Болезни Военный билет Призыв

Раскладки платоновых тел. Платоновы тела

Круг деленный на равные части, позволяет нам построить "идеальные" или правильные многоугольники. Полученных правильных многоугольников может быть бесконечно много.
Простейшим правильным многоугольником можно считать равносторонний треугольник.
Но, многогранников, геометрических тел, получиться бесконечно много не может, так как многогранники, это фигуры, полученные соединениями многоугольников, таким образом, при котором, каждая сторона одного многоугольника является так же и стороной другого многоугольника (называемого смежным). Причем, каждая вершина полученного тела, образует соединения граней многоугольников, обладающих ребрами - сторонами и вершинами.
Многогранников в круге (то есть, объемных геометрических фигур), может получиться только пять. Платон соотнес полученные тела со Стихиями следующим образом.

1. ОГОНЬ - Тетраэдр. Состоит из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников. Следовательно, сумма плоских углов при каждой вершине равна 180;.
Количество граней – 4, вершин – 4, рёбер - 6
Объем - V= (a;;2)/12.
Площадь поверхности - S= a;;3
С точки зрения астрологии, 180 градусов, это аспект оппозиция. В которой одно начало преобразовывает другое, на свое усмотрение.
Стихии Огонь свойственно проявлять свой потенциал в устоявшуюся среду и достигать поставленных целей. Янская, внешняя стихия проявляет себя внутренним противоречием индивидуальности с целым, Иньскими качествами, свойственными стихии Земля.

2.ВОЗДУХ - Октаэдр. Имеет вид двух совмещенных треугольников, соединенных по основанию. Каждая вершина октаэдра является вершиной четырех треугольников. Следовательно, сумма плоских углов при каждой вершине 240;.
Количество граней – 8, вершин – 6, рёбер – 12
Объем - V= (a;;2)/3.
Площадь поверхности - S= 2a;;3
С точки зрения астрологии, 240 градусов, это аспект тригона.
Воздух совершает беспрепятственную экспансию. Быстро или медленно, но без преодоления и преобразования среды, в которую совершает вхождение. Он воспринимается желанно и благоприятно. Янская внешняя стихия, проявляет качества, свойственные стихии Вода.

3. ЗЕМЛЯ - Куб или правильный гексаэдр - правильный многогранник, каждая грань которого представляет собой квадрат.
Куб состоит из шести квадратов. Каждая вершина куба является вершиной трёх квадратов. Следовательно, сумма плоских углов при каждой вершине равна 270;.
Количество граней – 6, вершин – 8, рёбер – 12
Объем - V= a;.
Площадь поверхности - S= 6a;
С точки зрения АСТРОЛОГИИ, 270 гр представляет динамичный аспект квадратуры.
Поверхностное противоречие между Стихией и свойством аспекта легко разрешимо, если учитывать, что существует внешний и внутренний уровень. Инь и Ян.
Так - Огонь, обладает стабильным и статичным аспектом. Янская стихия проявляется Иньским образом.
Потенциал Огня столь велик, что после его проявления реальность не может остаться прежней. Ей приходится выстраивать новые центры тяжести, искать новые способы существования и подстраиваться под трансформации, вызванные Огнем.
После проявления Огня, противоречие не устранимо, оно постоянно. Оно не влияет на саму стихию Огонь, только среда, в которой проявляется Стихия, испытывает ее влияние и примеряется к ней, подстраивается под нее. Проявившаяся стихия Огонь, имеет Иньские - длительные следствия.
Проявившаясь стихия Земли, своим устойчивым и статичным потенциалом в силу медленного движения не повреждает среду, но заставляет ее приспосабливаться и искать способы взаимодействия, в которых среда проявляет Янские качества.

