Болезни Военный билет Призыв

Решение систем методом исключения гаусса. Решение систем линейных уравнений методом гаусса. Обратный ход метода Гаусса

Продолжаем рассматривать системы линейных уравнений. Этот урок является третьим по теме. Если вы смутно представляете, что такое система линейных уравнений вообще, чувствуете себя чайником, то рекомендую начать с азов на странице Далее полезно изучить урок .

Метод Гаусса – это просто! Почему? Известный немецкий математик Иоганн Карл Фридрих Гаусс еще при жизни получил признание величайшего математика всех времен, гения и даже прозвище «короля математики». А всё гениальное, как известно – просто! Кстати, на деньги попадают не только лохи, но еще и гении – портрет Гаусса красовался на купюре в 10 дойчмарок (до введения евро), и до сих пор Гаусс загадочно улыбается немцам с обычных почтовых марок.

Метод Гаусса прост тем, что для его освоения ДОСТАТОЧНО ЗНАНИЙ ПЯТИКЛАССНИКА.Необходимо уметь складывать и умножать! Не случайно метод последовательного исключения неизвестных преподаватели часто рассматривают на школьных математических факультативах. Парадокс, но у студентов метод Гаусса вызывает наибольшие сложности. Ничего удивительного – всё дело в методике, и я постараюсь в доступной форме рассказать об алгоритме метода.

Сначала немного систематизируем знания о системах линейных уравнений. Система линейных уравнений может:

1) Иметь единственное решение. 2) Иметь бесконечно много решений. 3) Не иметь решений (быть несовместной ).

Метод Гаусса – наиболее мощный и универсальный инструмент для нахождения решениялюбой системы линейных уравнений. Как мы помним, правило Крамера и матричный метод непригодны в тех случаях, когда система имеет бесконечно много решений или несовместна. А метод последовательного исключения неизвестных в любом случае приведет нас к ответу! На данном уроке мы опять рассмотрим метод Гаусса для случая №1 (единственное решение системы), под ситуации пунктов №№2-3 отведена статья. Замечу, что сам алгоритм метода во всех трёх случаях работает одинаково.

Вернемся к простейшей системе с урока Как решить систему линейных уравнений? и решим ее методом Гаусса.

На первом этапе нужно записать расширенную матрицу системы : . По какому принципу записаны коэффициенты, думаю, всем видно. Вертикальная черта внутри матрицы не несёт никакого математического смысла – это просто отчеркивание для удобства оформления.

Справка : рекомендую запомнить термины линейной алгебры. Матрица системы – это матрица, составленная только из коэффициентов при неизвестных, в данном примере матрица системы: . Расширенная матрица системы – это та же матрица системы плюс столбец свободных членов, в данном случае: . Любую из матриц можно для краткости называть просто матрицей.

После того, как расширенная матрица системы записана, с ней необходимо выполнить некоторые действия, которые также называются элементарными преобразованиями .

Существуют следующие элементарные преобразования:

1) Строки матрицы можно переставлять местами. Например, в рассматриваемой матрице можно безболезненно переставить первую и вторую строки:

2) Если в матрице есть (или появились) пропорциональные (как частный случай – одинаковые) строки, то следует удалить из матрицы все эти строки кроме одной. Рассмотрим, например матрицу . В данной матрице последние три строки пропорциональны, поэтому достаточно оставить только одну из них: .

3) Если в матрице в ходе преобразований появилась нулевая строка, то ее также следуетудалить . Рисовать не буду, понятно, нулевая строка – это строка, в которой одни нули .

4) Строку матрицы можно умножить (разделить) на любое число, отличное от нуля . Рассмотрим, например, матрицу . Здесь целесообразно первую строку разделить на –3, а вторую строку – умножить на 2: . Данное действие очень полезно, поскольку упрощает дальнейшие преобразования матрицы.

5) Это преобразование вызывает наибольшие затруднения, но на самом деле ничего сложного тоже нет. К строке матрицы можно прибавить другую строку, умноженную на число , отличное от нуля. Рассмотрим нашу матрицу из практического примера: . Сначала я распишу преобразование очень подробно. Умножаем первую строку на –2: , и ко второй строке прибавляем первую строку умноженную на –2 : . Теперь первую строку можно разделить «обратно» на –2: . Как видите, строка, которую ПРИБАВЛЯЛИ не изменилась . Всегда меняется строка, К КОТОРОЙ ПРИБАВЛЯЮТ .

На практике так подробно, конечно, не расписывают, а пишут короче: Еще раз: ко второй строке прибавили первую строку, умноженную на –2 . Умножают строку обычно устно или на черновике, при этом мысленный ход расчётов примерно такой:

«Переписываю матрицу и переписываю первую строку: »

«Сначала первый столбец. Внизу мне нужно получить ноль. Поэтому единицу вверху умножаю на –2: , и ко второй строке прибавляю первую: 2 + (–2) = 0. Записываю результат во вторую строку: »

«Теперь второй столбец. Вверху –1 умножаю на –2: . Ко второй строке прибавляю первую: 1 + 2 = 3. Записываю результат во вторую строку: »

«И третий столбец. Вверху –5 умножаю на –2: . Ко второй строке прибавляю первую: –7 + 10 = 3. Записываю результат во вторую строку: »

Пожалуйста, тщательно осмыслите этот пример и разберитесь в последовательном алгоритме вычислений, если вы это поняли, то метод Гаусса практически «в кармане». Но, конечно, над этим преобразованием мы еще поработаем.

