличивает оценку, плохо - если от него отклоняется - оценка будет уменьшена. Ну и так пока устройство не станет стабильным "хорошистом".
Например, это может пригодиться для космических телескопов. Обучение проводится с помощью оператора и занимает около 20 минут, результат отображается в базе знаний.

Конкретно это описанное устройство космонавт может выбросить в открытый космос: остальные действия спутник выполнит сам. В концепте разработана модель нервной системы, которая логически следует из тех условий, в которых работает нервная система всех живых организмов.
Робототехника будущего может самостоятельно собирать новые знания, анализировать их и применять на практике.

Робототехника - одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Кроме того, роботостроение может показаться занимательней прочего: сконструировать робота значит почти что создать новое существо, пусть и электронное, что, конечно же, привлекает. Впрочем, и в этой отрасли все может оказаться непросто, особенно на первых порах. Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Робототехника — одно из перспективнейших направлений в сфере интернет-технологий, а то, что за ИТ-сферой будущее, в наше время и объяснять не надо. Роботостроение — увлекательнейшая штука: сконструировать робота значит почти что создать новое существо, пусть и электронное.

С 60-х годов прошлого века автоматизированные и самоуправляющиеся устройства, делающие какую-либо работу за человека, стали использоваться для исследований и в производстве, затем в сфере услуг и с тех с каждым годом прочнее занимают свое место в жизни людей. Конечно, нельзя сказать, что в России все сплошь выполняется самостоятельными механизмами, однако определенный вектор в эту сторону точно намечается. Вот уже и Сбербанк планирует заменить три тысячи юристов умными машинами.

Вместе с экспертами попытаемся разобраться, зачем нужна роботехника и как к ней подступиться.

Чем отличается робототехника для детей от профессиональной?

Если коротко, то робототехника для детей направлена на изучение предмета, тогда как профессиональная - на решение конкретных задач. Если специалисты создают промышленные манипуляторы, выполняющие разные технологические задачи, или специализированные колесные платформы, то любители и дети, конечно же, занимаются вещами попроще.

Татьяна Волкова, сотрудник Центра интеллектуальной робототехники: «Как правило, с чего все начинают: разбираются с моторами и заставляют робота элементарно ехать вперед, потом - делать повороты. Когда робот выполняет команды движения, можно уже подключить датчик и сделать так, чтобы робот ехал на свет или, наоборот, «убегал» от него. А дальше идет любимая задача всех новичков: робот, который ездит по линии. Устраиваются даже различные гонки роботов».

Как понять, есть ли у ребенка склонность к робототехнике?

Для начала нужно купить конструктор и посмотреть, нравится ли ребенку собирать его. А дальше и в кружок можно отдать. Занятия помогут ему развить мелкую моторику, фантазию, пространственное восприятие, логику, концентрацию и терпеливость.

Чем быстрее получится определиться с направлением роботехники — конструирование, электроника, программирование — тем лучше. Все три области обширны и требуют отдельного изучения.

Александр Колотов, ведущий специалист STEM-программ в Университете Иннополис: «Если ребенку нравится собирать конструктор, то ему подойдёт конструирование. Если ему интересно изучать, как устроена вещь, то ему понравится заниматься электроникой. Если у ребенка тяга к математике, то его заинтересует программирование».

Когда начинать обучение робототехнике?

Начинать изучение и записываться в кружки лучше всего с детства, впрочем, не слишком рано — в 8-12 лет , говорят специалисты. Раньше ребенку сложнее уловить понятные абстракция, а позднее, в подростковом возрасте, у него могут появиться другие интересы, и он станет отвлекаться. Также ребенка необходимо мотивировать на изучение математики, чтобы ему было интересно и легко в будущем проектировать механизмы и схемы, составлять алгоритмы.

С 8-9 лет ребята уже могут понимать и запоминать, что такое резистор, светодиод, конденсатор, а позже и понятия из школьной физики осваивать с опережением школьной программы. Не важно, станут они специалистами в этой области или нет, полученные знания и навыки точно даром не пропадут.