4. ПРОСТРАНСТВО (Эфир) - Додекаэдр - двенадцатигранник - правильный многогранник, составленный из двенадцати правильных пятиугольников. Додекаэдр имеет центр симметрии и 15 осей и 15 плоскостей симметрии.
Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников. Следовательно, сумма плоских углов при каждой вершине равна 324;.
Количество граней – 12, вершин – 20, рёбер – 30
Объем - V= a;(15+7;5)/4.
Площадь поверхности - S= 3a;;5(5+2;5)
С точки зрения астрологии, Пространство порождает творческий минорный, дискретный аспект с углом в 36 (72, 144) градусов - Дециль/Полуквинтиль, обладающий природой неожиданной, творческой динамики, оказывающей влияние на среду. Считается, что это аспект "гуманности", соразмеренности и уместности инициатив.
Он тактично встраивает индивидуальное в целое.

5. ВОДА - Икосаэдр - двадцатигранник. Каждая из 20 граней представляет собой равносторонний треугольник. 30 ребер, 20 граней и 12 вершин. Икосаэдр имеет 59 звездчатых форм.
Каждая вершина икосаэдра является вершиной пяти треугольников, сумма плоских углов при каждой вершине равна 300;.
Количество граней – 20, вершин – 12, рёбер – 30
Объем - V= 5a;(3+;5)/12.
Площадь поверхности - S= 5a;;3
С точки зрения астрологии, это аспект секстиля, отличающийся кратковременным интенсивным взаимодействием среды и индивидуальности.
(Чем короче "ребро", тем длительней взаимодействие, чем больше вершин, тем больше пиков активности.)
Иньская, скрытая, внутренняя Стихия порождает Янский способ взаимодействия на внешнем уровне, качествами проявления более соответсвующий стихии Воздух.

_____________________________
«В тот день, когда наука начнет изучать не только физические явления, она достигнет большего прогресса за одно десятилетие, чем за все предыдущие столетия своего существования.» - Никола Тесла.
Существует множество примеров случайных совпадений.
Но, совпадений не может быть от природы, так как, может случиться только то, что пребывает в резонансе, симметрии, кратности - во взаимодействии.
Числовых "Совпадений" столь много, что становится очевидной их не случайность.
Каждый может найти их самостоятельно, вот несколько примеров данной
занимательной абстракции:

Динамичность взаимодействия Стихий в градусах:
Вода - Огонь 300-180=120;
Воздух - Огонь 270-180=90;
Вода - Воздух 300-240=60;
Вода - Земля 300-270=30;
Воздух- Земля 270-240=30;

Сложим суммы плоских углов полученных многогранников
ОГОНЬ, Тетраэдр 180;
ВОЗДУХ, Октаэдр 240;
ЗЕМЛЯ, Куб 270;
ВОДА, Икосаэдр 300;
Пространство, Додекаэдр 324;
180+240+270+300+324=1314;. Разделим на 360; окружности.
1314:360=3,65
365 дней в году.
Температура человеческого тела 36,5 градусов.
324-180=144
24 часа умножим на 60 минут=1440.
60минут умноженное на 60 секунд =3600, 360 градусов в окружности.
Сложим вершины многоугольников: 4+6+8+12+ 20=50
360:50=72
72 часа в трех сутках.
72 удара в минуту средний пульс здорового взрослого человека.
Угол вращения цепочки ДНК =72.
72 - итог сложения всех букв, вписанных в тетраграммматон.
72 - максимальное число сфер, касающихся одной сферы в плотной упаковке в 6-мерном пространстве.
В исламе и иудаизме есть понятие 72 имени Бога.
72 градуса - внешний угол правильного пятиугольника

Если исключить из расчетов Пространство, то 360:30=12.
12 знаков Зодиака
12 месяцев в году и так далее.

180+240+270+300=990;
990:360=2,75
Средний срок беременности составляет 275 суток.
Нумерология, считает, что число 275 - союз Бога с человеком во имя творчества.

Правильные многогранники можно вписывать друг в друга.
По этому, все Стихии могут проявляться как на внешнем, так и на внутреннем уровне.
Додекаэдр, ПРОСТРАНСТВО, содержит в себе все фигуры.
В куб вписывается тетраэдр - ОГОНЬ, аналогичным образом в тетраэдр вписывается куб.
Стихия Огонь пребывает в недрах планеты Земля, а так же, Огонь может проявляться над Землей в виде света, молний и тепла.
Октаэдр - ВОЗДУХ, может быть вписан в куб, а так же, куб может быть вписан в Октаэдр.
Стихия Воздух содержится в пустых полостях планеты Земля, а так же, вокруг Земли.
В куб можно вписать икосаэдр. Воде свойственно заполнять пустые полости Земли.
В икосаэдр можно вписать додекаэдр и, следовательно, куб и тетраэдр.
Стихия Вода способна связывать между собой все Стихии.
Она пребывает и на поверхности Земли, и в Воздухе, выделяется из Воздуха в процессе горения, так же, она, как и все фигуры способна пребывать в Пространстве, Эфире.