Элементарные преобразования не меняют решение системы уравнений

! ВНИМАНИЕ : рассмотренные манипуляции нельзя использовать , если Вам предложено задание, где матрицы даны «сами по себе». Например, при «классических» действиях с матрицами что-то переставлять внутри матриц ни в коем случае нельзя! Вернемся к нашей системе . Она практически разобрана по косточкам.

Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду :

(1) Ко второй строке прибавили первую строку, умноженную на –2. И снова: почему первую строку умножаем именно на –2? Для того чтобы внизу получить ноль, а значит, избавиться от одной переменной во второй строке.

(2) Делим вторую строку на 3.

Цель элементарных преобразований привести матрицу к ступенчатому виду: . В оформлении задания прямо так и отчеркивают простым карандашом «лестницу», а также обводят кружочками числа, которые располагаются на «ступеньках». Сам термин «ступенчатый вид» не вполне теоретический, в научной и учебной литературе он часто называется трапециевидный вид или треугольный вид .

В результате элементарных преобразований получена эквивалентная исходной система уравнений:

Теперь систему нужно «раскрутить» в обратном направлении – снизу вверх, этот процесс называется обратным ходом метода Гаусса .

В нижнем уравнении у нас уже готовый результат: .

Рассмотрим первое уравнение системы и подставим в него уже известное значение «игрек»:

Рассмотрим наиболее распространенную ситуацию, когда методом Гаусса требуется решить систему трёх линейных уравнений с тремя неизвестными.

Пример 1

Решить методом Гаусса систему уравнений:

Запишем расширенную матрицу системы:

Сейчас я сразу нарисую результат, к которому мы придём в ходе решения: И повторюсь, наша цель – с помощью элементарных преобразований привести матрицу к ступенчатому виду. С чего начать действия?

Сначала смотрим на левое верхнее число: Почти всегда здесь должна находиться единица . Вообще говоря, устроит и –1 (а иногда и другие числа), но как-то так традиционно сложилось, что туда обычно помещают единицу. Как организовать единицу? Смотрим на первый столбец – готовая единица у нас есть! Преобразование первое: меняем местами первую и третью строки:

Теперь первая строка у нас останется неизменной до конца решения . Уже легче.

Единица в левом верхнем углу организована. Теперь нужно получить нули вот на этих местах:

Нули получаем как раз с помощью «трудного» преобразования. Сначала разбираемся со второй строкой (2, –1, 3, 13). Что нужно сделать, чтобы на первой позиции получить ноль? Нужно ко второй строке прибавить первую строку, умноженную на –2 . Мысленно или на черновике умножаем первую строку на –2: (–2, –4, 2, –18). И последовательно проводим (опять же мысленно или на черновике) сложение, ко второй строке прибавляем первую строку, уже умноженную на –2 :

Результат записываем во вторую строку:

Аналогично разбираемся с третьей строкой (3, 2, –5, –1). Чтобы получить на первой позиции ноль, нужно к третьей строке прибавить первую строку, умноженную на –3 . Мысленно или на черновике умножаем первую строку на –3: (–3, –6, 3, –27). И к третьей строке прибавляем первую строку, умноженную на –3 :

Результат записываем в третью строку:

На практике эти действия обычно выполняются устно и записываются в один шаг:

Не нужно считать всё сразу и одновременно . Порядок вычислений и «вписывания» результатов последователен и обычно такой: сначала переписываем первую строку, и пыхтим себе потихонечку – ПОСЛЕДОВАТЕЛЬНО иВНИМАТЕЛЬНО :
А мысленный ход самих расчётов я уже рассмотрел выше.

В данном примере это сделать легко, вторую строку делим на –5 (поскольку там все числа делятся на 5 без остатка). Заодно делим третью строку на –2, ведь чем меньше числа, тем проще решение:

На заключительном этапе элементарных преобразований нужно получить еще один ноль здесь:

Для этого к третьей строке прибавляем вторую строку, умноженную на –2 :
Попробуйте разобрать это действие самостоятельно – мысленно умножьте вторую строку на –2 и проведите сложение.

Последнее выполненное действие – причёска результата, делим третью строку на 3.

В результате элементарных преобразований получена эквивалентная исходной система линейных уравнений: Круто.

Теперь в действие вступает обратный ход метода Гаусса. Уравнения «раскручиваются» снизу вверх.

В третьем уравнении у нас уже готовый результат:

Смотрим на второе уравнение: . Значение «зет» уже известно, таким образом:

И, наконец, первое уравнение: . «Игрек» и «зет» известны, дело за малым:

Ответ :

Как уже неоднократно отмечалось, для любой системы уравнений можно и нужно сделать проверку найденного решения, благо, это несложно и быстро.

Пример 2

Это пример для самостоятельного решения, образец чистового оформления и ответ в конце урока.

Следует отметить, что ваш ход решения может не совпасть с моим ходом решения, и это – особенность метода Гаусса . Но вот ответы обязательно должны получиться одинаковыми!

Пример 3

Решить систему линейных уравнений методом Гаусса

Смотрим на левую верхнюю «ступеньку». Там у нас должна быть единица. Проблема состоит в том, что в первом столбце единиц нет вообще, поэтому перестановкой строк ничего не решить. В таких случаях единицу нужно организовать с помощью элементарного преобразования. Обычно это можно сделать несколькими способами. Я поступил так: (1) К первой строке прибавляем вторую строку, умноженную на –1 . То есть, мысленно умножили вторую строку на –1 и выполнили сложение первой и второй строки, при этом вторая строка у нас не изменилась.