В 14-15 лет нужно продолжать заниматься математикой, отодвинуть занятия в кружке по робототехнике на второй план и начать изучение программирования более серьезно - разбираться не только в сложных алгоритмах, но и в структурах хранения данных. Далее идут математический базис и знания в алгоритмизации, погружение в теорию механизмов и машин, проектирование электромеханической оснастки робототехнического устройства, реализацию алгоритмов автоматической навигации, алгоритмы компьютерного зрения и машинное обучение.

Александр Колотов: «Если в этот момент познакомить будущего специалиста с основами линейной алгебры, комплексным счислением, теорией вероятности и статистики, то к поступлению в вуз он уже будет хорошо представлять, зачем ему стоит обращать дополнительное внимание на эти предметы при получении высшего образования».

Какие конструкторы выбрать?

Для каждого возраста существуют свои образовательные программы, конструкторы и платформы, различающиеся степенью сложности. Можно найти как зарубежные, так и отечественные продукты. Есть дорогие наборы для робототехники (в районе 30 тыс. руб. и выше), есть и подешевле, совсем простые (в пределах 1-3 тыс. руб.).

Если ребенку 8-11 лет , можно купить конструкторы Lego или Fischertechnik (хотя, конечно, производители имеют предложения как для более младшего, так и для старшего возрастов). Конструктор Lego для робототехники обладает интересными деталями, яркими фигурками, он легок в сборке и снабжен подробной инструкцией. Серия конструкторов Fischertechnik для робототехники приближает к настоящему процессу разработки, здесь вам и провода, и штекеры, и визуальная среда программирования.

В 13-14 лет можно начать работать с ТРИК или модулями Arduino, которые, по словам Татьяны Волковой, является практически стандартом в области образовательной робототехники, а также Raspberry. ТРИК сложнее Lego, но легче Arduino и Raspberry Ri. Последние две уже требуют базовых навыков программирования.

Что еще потребуется изучить?

Программирование . Избежать его возможно только на первоначальном этапе, потом же без него никуда. Начать можно с Lego Mindstorms, Python, ROS (Robot Operating System).

Базовую механику. Начинать можно с поделок из бумаги, картона, бутылок, что важно и для мелкой моторики, и для общего развития. Самого простого робота можно сделать вообще из отдельных деталей (моторчики, провода, фотодатчик и одна несложная микросхема). Познакомиться с базовой механикой поможет «Мастерилка с папашей Шперхом».

Основы электроники. Для начала научиться собирать простые схемы. Для детей до восьми лет эксперты советуют конструктор «Знаток», дальше можно перейти к набору «Основы электроники. Начало».

Где заниматься робототехникой детям?

Если видите у ребенка интерес, можно отдать его в кружки и на курсы, хотя можно заниматься и самостоятельно. На курсах ребенок будет под руководством специалистов, сможет найти единомышленников, займется робототехникой на регулярной основе.

Также желательно сразу понять, чего хочется от занятий: участвовать в соревнованиях и бороться за призовые места, участвовать в проектной деятельности или просто заниматься для себя.

Алексей Колотов: «Для серьезных занятий, проектов, участия в соревнованиях нужно выбирать кружки, с небольшими группами по 6—8 человек и тренером, который приводит учеников к призовым местам на соревнованиях, который постоянно сам развивается и дает интересные задачи. Для занятий в виде хобби можно пойти в группы до 20 человек».

Как выбирать курсы для занятий робототехникой?

При записи на курсы обратите внимание на педагога , рекомендует коммерческий директор компании Promobot Олег Кивокурцев. «Бывают прецеденты, когда педагог просто отдает ребятам оборудование, а дальше занимайтесь кто чем хочет», — согласна с Олегом Татьяна Волкова. От таких занятий толку будет мало.