Платоновы тела

Правильных многогранников вызывающе мало, но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук.

Л. Кэррол

Человек всегда проявлял интерес к многогранникам. Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов, которые можно рассмотреть с помощью электронного микроскопа. Что же такое многогранник? Многогранником называется часть пространства, ограниченная совокупностью конечного числа плоских многоугольников.

Издавна ученые интересовались «идеальными» или правильными многоугольниками, то есть многоугольниками, имеющими равные стороны и равные углы. Простейшим правильным многоугольником можно считать равносторонний треугольник, поскольку он имеет наименьшее число сторон, которое может ограничить часть плоскости. Общую картину интересующих нас правильных многоугольников наряду с равносторонним треугольником составляют: квадрат (четыре стороны), пентагон (пять сторон), гексагон (шесть сторон), октагон (восемь сторон), декагон (десять сторон) и т. д. Очевидно, что теоретически нет каких-либо ограничений на число сторон правильного многоугольника, то есть число правильных многоугольников бесконечно.

Что же такое правильный многогранник? Правильным называется такой многогранник, все грани которого равны (или конгруэнтны) между собой и при этом являются правильными многоугольниками. Сколько же существует правильных многогранников? В XIII книге «Началах Эвклида», посвященной правильным многогранникам, или платоновым телам (Платон их рассматривает в диалоге «Тимей») мы находим строгое доказательство того, что существует только пять правильных многогранников, а их гранями могут быть только три типа правильных многоугольников: треугольники, квадраты и пентагоны.

Доказательство того, что существует ровно пять правильных выпуклых многогранников, очень простое.

Очевидно, что каждая вершина многогранника может принадлежать трем и более граням. Сначала рассмотрим случай, когда грани многогранника – равносторонние треугольники. Поскольку внутренний угол равностороннего треугольника равен 60°, три таких угла, помещенные на плоскость, дадут в сумме 180°. Если теперь согнуть эти углы по внутренним сторонам и склеить по внешним, получим многогранный угол тетраэдра – правильного многогранника, в каждой вершине которого встречаются три правильные треугольные грани. Три правильных треугольника с общей вершиной называется разверткой вершины тетраэдра. Если добавить к развертке вершины еще один треугольник, в сумме получится 240°. Это развертка вершины октаэдра. Добавление пятого треугольника даст угол 300° – мы получаем развертку вершины икосаэдра. Если же добавить еще один, шестой треугольник, сумма углов станет равной 360° – эта развертка, очевидно, не может соответствовать ни одному выпуклому многограннику.

Теперь перейдем к квадратным граням. Развертка из трех квадратных граней имеет угол 3 x 90° = 270° – получается вершина куба, который также называют гексаэдром. Добавление еще одного квадрата увеличит угол до 360° – этой развертке уже не соответствует никакой выпуклый многогранник.

Три пятиугольные грани дают угол развертки 3 x 108° = 324° – вершина додекаэдра. Если добавить еще один пятиугольник, получим больше 360°.

Для шестиугольников уже три грани дают угол развертки 3 x 120° = 360°, поэтому правильного выпуклого многогранника с шестиугольными гранями не существует. Если же грань имеет еще больше углов, то развертка будет иметь еще больший угол. Значит, правильных выпуклых многогранников с гранями, имеющими шесть и более углов, не существует.

Таким образом, мы убедились, что существует лишь пять выпуклых правильных многогранников – тетраэдр, октаэдр и икосаэдр с треугольными гранями, куб (гексаэдр) с квадратными гранями и додекаэдр с пятиугольными гранями.