Теперь слева вверху «минус один», что нас вполне устроит. Кто хочет получить +1, может выполнить дополнительное телодвижение: умножить первую строку на –1 (сменить у неё знак).

(2) Ко второй строке прибавили первую строку, умноженную на 5. К третьей строке прибавили первую строку, умноженную на 3.

(3) Первую строку умножили на –1, в принципе, это для красоты. У третьей строки также сменили знак и переставили её на второе место, таким образом, на второй «ступеньке у нас появилась нужная единица.

(4) К третьей строке прибавили вторую строку, умноженную на 2.

(5) Третью строку разделили на 3.

Скверным признаком, который свидетельствует об ошибке в вычислениях (реже – об опечатке), является «плохая» нижняя строка. То есть, если бы у нас внизу получилось что-нибудь вроде , и, соответственно, , то с большой долей вероятности можно утверждать, что допущена ошибка в ходе элементарных преобразований.

Заряжаем обратный ход, в оформлении примеров часто не переписывают саму систему, а уравнения «берут прямо из приведенной матрицы». Обратный ход, напоминаю, работает, снизу вверх. Да тут подарок получился:

Ответ : .

Пример 4

Решить систему линейных уравнений методом Гаусса

Это пример для самостоятельного решения, он несколько сложнее. Ничего страшного, если кто-нибудь запутается. Полное решение и образец оформления в конце урока. Ваше решение может отличаться от моего решения.

В последней части рассмотрим некоторые особенности алгоритма Гаусса. Первая особенность состоит в том, что иногда в уравнениях системы отсутствуют некоторые переменные, например: Как правильно записать расширенную матрицу системы? Об этом моменте я уже рассказывал на уроке Правило Крамера. Матричный метод . В расширенной матрице системы на месте отсутствующих переменных ставим нули: Кстати, это довольно легкий пример, поскольку в первом столбце уже есть один ноль, и предстоит выполнить меньше элементарных преобразований.

Вторая особенность состоит вот в чём. Во всех рассмотренных примерах на «ступеньки» мы помещали либо –1, либо +1. Могут ли там быть другие числа? В ряде случаев могут. Рассмотрим систему: .

Здесь на левой верхней «ступеньке» у нас двойка. Но замечаем тот факт, что все числа в первом столбце делятся на 2 без остатка – и другая двойка и шестерка. И двойка слева вверху нас устроит! На первом шаге нужно выполнить следующие преобразования: ко второй строке прибавить первую строку, умноженную на –1; к третьей строке прибавить первую строку, умноженную на –3. Таким образом, мы получим нужные нули в первом столбце.

Или еще такой условный пример: . Здесь тройка на второй «ступеньке» тоже нас устраивает, поскольку 12 (место, где нам нужно получить ноль) делится на 3 без остатка. Необходимо провести следующее преобразование: к третьей строке прибавить вторую строку, умноженную на –4, в результате чего и будет получен нужный нам ноль.

Метод Гаусса универсален, но есть одно своеобразие. Уверенно научиться решать системы другими методами (методом Крамера, матричным методом) можно буквально с первого раза – там очень жесткий алгоритм. Но вот чтобы уверенно себя чувствовать в методе Гаусса, следует «набить руку», и прорешать хотя бы 5-10 десять систем. Поэтому поначалу возможны путаница, ошибки в вычислениях, и в этом нет ничего необычного или трагического.

Дождливая осенняя погода за окном.... Поэтому для всех желающих более сложный пример для самостоятельного решения:

Пример 5

Решить методом Гаусса систему 4-х линейных уравнений с четырьмя неизвестными.

Такое задание на практике встречается не так уж и редко. Думаю, даже чайнику, который обстоятельно изучил эту страницу, интуитивно понятен алгоритм решения такой системы. Принципиально всё так же – просто действий больше.

Случаи, когда система не имеет решений (несовместна) или имеет бесконечно много решений, рассмотрены на уроке Несовместные системы и системы с общим решением . Там же можно закрепить рассмотренный алгоритм метода Гаусса.

Желаю успехов!

Решения и ответы:

Пример 2: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду.
Выполненные элементарные преобразования: (1) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –1. Внимание! Здесь может возникнуть соблазн из третьей строки вычесть первую, крайне не рекомендую вычитать – сильно повышается риск ошибки. Только складываем! (2) У второй строки сменили знак (умножили на –1). Вторую и третью строки поменяли местами. Обратите внимание , что на «ступеньках» нас устраивает не только единица, но еще и –1, что даже удобнее. (3) К третьей строке прибавили вторую строку, умноженную на 5. (4) У второй строки сменили знак (умножили на –1). Третью строку разделили на 14.

Обратный ход:

Ответ : .

Пример 4: Решение : Запишем расширенную матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования: (1) К первой строке прибавили вторую. Таким образом, организована нужная единица на левой верхней «ступеньке». (2) Ко второй строке прибавили первую строку, умноженную на 7. К третьей строке прибавили первую строку, умноженную на 6.

Со второй «ступенькой» всё хуже , «кандидаты» на неё – числа 17 и 23, а нам нужна либо единичка, либо –1. Преобразования (3) и (4) будут направлены на получение нужной единицы (3) К третьей строке прибавили вторую, умноженную на –1. (4) Ко второй строке прибавили третью, умноженную на –3. Нужная вещь на второй ступеньке получена . (5) К третьей строке прибавили вторую, умноженную на 6. (6) Вторую строку умножили на –1, третью строку разделили на -83.