При выборе курсов также стоит обратить внимание и на имеющуюся материально-техническую базу . Есть ли там конструкторские наборы (не только Lego), имеется ли возможность писать программы, изучать механику и электронику, самому делать проекты. На каждую пару учащихся должен быть свой робототехнический комплект. Желательно с дополнительными деталями (колесами, шестернями, элементами каркаса), если хочется участвовать в соревнованиях. Если с одним набором работает сразу несколько команд то, скорее всего, никаких серьезных соревнования не предполагается.

Поинтересуйтесь, в каких соревнованиях участвует клуб робототехники . Помогают ли эти конкурсы закрепить полученные навыки и дают ли возможность для дальнейшего развития.

Соревнование Robocup 2014

Как изучать робототехнику самостоятельно?

Курсы требуют денег и времени. Если первого не хватает и регулярно ходить куда-либо не получится, можно заняться с ребенком самостоятельным изучением. Важно, чтобы родители обладали необходимой компетенцией в этой сфере: без помощи родителя, ребенку освоить робототехнику будет достаточно сложно, предостерегает Олег Кивокурцев.

Найдите материал для изучения. Их можно брать в Интернете, из заказываемых книг, на посещаемых конференциях, из журнала «Занимательная робототехника». Для самостоятельного изучения есть бесплатные онлайн-курсы, например, «Строим роботов и другие устройства на Arduino: от светофора до 3D-принтера».

Нужно ли изучать роботехнику взрослым?

Если Вы уже вышли из детского возраста, это не значит, что двери робототехники для Вас закрыты. Можно так же записаться на курсы или изучать ее самостоятельно.

Если человек решил заниматься этим как хобби, то путь его будет таким же, как у ребенка. Однако понятно, что дальше любительского уровня без профессионального образования (инженера-конструктора, программиста и электронщика) продвигаться вряд ли получится, хотя, конечно, устраиваться на стажировки в компании и упорно грызть гранит нового для вас направления никто не запрещает.

Олег Кивокурцев: «Взрослому будет проще освоить робототехнику, но важным фактором является время».

Для тех, у кого близкая специальность, но хочется переучиться, также есть разные курсы в помошь. Например, для специалистов по машинному обучению одойдет бесплатный онлайн-курс по вероятностной робототехнике «Искусственный интеллект в робототехнике». Также существуют образовательная программа Intel, просветительский проект «Лекториум», дистанционные курсы ИТМО. Не забудьте и про книги, например, есть много литературы для начинающих («Основы робототехники», «Введение в робототехнику», «Настольная книга робототехника»). Подберите то, что больше всего понятно и подходит вам.

Следует помнить, что серьезная работа отличается от любительского увлечения как минимум стоимостью затрат на оборудование и перечнем поставленных перед работником задач. Одно дело - своими руками собирать самого простого робота, совсем другое - заниматься, например, машинным зрением. Поэтому изучать основы конструирования, программирования и аппаратной инженерии все-таки лучше с ранних лет и впоследствии, если понравилось, поступать в профильный университет.

В какие вузы идти учиться?


Направления, связанные с робототехникой, можно найти в следующих вузах:

— Московский технологический университет (МИРЭА, МГУПИ, МИТХТ);

— Московский государственный технический университет им. Н. Э. Баумана;

— Московский государственный технологический университет «Станкин»;

— Национальный исследовательский университет «МЭИ» (Москва);

— Сколковский институт науки и технологий (Москва);

— Московский государственный университет путей сообщения Императора Николая II;

— Московский государственный университет пищевых производств;

— Московский государственный университет леса;

— Санкт-Петербургский государственный университет аэрокосмического приборостроения (СГУАП);

— Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики (ИТМО);

— Магнитогорский государственный технический университет;

— Омский Государственный технический университет;

— Саратовский государственный технический университет;

— Университет Иннополис (Республика Татарстан);

— Южно-Российский федеральный университет (Новочеркасский ГТУ).

Самое главное

Знать азы робототехники в скором времени может оказаться полезно и обывателям, а возможность стать специалистом в этой сфере выглядит очень перспективно, так что хотя бы попробовать себя в «роботостроительстве» определенно стоит.