Пять правильных многогранников или платоновых тел использовались и были известны задолго до времени Платона. Кейт Кричлоу в своей книге «Время остановилось» дает убедительное свидетельство тому, что они были известны людям неолита Британии, по крайней мере, за 1000 лет до Платона. Это заявление основывается на наличии ряда сферических камней, хранящихся в музее Ашмолина в Оксфорде. Эти камни, размеры которых соответствовали тому, что можно уместить в руке, были покрыты геометрически точными сферическими фигурами куба, тетраэдра, октаэдра, икосаэдра и додекаэдра, также как и некоторые дополнительные сложносоставные и псевдоправильные тела, такие как кубо-октаэдр и ико-додекаэдр. Кричлоу говорит: «То что у нас есть, представляет собой объекты, несомненно указывающие на степень математических способностей, которые до сих пор отрицались в отношении человека неолита некоторыми археологами или историками математики».

Теэтет Афинский (417–369 до н. э.), современник Платона, дал математическое описание правильных многогранников и первое известное доказательство того, что их ровно пять.

В «Тимее», который, по сравнению со всеми остальными работами Платона, носит наиболее ярко выраженный пифагорейский характер, он утверждает, что четырьмя базовыми элементами в мире являются земля, воздух, огонь и вода, и что каждый из этих элементов соотносится с одной из пространственных фигур. Традиция связывает куб с землей, тетраэдр с огнем, октаэдр с воздухом и икосаэдр с водой. Платон упоминает «некое пятое построение», использованное создателем при сотворении вселенной. Так додекаэдр стал ассоциироваться с пятым элементом: эфиром. Устроитель вселенной Платона установил порядок из первобытного хаоса этих элементов с помощью основополагающих форм и чисел. Приведение в порядок в соответствии с числом и формой на более высоком уровне привело к предначертанному расположению пяти элементов в физической вселенной. Основополагающие формы и числа затем стали действовать в качестве границы раздела между высшим и низшим мирами. Сами по себе и в силу своей аналогии с другими элементами, они обладали способностью формировать материальный мир.

Те же пять правильных тел в соответствии с классической традицией рисуются таким образом, что они содержатся в девяти концентрических шарах, и каждое тело соприкасается со сферой, которая описана вокруг следующего тела, расположенного внутри ее. Такая композиция проявляет немало важных взаимоотношений и заимствована из дисциплины, называемой corpo transparente , относящейся к восприятию сфер, изготовленных из прозрачного материала и размещенных одна в другой. Такое наставление давалось Фра Лукой Паччоли многим великим людям Ренессанса, включая Леонардо и Брунуллески.

В своей книге «Тайна мира» (Mysterium Cosmographicum) , которая вышла в свет в 1596 г. Иоганн Кеплер предположил, что существует связь между пятью платоновыми телами и шестью открытыми к тому времени планетами Солнечной системы. Согласно этому предположению, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. В нее, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера. Расхождение между моделью Кеплера и реальными размерами орбит (порядка нескольких процентов) И. Кеплер объяснял «влиянием материи».

В XX веке платоновы тела были использованы в теории electron shell model Роберта Муна, которая также известна как «теория Муна». Мун заметил, что геометрическое расположение протонов и нейтронов в атомном ядре связано с положением вершин вложенных платоновых тел. Эта концепция была вдохновлена работой И. Кеплера «Mysterium Cosmographicum».

Существует формула Эйлера для многогранников:

F + V = E + 2

В этой формуле F – число граней, V – число вершин, E – число ребер. Эти числовые характеристики для платоновых тел приведены в таблице.

Количественные особенности платоновых тел

Важные соотношения между ребрами, диаметрами вписанных и описанных сфер, площадями и объемами правильных многогранников выражаются через иррациональные числа. В таблице ниже представлено отношение длины ребра к диаметру описанной сферы для каждого из пяти платоновых тел.

Каждый полученный результат есть иррациональное число, которое можно найти только через извлечение квадратного корня. Мы видим, что здесь фигурируют числа, которые являются важными и особенными в сакральной математике.