Обратный ход:

Ответ :

Пример 5: Решение : Запишем матрицу системы и с помощью элементарных преобразований приведем ее к ступенчатому виду:

Выполненные преобразования: (1) Первую и вторую строки поменяли местами. (2) Ко второй строке прибавили первую строку, умноженную на –2. К третьей строке прибавили первую строку, умноженную на –2. К четвертой строке прибавили первую строку, умноженную на –3. (3) К третьей строке прибавили вторую, умноженную на 4. К четвертой строке прибавили вторую, умноженную на –1. (4) У второй строки сменили знак. Четвертую строку разделили на 3 и поместили вместо третьей строки. (5) К четвертой строке прибавили третью строку, умноженную на –5.

Обратный ход:

Ответ :

В данном случае помимо соблюдения требования a kk 0 при реализации формул (6) накладываются дополнительные требования, чтобы ведущий (главный) элемент в текущем столбце в процессе преобразований исходной матрицы имел максимальное по модулю значение. Это также достигается перестановкой строк матрицы.

Пример . В качестве иллюстрации преимущества модифицированного метода Гаусса, рассмотрим систему третьего порядка:

Прямой ход метода Гаусса

Исключаем х 1 из второго и третьего уравнений. Для этого первое уравнение умножаем на 0,3 и складываем со вторым, а затем умножаем первое уравнение на (–0,5) и складываем с третьим. В результате получаем

(б )

Замена второго уравнения третьим не производится, т.к. вычисления выполняются в рамках точной арифметики.

Умножая второе уравнение на 25, и складывая с третьим, получим

(в )

Обратный ход метода Гаусса

Выполняем вычисления, начиная с последнего уравнения в полученной системе:

Подставляя полученное решение в исходную систему, убеждаемся в его истинности.

Теперь изменим коэффициенты системы таким образом, чтобы сохранить прежнее решение, но при вычислении будем использовать округления в рамках арифметики с плавающей точкой сохраняя пять разрядов. Этому будет соответствовать следующая система

(г )

Прямой ход метода для системы (г ) повторим по аналогичной технологии с исходной системой (а ).

(д )

После исключения х 2 третье уравнение примет вид (остальные – без изменения)

15005 х 3 = 15004. (е )

Выполняя обратный ход, получим

Очевидно, что полученные решения и [–0,35; –1,4; 0,99993] различны. Причиной этого является малая величина ведущего элемента во втором уравнении преобразования в (д ). Чтобы это исключить, переставим в (д ) вторую и третью строки


(ж )

Для данной системы после исключения х 2 из третьего уравнения, оно примет следующий вид

6,002 х 3 = 6,002. (з )

В данном случае, выполняя обратный ход

мы получим решение системы (г ) , которое в точности совпадает с решением исходной системы.

Решая систему (г ) мы использовали модифицированный метод Гаусса, в котором на диагонали должен был находиться максимальный в текущем столбце элемент.

Рассмотрим блок-схему модифицированного метода Гаусса (рис. 2.1).

Рис. 2.1. Блок-схема модифицированного метода Гаусса

Проведем анализ предложенной схемы на примере системы n =3 (=0,001)

(8)

;. (*)

Блок 1. Ввод исходных данных:n – порядок системы,A – матрица коэффициентов при неизвестных,b – вектор свободных членов.

Блок 2.I-й цикл прямого хода (дляk , изменяющегося от 1 до предпоследнего значения, т.е. доn –1) обеспечивает исключение из главной диагонали матрицыА элементаa kk =0 благодаря поиску максимального элементаa kk в текущем столбце, осуществляемому в блоках 36 с помощью циклаII.

Затем реализуются расчеты по формулам (6) прямого хода Гаусса в блоках циклов IVиV.

Проведем поблочный анализ в среде рассмотренных циклов IVна примере (8).

Блок 3p =k = 1

Вход в цикл II

Блок 4m =k +1 = 2 доn = 3

Блок 5a 11 = 2 <a 21 = 4 из (*)

Блок 6p = 2

Блок 4m = 2+1 = 3

Блок 5a 21 = 4 <a 31 = 6 из (*)

Блок 6p = 3

Выход из цикла IIи вход в циклIII, блоки 710 выполняют перестановку строк матрицыА поэлементно

Блок 7j = 1 (j от 1 до 3)

Блок 8 r = a 11 = 2 из (*)

Блок 9 a 11 = a 31 = 6

Блок 10 a 31 = r

Блок 7 j = 2

Блок 8 r = a 12 = 1

Блок 9 a 12 = a 32 = 5

Блок 10 a 32 = r = 1

Блок 7j = 3 и по аналогииr =a 13 ;a 13 =a 33 ;a 33 =r = −1.

Выход из цикла IIIи вход вБлок 11 и далее 1213 выполняют аналогичную перестановку значений свободных членов

r =b 1 = 1;b 1 = b 3 = 14;b 3 =r= 1.

Вход в цикл IVс измененной системой

;; (**)

для пересчета b 2 вектора

m =k +1 = 1+1 = 2 доn = 3

c = a mk / a kk = a 21 / a 11 = 4/6 из (**)

b 2 =b 2 –c b 1 = 6 – 4/614 = −20/6 из (**)

Вход во вложенный цикл Vдля пересчета второй строки

i = 1 (i от 1 до 3); a 21 = a 21 – с a 11 = 4 – 4/6  6 = 0;

i = 2; a 22 = a 22 – с a 12 = 6 – 4/6  5 = 16/6;

i = 3; a 23 = a 23 – с a 13 = 2 – 4/6  8 = −20/6.