Робототехники олицетворяют собой сочетание противоположностей. Как специалисты, они искушены в тонкостях своей специализации. Как универсалы, они способны охватить проблему в целом в той степени, что позволяет имеющаяся обширная база знаний. Предлагаем вашему вниманию интересный материал на тему умений и навыков, которые необходимы настоящему робототехнику.

А кроме самого материала также комментарии одного из наших робо-экспертов, куратора екатеринбургского , Олега Евсегнеева.

Инженеры-робототехники, как правило, попадают в две категории специалистов: думающих (теоретиков) и делающих (практиков). Это означает, что робототехники должны отличаться хорошим сочетанием двух противоположных стилей работы. «Склонные к исследованиям» люди вообще любят решать проблемы, думая, читая и изучая. С другой стороны, специалисты-практики любят решать проблемы лишь «испачкав руки», можно так сказать.

В робототехнике нужен тонкий баланс между напряженными исследованиями и расслабленной паузой, то есть работа над реальной задачей. В представленный перечень попали 25 профессиональных умений, сгруппированных в 10 существенных для роботостроителей навыков.

1. Системное мышление

Один из менеджеров проекта однажды заметил, что многие, связанные с робототехникой люди, оказываются впоследствии менеджерами проектов или системными инженерами. В этом есть особый смысл, так как роботы являются очень сложными системами. Занимающийся роботами специалист должен быть хорошим механиком, электронщиком, электриком, программистом и даже обладать познаниями в психологии и когнитивной деятельности.

Хороший робототехник в состоянии понять и теоретически обосновать, как совместно и слаженно взаимодействуют все эти разнообразные системы. Если инженер-механик может вполне обоснованно сказать: «это не моя работа, тут нужен программист или электрик», то робототехник должен хорошо разбираться во всех этих дисциплинах.

Вообще, системное мышление является важным навыком для всех инженеров. Наш мир – одна большая сверхсложная система. Навыки системной инженерии помогают правильно понять, что и как связано в этом мире. Зная это, можно создавать эффективные системы управления реальным миром.

2. Мышление программиста

Программирование является довольно важным навыком для робототехника. При этом не имеет значения, занимаетесь ли вы низкоуровневыми системами управления (используя лишь MATLAB для проектирования контроллеров) или являетесь специалистом по информатике, проектирующим высокоуровневые когнитивные системы. Занимающиеся роботами инженеры могут быть привлечены к работе по программированию на любом уровне абстракции. Основное различие между обычным программированием и программированием роботов заключается в том, что робототехник взаимодействует с оборудованием, электроникой и беспорядком реального мира.

Сегодня используется более 1500 языков программирования. Несмотря на то, что вам явно не нужно будет учить их все, хороший робототехник обладает мышлением программиста. А они будут комфортно чувствовать себя при изучении любого нового языка, если вдруг это потребуется. И тут мы плавно переходим к следующему навыку.

Комментарий Олега Евсегнеева: Я бы добавил, что для создания современных роботов требуется знание языков низкого, высокого и даже сверхвысокого уровня. Микроконтроллеры должны работать очень быстро и эффективно. Чтобы этого достичь, нужно углубляться в архитектуру вычислительного устройства, знать особенности работы с памятью и низкоуровневыми протоколами. Сердцем робота может быть тяжелая операционная система, например, ROS. Здесь уже может понадобиться знание ООП, умение пользоваться серьезными пакетами машинного зрения, навигации и машинного обучения. Наконец, чтобы написать интерфейс робота в веб и связать его с сетью интернет, неплохо будет научиться скриптовым языкам, тому же python.

3. Способность к самобучению

О робототехнике невозможно знать все, всегда есть что-то неизвестное, что придется изучать, когда возникнет в том необходимость при реализации очередного проекта. Даже после получения высшего образования по специальности робототехника и нескольких лет работы в качестве аспиранта многие только начинают по-настоящему понимать азы робототехники.

Стремление к постоянному изучению чего-то нового является важной способностью на протяжении всей вашей карьеры. Поэтому использование эффективных лично для вас методов обучения и хорошее восприятие прочитанного помогут вам быстро и легко получать новые знания, когда в этом возникает необходимость.