Геометрия додекаэдра и икосаэдра связана с золотой пропорцией. Действительно, гранями додекаэдра являются пентагоны, т. е. правильные пятиугольники, основанные на золотой пропорции. Если внимательно посмотреть на икосаэдр, то можно увидеть, что в каждой вершине икосаэдра сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что золотая пропорция играет существенную роль в конструкции этих двух платоновых тел. Эти две фигуры являются обратными друг другу: обе состоят из 30 ребер, но, несмотря на это, икосаэдр имеет 20 граней и 12 вершин, а додекаэдр – 12 граней и 20 вершин. Также обратными друг другу являются октаэдр и гексаэдр, и театраэдр сам к себе.

Существуют удивительные геометрические связи между всеми правильными многогранниками . Так, например, куб и октаэдр дуальны, т. е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны икосаэдр и додекаэдр. Тетраэдр дуален сам себе. Додекаэдр получается из куба построением «крыш» на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру, то есть из куба могут быть получены все остальные правильные многогранники.

Роберт Лолор в своей работе показывает, что платоновы тела можно построить исходя из икосаэдра. Он пишет: «Если мы соединим все внутренние вершины икосаэдра, нарисовав три линии из каждой из них, соединяющих каждую вершину с ей противолежащей, и затем из двух верхних вершин проведем четыре линии к двум противоположным, так чтобы эти линии сошлись в центре, мы, действуя в соответствии со сказанным, естественным образом построим ребра додекаэдра. Такое построение происходит автоматически при пересечении внутренних линий икосаэдра. После создания додекаэдра мы можем, просто используя шесть из его вершин и центр, построить куб. Используя диагонали куба, мы можем построить звездообразный или переплетенный тетраэдр. Пересечения звездообразного тетраэдра с кубом дают нам точное местоположение для построения вписанного октаэдра. Затем в самом октаэдре с использованием внутренних линий икосаэдра и вершин октаэдра получается второй икосаэдр. Мы прошли через весь полный цикл, пять этапов от семени к семени. И такие действия представляют собой бесконечную последовательность.

Тетраэдр

Простейшим среди правильных многогранников является тетраэдр. У Платона он соответствует стихии Огня. В физике «огонь» можно соотнести с состоянием плазмы. Тетраэдр имеет наименьшее число граней среди Платоновых тел и является трехмерным аналогом плоского правильного треугольника, который имеет наименьшее число сторон среди правильных многоугольников. Его четыре грани – равносторонние треугольники. Четыре – это наименьшее число граней, отделяющих часть трехмерного пространства. Каждая его вершина является вершиной трех треугольников. Все многогранные углы тетраэдра равны между собой. Сумма плоских углов при каждой вершине равна 180°. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер.

Октаэдр

Октаэдр составлен из восьми равносторонних треугольников. У Платона он соответствует стихии Воздуха. В физике «воздух» можно соотнести с газообразным состоянием вещества. Каждая его вершина является вершиной четырех треугольников. Противоположные грани лежат в параллельных плоскостях. Сумма плоских углов при каждой вершине равна 240°. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер.

Икосаэдр

Икосаэдр – одно из пяти платоновых тел, по простоте следующее за тетраэдром и октаэдром. У Платона он соответствует стихии Воды. В физике «воду» можно соотнести с жидким состоянием вещества. Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300°. Таким образом, икосаэдр имеет 20 граней, 12 вершин и 30 ребер.

Гексаэдр

Гексаэдр или куб составлен из шести квадратов. У Платона он соответствует стихии Земли. В физике «землю» можно соотнести с твёрдым состоянием вещества. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270°. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер.

Додекаэдр

Додекаэдр составлен из двенадцати равносторонних пятиугольников. У Платона он соответствует пятому элементу – Эфиру. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324°. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер.

Правильные многогранники встречаются в живой природе. В начале XX века Эрнст Геккель (Ernst Haeckel ) описал ряд организмов, формы скелета которых подобны различным правильным многогранникам. Например: Circoporus octahedrus, Circogonia icosahedra, Lithocubus geometricus и Circorrhegma dodecahedra . Формы скелета этих организмов запечатлены в их названиях.

Скелет одноклеточного организма феодарии (Circogoniaicosahedra ) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное пытается себя защитить: из 12 вершин скелета выходят 12 полых игл. На концах игл находятся зубцы, делающие иглу еще более эффективной при защите.