Выход из цикла Vи вход в циклIV

m = 3;c =a 31 /a 11 = 2/6.

Вход в Блок 16

b 3 =b 3 –c b 1 = 1 – 2/614 = −22/6.

Выход из цикла IVи вход в циклVи вход вБлок 17

i = 1 (i от 1 до 3); a 31 = a 31 – с a 11 = 2 – 2/6  6 = 0;

i = 2; a 32 = a 32 – с a 12 = 1 – 2/6  5 = −4/6;

i = 3; a 33 = a 33 – с a 13 = −1 – 2/6  8 = −22/6.

Выход из цикла Vс преобразованной системой

;
; (***)

и вход по линии А в циклI

k = 2;p =k = 2;m =k +1 = 3; вход вБлок 5

| a 22 | < |a 32 | = | 16/6 | > | 4/6 | из (***).

Выход из цикла IIи вход в циклIII

j = 2 (j от 2 до 3);

r = a kj = a 22 = 16/6; a 22 = a 22 ; a 22 = r = 16/6; из (***)

r =a 23 = −20/6;a 23 =a 23 ;a 23 =r = −20/6; из (***)

В данном случае на диагонали оказался максимальный элемент, поэтому перестановка 2-ой и 3-ей строк не выполняется.

Выход из цикла IIIи вход в циклIвБлок 11

r =b 2 ;b 2 = b 2 ;b 2 =r= −20/6.

Свободный член b 2 остается на своем месте.

Вход в цикл IV

m =k +1 = 2+1 = 3;

c = a mk / a kk = a 32 / a 22 = (–4/6) / (16/6); из (***)

b 3 =b 3 –c b 2 = −22/6 – (–1/4)(–20/6) = −27/6 из (***)

Выход из цикла IVи вход в циклV

i = 2 (i от 2 до 3); a 32 = a 32 – с a 22 = −4/6 – (–1/4)  16/6 = 0;

i = 3;a 33 =a 33 –с a 23 = −22/6 – (–1/4)(–20/6) = −27/6.

Выход из цикла Vи выход из циклаI.

Обратный ход метода Гаусса

В Блоках 1924 реализуются формулы (7).

В Блоке 19 из последнего уравнения находится значениеx n (n = 3)

x 3 =b n / a nn =b 3 / a 33 = (–27/6) / (–27/6) = 1.

Вход в цикл VI(Блок 20), в котором значение переменной циклаk изменяется отn –1 до 1 с шагом (–1)

Блок 21s= 0

Вход в цикл VII(Блок 22)

i = k +1 = 2+1 = 3; n = 3; s = s + a ki x i = 0 + a 23 x 3 = −20/6 1 = −20/6.

Выход из цикла VIIнаБлок 24 в циклVI:

k = 2; x 2 = (b k – s)/ a nn = (b 2 – s)/ a 22 = (–20/6 +20/6)/ a 22 = 0.

k =k –1 = 2–1 = 1;

i = k + 1 = 2; s = 0 + a 12 x 2 = 5  0 = 0;

i = k + 1 = 3; s = 0 + a 13 x 3 = 8  1 = 8;

x 1 = (b 1 –s)/ a 11 = (14 – 8) / 6 = 1.

Выход из последнего цикла VII.

В Блоке 25 (цикл опущен) выполняется вывод на экран полученного решения СЛАУ – векторат.е.x i ,i =1, ...,n . В нашем случае (1; 0; 1).

Пусть дана система , ∆≠0. (1)
Метод Гаусса – это метод последовательного исключения неизвестных.

Суть метода Гаусса состоит в преобразовании (1) к системе с треугольной матрицей , из которой затем последовательно (обратным ходом) получаются значения всех неизвестных. Рассмотрим одну из вычислительных схем. Эта схема называется схемой единственного деления. Итак, рассмотрим эту схему. Пусть a 11 ≠0 (ведущий элемент) разделим на a 11 первое уравнение. Получим
(2)
Пользуясь уравнением (2), легко исключить неизвестные x 1 из остальных уравнений системы (для этого достаточно из каждого уравнения вычесть уравнение (2) предварительно умноженное на соответствующий коэффициент при x 1), то есть на первом шаге получим
.
Иными словами, на 1 шаге каждый элемент последующих строк, начиная со второй, равен разности между исходным элементом и произведением его «проекции» на первый столбец и первую (преобразованную) строку.
Вслед за этим оставив первое уравнение в покое, над остальными уравнениями системы, полученной на первом шаге, совершим аналогичное преобразование: выберем из их числа уравнение с ведущим элементом и исключим с его помощью из остальных уравнений x 2 (шаг 2).
После n шагов вместо (1) получим равносильную систему
(3)
Таким образом, на первом этапе мы получим треугольную систему (3). Этот этап называется прямым ходом.
На втором этапе (обратный ход) мы находим последовательно из (3) значения x n , x n -1 , …, x 1 .
Обозначим полученное решение за x 0 . Тогда разность ε=b-A·x 0 называется невязкой .
Если ε=0, то найденное решение x 0 является верным.

Вычисления по методу Гаусса выполняются в два этапа:

  1. Первый этап называется прямым ходом метода. На первом этапе исходную систему преобразуют к треугольному виду.
  2. Второй этап называется обратным ходом. На втором этапе решают треугольную систему, эквивалентную исходной.
Коэффициенты а 11 , а 22 , …, называют ведущими элементами.
На каждом шаге предполагалось, что ведущий элемент отличен от нуля. Если это не так, то в качестве ведущего можно использовать любой другой элемент, как бы переставив уравнения системы.