Комментарий Олега Евсегнеева: Это ключевой навык в любом творческом деле. С помощью него можно получить другие навыки

4. Математика

В робототехнике имеется не так много основополагающих навыков. Одним из таких основных навыков является математика. Вам, вероятно, трудно будет добиться успеха в робототехнике без надлежащего знания, по крайней мере, алгебры, математического анализа и геометрии. Это связано с тем, что на базовом уровне робототехника опирается на способность понимать и оперировать абстрактными понятиями, часто представляемыми в виде функций или уравнений. Геометрия является особенно важной для понимания таких тем, как кинематика и технические чертежи (которых вам, вероятно, придется много сделать в течение карьеры, включая те, что будут выполнены на салфетке).

Комментарий Олега Евсегнеева: Поведение робота, его реакция на окружающие раздражители, способность учиться – это все математика. Простой пример. Современные беспилотники хорошо летают благодаря фильтру Калмана – мощному математическому инструменту для уточнения данных о положении робота в пространстве. Робот Asimo умеет различать предметы благодаря нейронным сетям. Даже робот-пылесос использует сложную математику, чтобы правильно построить маршрут по комнате.

5. Физика и прикладная математика

Есть некоторые люди (чистые математики, например), которые стремятся оперировать математическими понятиями без привязки к реальному миру. Создатели роботов не относятся к такому типу людей. Познания в физике и прикладной математике важны в робототехнике, потому что реальный мир никогда не бывает таким точным, как математика. Возможность решить, когда результат расчета достаточно хорош, чтобы на самом деле работать – это ключевой навык для инженера-робототехника. Что плавно подводит нас к следующему пункту.

Комментарий Олега Евсегнеева: Есть хороший пример – автоматические станции для полета на другие планеты. Знание физики позволяет настолько точно рассчитать траекторию их полета, что спустя годы и миллионы километров аппарат попадает в точно заданную позицию.

6. Анализ и выбор решения

Быть хорошим робототехником означает постоянно принимать инженерные решения. Что выбрать для программирования - ROS или другую систему? Сколько пальцев должен иметь проектируемый робот? Какие датчики выбрать для использования? Робототехника использует множество решений и среди них почти нет единственно верного.

Благодаря обширной базе знаний, используемой в робототехнике, вы могли бы найти для себя более выгодное решение определенных проблем, чем специалисты из более узких дисциплин. Анализ и принятие решений необходимы для того, чтобы извлечь максимальную пользу из вашего решения. Навыки аналитического мышления позволят вам анализировать проблему с различных точек зрения, в то время как навыки критического мышления помогут использовать логику и рассуждения, чтобы сбалансировать сильные и слабые стороны каждого решения.

Робототехник (Чешск. robot, от robota - подневольный труд и rob - раб) — специалист по разработке роботов и их обслуживанию. Профессия подходит тем, кого интересует физика, математика, черчение и информатика (см. выбор профессии по интересу к школьным предметам).

Особенности профессии

Робототехника (роботехника) - это прикладная научная отрасль, посвященная созданию роботов и автоматизированных технических систем. Такие системы также называют робототехническими системами (РТС). Ещё одно название - роботостроение. Так называют процесс создания роботов, по аналогии с машиностроением. Роботы особенно нужны там, где человеку работать слишком тяжело или опасно, и там, где каждое действие должно выполняться с нечеловеческой точностью. Например, робот может взять пробы грунта на Марсе, обезвредить взрывное устройство или провести точную сборку прибора.

Конечно, для каждого вида работы нужен специальный робот. Роботов-универсалов пока не существует. Всю робототехнику можно разделить на промышленную, строительную, авиационную, космическую, подводную, военную. Кроме этого существуют роботы-помощники, роботы для игр и т.д.

Робот может работать по заранее разработанной программе либо под управлением оператора. Роботов с самостоятельным мышлением и мотивацией, со своим эмоциональным миром и мировоззрением пока тоже нет. Оно и к лучшему.