Многие вирусы, например вирус herpes , имеют форму правильного икосаэдра. Вирусные структуры строятся из повторяемых протеиновых субъединиц, и икосаэдр – самая подходящая форма для воспроизведения этих структур.

Кристаллические решётки многих минералов имеет форму платоновых тел.

Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана (FeS ). Кристаллы этого химического вещества имеют форму додекаэдра. Минерал сильвин имеет кристаллическую решетку в форме куба. Кристаллы пирита имеют форму додекаэдра, а куприт образует кристаллы в форме октаэдров.

Платоновы тела – очень важный объект для изучения, как с точки зрения сакральной математики, так и с точки зрения естественных наук. Платоновы тела проявляются повсюду, начиная от вирусов, многие из которых имеют икосаэдрическую форму и заканчивая сложными макроструктурами, такими, например, как Солнечная система.

Антон Мухин

Из книги Записные книжки автора Чехов Антон Павлович

частью тела. 2 [Арх(иерей) плачет, как в детстве больной, когда его жалела мать; плакал просто от общей душев- ной прострации, толпа плакала. Он веровал, достиг всего, что было [дано (?}] доступно ч(ело- ве)ку в его положении, но все же душа болела: не все было ясно, чего-то еще

Из книги Все под контролем: Кто и как следит за тобой автора Гарфинкель Симеон

Из книги Невообразимое будущее автора Кригер Борис

Заложники собственного тела В состоянии здоровья и благополучия человек напрочь забывает о существовании собственного тела. Его не беспокоят боли и прочие проявления дискомфорта, такие как чувство холода, жары, голода и другие. Однако чувство реальности жизни как раз

Из книги «Матрица» как философия автора Ирвин Уильям

ТЕЛА, УМЫ, ПОЛ «Звезды» «Матрицы» выглядят в соответствии с определенным стандартом. В виртуальном мире их плоть скрыта под похожими друг на друга костюмами из блестящей черной кожи или латекса. «эКзистенЦия» же наполнена плотью, запекшейся и свежей кровью wetware. Такие

Из книги Япония Лики времени. Менталитет и традиции в современном интерьере. автора Прасол Александр Федорович

Глава 17 ВОКРУГ ТЕЛА ДИНАМИКА - ОСОБЕННОСТИ ЯПОНСКИХ ДВИЖЕНИЙ Отличный от европейского климат, рацион питания и образ жизни веками формировали у японцев особенности телосложения и характер движений. В этой области ещё много неизученного, поэтому попробуем разобраться

Из книги Чужие уроки - 2008 автора Голубицкий Сергей Михайлович

ЭСТЕТИКА ОБНАЖЁННОГО ТЕЛА В историческом плане отношение японцев ко многим аспектам внешнего облика человека тоже сильно отличалось от европейского. Это особенно заметно в отношении к обнажённому телу. В европейской культуре обнажение допускается в двух случаях: по

Из книги Литературная Газета 6300 (№ 45 2010) автора Литературная Газета

Язык расслабленного тела Опубликовано в журнале "Бизнес-журнал" №15 от 08 августа 2008 года. Associated Press, 4 июля 2008 года: «Филип Беннет, бывший глава Refco Inc., приговорен к 16 годам тюремного заключения за финансовые махинации, которые привели к крушению одной из крупнейших в мире

Из книги Как победить китайцев автора Маслов Алексей Александрович

Загадки тела Библиоман. Книжная дюжина Загадки тела ЧИТАЮЩАЯ МОСКВА А.А. Каменский, М.В. Маслова, А.В. Граф. Гормоны правят миром: Популярная эндокринология. – М.: АСТ-ПРЕСС, 2010. – 192 с.: ил. – (Наука и мир). – 5000 экз. Сейчас издаётся не так много научно-популярной литературы,

Из книги Критика нечистого разума автора Силаев Александр Юрьевич

Из книги В предвкушении себя. От имиджа к стилю автора Хакамада Ирина Мицуовна

Истинные тела Если лаконично: мало истину знать, надо проживать ее в своем теле. Чтобы тело вело себя истинно. И этому надо учить отдельно, специальные такие предметы-дисциплины. Все же знают, никто не