Назначение метода Гаусса

Метод Гаусса предназначен для решения систем линейных уравнений. Относится к прямым методам решения.

Виды метода Гаусса

  1. Классический метод Гаусса;
  2. Модификации метода Гаусса. Одной из модификаций метода Гаусса является схема с выбором главного элемента. Особенностью метода Гаусса с выбором главного элемента является такая перестановка уравнений, чтобы на k -ом шаге ведущим элементом оказывался наибольший по модулю элемент k -го столбца.
  3. Метод Жордано-Гаусса;
Отличие метода Жордано-Гаусса от классического метода Гаусса состоит в применении правила прямоугольника , когда направление поиска решения происходит по главной диагонали (преобразование к единичной матрице). В методе Гаусса направление поиска решения происходит по столбцам (преобразование к системе с треугольной матрицей).
Проиллюстрируем отличие метода Жордано-Гаусса от метода Гаусса на примерах.

Пример решения методом Гаусса
Решим систему:

Для удобства вычислений поменяем строки местами:

Умножим 2-ую строку на (2). Добавим 3-ую строку к 2-ой

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой

Из 1-ой строки выражаем x 3:
Из 2-ой строки выражаем x 2:
Из 3-ой строки выражаем x 1:

Пример решения методом Жордано-Гаусса
Эту же СЛАУ решим методом Жордано-Гаусса.

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен (1).



НЭ = СЭ - (А*В)/РЭ
РЭ - разрешающий элемент (1), А и В - элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.
Представим расчет каждого элемента в виде таблицы:

x 1 x 2 x 3 B
1 / 1 = 1 2 / 1 = 2 -2 / 1 = -2 1 / 1 = 1


Разрешающий элемент равен (3).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
x 1 x 2 x 3 B
0 / 3 = 0 3 / 3 = 1 1 / 3 = 0.33 4 / 3 = 1.33


Разрешающий элемент равен (-4).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
Представим расчет каждого элемента в виде таблицы:
x 1 x 2 x 3 B
0 / -4 = 0 0 / -4 = 0 -4 / -4 = 1 -4 / -4 = 1


Ответ : x 1 = 1, x 2 = 1, x 3 = 1

Реализация метода Гаусса

Метод Гаусса реализован на многих языках программирования, в частности: Pascal, C++, php, Delphi , а также имеется реализация метода Гаусса в онлайн режиме .

Использование метода Гаусса

Применение метода Гаусса в теории игр

В теории игр при отыскании максиминной оптимальной стратегии игрока составляется система уравнений, которая решается методом Гаусса.

Применение метода Гаусса при решении дифференциальных уравнений

Для поиска частного решения дифференциального уравнения сначала находят производные соответствующей степени для записанного частного решения (y=f(A,B,C,D)), которые подставляют в исходное уравнение. Далее, чтобы найти переменные A,B,C,D составляется система уравнений, которая решается методом Гаусса.

Применение метода Жордано-Гаусса в линейном программировании

В линейном программировании, в частности в симплекс-методе для преобразования симплексной таблицы на каждой итерации используется правило прямоугольника, в котором используется метод Жордано-Гаусса.

Сегодня разбираемся с методом Гаусса для решения систем линейных алгебраических уравнений. О том, что это за системы, можно почитать в предыдущей статье, посвященной решению тех же СЛАУ методом Крамера. Метод Гаусса не требует каких-то специфических знаний, нужна лишь внимательность и последовательность. Несмотря на то что с точки зрения математики для его применения хватит и школьной подготовки, у студентов освоение этого метода часто вызывает сложности. В этой статье попробуем свести их на нет!

Метод Гаусса

Метод Гаусса – наиболее универсальный метод решения СЛАУ (за исключением ну уж очень больших систем). В отличие от рассмотренного ранее , он подходит не только для систем, имеющих единственное решение, но и для систем, у которых решений бесконечное множество. Здесь возможны три варианта.

  1. Система имеет единственное решение (определитель главной матрицы системы не равен нулю);
  2. Система имеет бесконечное множество решений;
  3. Решений нет, система несовместна.

Итак, у нас есть система (пусть у нее будет одно решение), и мы собираемся решать ее методом Гаусса. Как это работает?

Метод Гаусса состоит из двух этапов – прямого и обратного.

Прямой ход метода Гаусса

Сначала запишем расширенную матрицу системы. Для этого в главную матрицу добавляем столбец свободных членов.

Вся суть метода Гаусса заключается в том, чтобы путем элементарных преобразований привести данную матрицу к ступенчатому (или как еще говорят треугольному) виду. В таком виде под (или над) главной диагональю матрицы должны быть одни нули.

Что можно делать:

  1. Можно переставлять строки матрицы местами;
  2. Если в матрице есть одинаковые (или пропорциональные) строки, можно удалить их все, кроме одной;
  3. Можно умножать или делить строку на любое число (кроме нуля);
  4. Нулевые строки удаляются;
  5. Можно прибавлять к строке строку, умноженную на число, отличное от нуля.

Обратный ход метода Гаусса

После того как мы преобразуем систему таким образом, одна неизвестная Xn становится известна, и можно в обратном порядке найти все оставшиеся неизвестные, подставляя уже известные иксы в уравнения системы, вплоть до первого.