Робототехника находится в родстве с мехатроникой.

Мехатроника - это дисциплина, посвящённая созданию и эксплуатации машин и систем с программным управлением. Часто мехатроникой называют электромеханику и наоборот.

К мехатронике относятся заводские станки с программным управлением, беспилотные транспортные средства, современная офисная техника и пр. Иными словами, приборы и системы, предназначенные для выполнения какой-то конкретной задачи. Например, задача офисного принтера - печать документов.

А что такое робот по своей сути?

Как видно из самого названия, робот изначально представлялся как подобие человека. Но прагматизм берёт верх. И чаще всего роботу отводится роль технического приспособления, для которого внешность не имеет большого значения. По крайней мере, промышленные роботы на людей совсем не похожи.

Однако у роботов есть признак, который объединяет их со всеми живыми существами - движение. И способ движения порой довольно чётко копирует то, что встречается в природе. Например, робот может летать, подобно стрекозе, бегать по стене, словно ящерица, ходить по земле, словно человек и пр.

(См. ролик внизу страницы.)

С другой стороны, некоторые роботы специально рассчитаны на душевный отклик людей. Например, роботы-собаки скрашивают жизнь людям, у которых нет времени на настоящую собаку. А плюшевые «младенцы» облегчают депрессию.

Не за горами то время, когда среди прочей бытовой техники у нас появятся роботы, помогающие по хозяйству. Лично я предпочла бы слугу в виде улыбчивого пластикового кокона на колёсах. Но кому-то наверняка захочется, чтобы их роботы-мажордомы были как настоящие люди. В этом направлении уже сделаны потрясающие успехи.

Создание робота - это то, чем занимается робототехник . Точнее, инженер-робототехник . Он исходит из того, какие задачи робот будет решать, продумывает механику, электронную часть, программирует его действия. Такая работа - не для одиночки-изобретателя, инженеры-робототехники работают в команде.

Но робота нужно не только изобрести и разработать. Его нужно обслуживать: управлять работой, следить за «самочувствием» и ремонтировать. Этим также занимается робототехник, но специализирующийся на обслуживании.

В основе современной робототехники находятся механика, электроника и программирование. Но, как подсказывают фантасты, со временем для изготовления роботов будут широко использовать био- и нанотехнологи. В результате получится киборг, т.е. кибернетический организм - что-то среднее между живым человеком и роботом. Чтобы не слишком радоваться по этому поводу, можно посмотреть фильм «Терминатор», любую его часть.

Начало истории роботов

Слово «робот» придумал Карел Чапек в 1920 г. и использовал его в своей пьесе «R.U.R.» («Россумские Универсальные Роботы»). Позже, в 1941 г., Айзек Азимов использовал слово «робототехника» в научно-фантастическом рассказе «Лжец».

Но видимо, одним из первых робототехников в истории человечества можно считать арабского изобретателя Аль-Джазари, жившего в XII веке. Остались свидетельства, что он создал механических музыкантов, которые развлекали публику, играя на арфе, флейте и бубнах. Леонардо да Винчи, живший в XV-XVI веках, оставил после себя чертежи механического рыцаря, способного двигать руками и ногами, открывать забрало своего шлема. Но эти выдающиеся изобретатели вряд ли могли представить, каких вершин достигнут технологии через несколько столетий.

Обучение на Робототехника

Чтобы стать робототехником, нужно получить высшее образование по направлению «мехатроника и робототехника». В частности, к этому направлению относится специальность «роботы и робототехнические системы». Высшее образование даёт квалификацию «инженер».

На этом курсе можно получить профессию специалиста по мехатронике и робототехнике за 3 месяца и 10 000 руб.
— Одна из самых доступных цен в России;
— Диплом о профессиональной переподготовке установленного образца;
— Обучение в полностью дистанционном формате;
— Сертификат соответствия профстандарту стоимостью 10 000 руб. в подарок!;
— Крупнейшее образовательное учреждение дополнительного проф. образования в России.