Из книги Пятое измерение. На границе времени и пространства [сборник] автора Битов Андрей

Глава 4. Одухотворение тела К телу можно относиться по?разному. Его можно обожествить и посвятить ему свою жизнь. Об этом писала в своих воспоминаниях Джейн Фонда. Создав аэробику, она замучила себя диетами и фитнесом, доведя психику до разрушительного состояния. Можно на

Из книги Картины Парижа. Том II автора Мерсье Луи-Себастьен

Тонкие тела (воочию) В 1964 ГОДУ, сразу после снятия, ленинградскому художнику Гаге Ковенчуку приснился Никита Сергеевич. Они встретились в метро. Гага очень обрадовался. «Как же так? – выразил он тут же сочувствие. – Ведь так все хорошо шло!» Никита Сергеевич был краток:

Из книги Масонерия и машинерия (сборник) автора Байков Эдуард Артурович

226. Праздник Тела господня{57} День Тела господня самый торжественный изо всех католических праздников. В этот день Париж чист, весел, безопасен, великолепен. В этот день, видно как много в церквах серебряных вещей, не говоря о золоте и бриллиантах, как роскошны церковные

Из книги Россия. Еще не вечер автора Мухин Юрий Игнатьевич

Культ тела Бодибилдинг (от англ. body – тело и building – строительство, т. е. Body-Building – телостроительство, построение тела), или культуризм (от франц. culturisme – взращивание, наращивание) – это не просто система физических упражнений, способствующих наращиванию мышечной массы и,

Из книги Доктрина шока [Становление капитализма катастроф] автора Кляйн Наоми

Исход Души из тела Думаю, вас уже не удивит, что когда человек находится в состоянии смерти, то организм делает все, чтобы спасти мозг. То есть если тело теряет кровь, то организм (Дух) будет отключать от кровоснабжения все органы и остатки крови гонять только по кругу:

Из книги автора

Шок для тела Сопротивление нарастало, а оккупанты в ответ все больше применяли шок в новой форме. Поздно ночью или ранним утром солдаты вламывались в двери, освещая фонарями темные комнаты, и наполняли дом криками, из которых местные жители могли разобрать лишь несколько

Правильные многогранники с древних времен привлекали внимание философов, строителей, архитекторов, художников, математиков. Их поражала красота, совершенство, гармония этих фигур.

Правильный многогранник – объёмная выпуклая геометрическая фигура, все грани которой - одинаковые правильные многоугольники и все многогранные углы при вершинах равны между собой. Существует множество правильных многоугольников, но правильных многогранников всего пять. Названия этих многогранников пришли из Древней Греции, и в них указывается число («тетра» - 4, «гекса» - 6, «окта» - 8, «додека» - 12, «икоса» - 20) граней («эдра»).

Эти правильные многогранники получили название платоновых тел по имени древнегреческого философа Платона, который придавал им мистический смысл, но были известны они и до Платона. Тетраэдр олицетворял огонь, поскольку его вершина устремлена вверх, как у разгоревшегося пламени; икосаэдр - как самый обтекаемый - воду; куб - самая устойчивая из фигур - землю, а октаэдр – воздух. Додекаэдр отождествлялся со всей Вселенной и почитался главнейшим.

Правильные многогранники встречаются в живой природе. Например, скелет одноклеточного организма феодарии по форме напоминает икосаэдр. Кристалл пирита (сернистого колчедана, FeS2) имеет форму додекаэдра.

Тетраэдр – правильная треугольная пирамида, и гексаэдр – куб – фигуры, с которыми мы постоянно встречаем в реальной жизни. Чтобы лучше почувствовать форму других платоновых тел, стоит самому создать их из плотной бумаги или картона. Сделать плоскую развёртку фигур несложно. Создание правильных многогранников чрезвычайно занимательно самим процессом формообразования.