Когда интернет всегда под рукой, можно решить систему уравнений методом Гаусса онлайн . Достаточно лишь вбить в онлайн-калькулятор коэффициенты. Но согласитесь, гораздо приятнее осознавать, что пример решен не компьютерной программой, а Вашим собственным мозгом.

Пример решения системы уравнений методом Гаусс

А теперь - пример, чтобы все стало наглядно и понятно. Пусть дана система линейных уравнений, и нужно решить ее методом Гаусса:

Сначала запишем расширенную матрицу:

Теперь займемся преобразованиями. Помним, что нам нужно добиться треугольного вида матрицы. Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой и получим:

Затем умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Умножим 1-ую строку на (6). Умножим 2-ую строку на (13). Добавим 2-ую строку к 1-ой:

Вуаля - система приведена к соответствующему виду. Осталось найти неизвестные:

Система в данном примере имеет единственное решение. Решение систем с бесконечным множеством решений мы рассмотрим в отдельной статье. Возможно, сначала Вы не будете знать, с чего начать преобразования матрицы, но после соответствующей практики набъете руку и будете щелкать СЛАУ методом Гаусса как орешки. А если Вы вдруг столкнетесь со СЛАУ, которая окажется слишком крепким орешком, обращайтесь к нашим авторам! вы можете, оставив заявку в Заочнике. Вместе мы решим любую задачу!

Итак, метод Гаусса применим к любой системе линейных уравнений, он идеально подходит для решения систем, содержащих больше трех линейных уравнений. Метод Гаусса решения СЛАУ с числовыми коэффициентами в силу простоты и однотипности выполняемых операций пригоден для счета на электронно-вычислительных машинах.

Достоинства метода:

a) менее трудоёмкий по сравнению с другими методами;

b) позволяет однозначно установить, совместна система или нет, и если совместна, найти её решение;

c) позволяет найти максимальное число линейно независимых уравнений - ранг матрицы системы.

Существенным недостатком этого метода является невозможность сформулировать условия совместности и определенности системы в зависимости от значений коэффициентов и свободных членов. С другой стороны, даже в случае определенной системы этот метод не позволяет найти общие формулы, выражающие решение системы через ее коэффициенты и свободные члены, которые необходимо иметь при теоретических исследованиях.

Помимо аналитического решения СЛАУ, метод Гаусса также применяется для:

a) нахождения матрицы, обратной к данной (к матрице справа приписывается единичная такого же размера, что и исходная: , после чего приводится к виду единичной матрицы методом Гаусса-Жордана; в результате на месте изначальной единичной матрицы справа оказывается обратная к исходной матрица:);

b) определения ранга матрицы (согласно следствию из теоремы Кронекера-Капелли ранг матрицы равен числу её главных переменных);

c) численного решения СЛАУ в вычислительной технике (ввиду погрешности вычислений используется Метод Гаусса с выделением главного элемента, суть которого заключена в том, чтобы на каждом шаге в качестве главной переменной выбирать ту, при которой среди оставшихся после вычёркивания очередных строк и столбцов стоит максимальный по модулю коэффициент).

Существуют и другие методы решения и исследования систем линейных уравнений, которые лишены отмеченных недостатков. Эти методы основаны на теории матриц и определителей.

Комбинаторика.

Сколькими способами трое мальчиков - Алмас, Болат, Сабыр - могут стоять в одном ряду? - Это не трудно, напишем все возможные случаи (комбинации): АБС, АСБ, БАС, БСА, САБ, СБА. Всего шесть комбинаций.

Допустим к ним присоединился еще один мальчик Даурен. Каковы будут способы расположения в этом случае? В возможных шести случаях Даурен может стоять первым, вторым, третьим и последним:

ДАБС, ДАСБ, ДБАС, ДБСА, ДСАБ, ДСБА;
АДБС, АДСБ, БДАС, БДСА, СДАБ, СДБА;
АБДС, АСДБ, БАДС, БСДА, САДБ, СБДА;
АБСД, АСБД, БАСД, БСАД, САБД, СБАД.

Всего 24 разных способов. А если еще увеличить количество детей? Каждый раз писать и выводить общее количество трудно. Нам нужно определить число способов, а не виды способов. Нет ли других методов для определение этого число? - Есть. И в теории вероятностей нас больше интересует количество способов расположения, чем виды расположения. Раздел математики, называемый комбинаторикой, дает возможность сразу определить количество таких способов. Ознакомимся с основными понятиями комбинаторики, необходимыми для решения задач теории вероятностей. Это - перестановка, размещение и сочетания. Остановимся на каждом в отдельности.

1. Перестановка. Рассмотрим число случаев в предыдущей задаче. Мы переставили местами буквы А, Б, С и посчитали число всевозможных комбинаций, оно равнялось 6. А когда число мальчиков увеличилось на единицу, переставь местами буквы А, Б, С, Д, мы нашли число всевозможных комбинаций, оно равнялось 24.

ОПРЕДЕЛЕНИЕ. Перестановкой из n различных элементов называются комбинации, которые состоят из n элементов и отличаются друг от друга только порядком их расположения.

Число перестановок из n различных элементов обозначают P n и подсчитывают по формуле:

здесь n! (читается "эн факториал") означает произведение всех натуральных чисел от 1 до n:

Понятно, что один факториал равен единице, 1! = 1, вместе с этим, в математике принято считать что и ноль факториал равен единице. И так 0! = 1.

Вернемся к примеру. Здесь n=3. Следовательно, можно найти искомое число перестановок по формуле (1): P 3 =3!=1 2 3=6. Аналогично, число перестановок из четырех букв равно: P 4 =4!=1 2 3 4=24

Пример 7. Найдем значение выражения с факториалами 8!/6! 2!

Сначала преобразуем 8!=1 2 3 4 5 6 7 8=6! 7 8

Это преобразование подставим в выражение и упростим. 8!/6! 2=6! 7 8/6! 2=7 8/2=28

2. Размещения. Рассмотрим пример. Сколько двузначных чисел (цифры не повторяются) можно записать с помощью цифр 7, 8, 9. Это можно сделать в двух этапах: первый этап - определение количество подбора разрядов десятков числа, он равен 3 (любая из данных 3 цифр может занять разряд десятков); второй этап - определение количество подбора разрядов единиц числа, он равен 2 (любая цифра из оставшихся двух может занять разряд единиц). По правилу умножения из трех чисел можно составить всего 3 2=6 различных двузначных чисел. Действительно, можно в этом убедиться непосредственно записывая эти числа 78, 79, 87, 89, 97, 98, При решении задачи мы расположили по два элемента из трех, причем эти комбинации отличаются либо составом (78, 98), либо порядком их расположения (78, 87).

ОПРЕДЕЛЕНИЕ. Размещением из n элементов по m элементов (m n) называются комбинации, состоящие из m элементов, взятых из данных n различных элементов, отличающихся друг от друга либо самими элементами, либо порядком их расположения.

Число размещений из n элементов по m элементов обозначают и читают так: "А из эн по эм". Чтобы найти используют формулу:

(15)

Рассмотрим еще один пример. В 5 классе изучают 10 предметов. Сколькими способами можно составить расписание, если в этот день должно быть 4 различных урока?

Чтобы найти число способов расположения 10-ти предметов по четыре предмета, воспользуемся формулой (15) нахождения числа размещений из 10 элементов по 4 элемента:

Итак, 10 предметов по 4 предмета можно расположить 5040 различными способами.

3. Сочетания. Пример. Нужно составить произведения двух различных чисел из данных трех чисел 7, 8, 9.

Учитывая переместительное свойство умножения, имеем: 7 8=56, 7 9=63, 8 9=72. При решении задачи мы отобрали по два элемента из трех, причем эти комбинации отличаются только составом (78, 98), а их расположения не влияют на произведение.

ОПРЕДЕЛЕНИЕ. Сочетанием из n элементов по m элементов (m n) называются комбинации, состоящие из m элементов, взятых из данных n различных элементов, отличающиеся друг от друга только составом.

Число сочетаний из n элементов по m элементов обозначают и читают так: "це из эн по эм". Чтобы найти используют формулу:

(16)

В нашем примере n=3, а m=2. Тогда

Рассмотрим еще пример. В классе 25 учеников, из них 12 мальчиков. а) Нужно составить дежурство по два человека, причем пары должны состоят либо из мальчиков, либо из девочек. б) Сколько можно создать групп для дежурства, из двух мальчиков и одной девочки?

Решение. а) При решении этой задачи воспользуемся правилом сложения и формулой сочетания. Сначала посчитаем сколько пар можно создать из мальчиков (m 1) и из девочек (m 2), после найдем их сумму (m=m 1 +m 2).

Чтобы определить сколько пар можно создать из 12 мальчиков воспользуемся формулой для подсчета числа сочетаний из 12 элементов по 2 элемента

Из девочек можно создать 78 различных пар. Тогда по два мальчика и по две девочки всего можно создать m=66+78=144 различных пар.

б) При решении этой задачи воспользуемся правилом умножения и формулой сочетания. В группе два мальчика и одна девочка. Сначала посчитаем сколькими способами можно выбрать из 12 мальчиков по два мальчика (m 1) и из 13 девочек одну девочку (m 2), затем перемножим полученные результаты (m=m 1 m 2).
Из 12 мальчиков 2 мальчика можно выбрать 66 различными способами. А из 13 девочек 1 девочку можно выбрать следующим образом:

Тогда группу из двух мальчиков и из одной девочки можно создать m=66 13=856 различными способами.

Определение матрицы. Определители второго и третьего порядков, их основные свойства. Миноры и алгебраические дополнения, разложение определителя по строке (столбцу). Методы вычисления определителей. Понятие об определителе n-го порядка.

Определение 1.1 . Матрицей называется прямоугольная таблица чисел.

Обозначения: А – матрица, - элемент матрицы, номер строки, в которой стоит данный элемент, номер соответствующего столбца; m – число строк матрицы, n – число ее столбцов.

Определение 1.2 . Числа m и n называются размерностями матрицы.

Определение 1.3. Матрица называется квадратной , если m = n. Число n в этом случае называют порядком квадратной матрицы.

Каждой квадратной матрице можно поставить в соответствие число, определяемое единственным образом с использованием всех элементов матрицы. Это число называется определителем.

Определение 1.4. Определителем второго порядка называется число, полученное с помощью элементов квадратной матрицы 2-го порядка следующим образом:

.

При этом из произведения элементов, стоящих на так называемой главной диагонали матрицы (идущей из левого верхнего в правый нижний угол) вычитается произведение элементов, находящихся на второй, или побочной, диагонали.

1. 2.

Определение 1.5 . Определителем третьего порядка называется число, определяемое с помощью элементов квадратной матрицы 3-го порядка следующим образом:

А` , называемая транспонированной по отношению к матрице А , элементы которой связаны с элементамиА соотношением a` ij = a ji .