Завершенные и причудливые формы правильных многогранников широко используются в декоративном искусстве. Объёмные фигуры можно сделать более занимательными, если плоские правильные многоугольники представить другими фигурами, вписывающимися в многоугольник. Например: правильный пятиугольник можно заменить звездой. Такая объёмная фигура не будет иметь рёбер. Собрать её можно, связывая концы лучей звёзд. И 10 звёзд собирается плоская развёртка. Объёмной фигура получается после закрепления оставшихся 2 звёзд.

Если ваш ребёнок любит делать поделки своими умелыми руками, предложите ему собрать объёмную фигуру многогранник додекаэдр из плоских пластиковых звёзд. Результат работы обрадует вашего ребёнка: он изготовит своими руками оригинальную декоративную конструкцию, которой можно украсить детскую комнату. Но, самое замечательное – ажурный шар светится в темноте. Пластиковые звёзды изготовлены с добавлением современного безвредного вещества - люминофора.

Правильным многоугольником называется ограниченная прямыми плоская фигура с равными сторонами и равными внутренними углами. Ясно, что таких фигур бесконечно много. Аналогом правильного многоугольника в трехмерном пространстве служит правильный многогранник: пространственная фигура с одинаковыми гранями, имеющими форму правильных многоугольников, и одинаковыми многогранными углами при вершинах. На первый взгляд может показаться, что многогранников также бесконечно много, но на самом деле их, как выразился однажды Льюис Кэррол, "вызывающе мало". Существует лишь пять правильных выпуклых многогранников: правильный тетраэдр, куб, октаэдр, додекаэдр и икосаэдр (рис. 90).

Первое систематическое исследование пяти правильных тел было, по-видимому, предпринято еще в глубокой древности пифагорейцами. Согласно их воззрениям, тетраэдр, куб, октаэдр и икосаэдр лежат в основе традиционных четырех элементов: огня, земли, воздуха и воды. Додекаэр пифагорейцы по непонятным соображениям отождествляли со всей вселенной. Поскольку взгляды пифагорейцев подробно изложены в диалоге Платона "Тимей", правильные многогранники принято называть Платоновыми телами. Красота и удивительные математические свойства пяти правильных тел неоднократно привлекали к себе внимание ученых и после Платона. Анализ Платоновых тел является кульминационным пунктом заключительной книги "Элементов" Евклида. Иоганн Кеплер в юности считал, что расстояния между орбитами шести известных в его время планет можно получить, вписывая в определенном порядке пять правильных тел в орбиту Сатурна. В наши дни математики не приписывают Платоновым телам мистических свойств, а изучают свойства симметрии правильных многогранников методами теории групп. Платоновы тела играют заметную роль и в занимательной математике. Рассмотрим, хотя бы бегло, несколько связанных с ними задач.

Существуют четыре различных способа, как разрезать запечатанный конверт и сложить из него тетраэдр. Вот простейший из них. На обеих сторонах конверта у одного и того же края) начертим равносторонний треугольник (рис. 91) и разрежем конверт по пунктирной прямой. Правая его половина нам не нужна, а левую мы перегнем по сторонам нарисованного треугольника (на обеих сторонах конверта) и совместим точки А и В. Тетраэдр готов!

Головоломка, изображенная на рис. 92, также связана с тетраэдром. Развертку, изображенную на рис. 92 слева, можно вырезать из пластика или плотной бумаги. Сделайте две такие развертки. (На чертеже все пунктирные линии, кроме одной, которая заметно длиннее других, имеют одинаковую длину.) Сложим развертку, перегнув ее по указанным на чертеже линиям. Грани, пересекающиеся между собой вдоль ребер, показанных на чертеже сплошной линией, склеим липкой лентой. В результате у нас получится геометрическое тело, показанное на рис. 92 справа. Из двух таких тел нужно попытаться сложить тетраэдр. Один мой знакомый математик любит приставать к своим друзьям с довольно плоской шуткой. Он собирает из двух разверток две модельки, составляет из них тетраэдр и ставит его на стол, а третью развертку незаметно зажимает в руке. Затем ударом руки он расплющивает тетраэдр и в то же время кладет на стол третью развертку. Вполне очевидно, что его друзьям никак не удается собрать тетраэдр из трех блоков.

Из различных занимательных задач, связанных с кубом, я упомяну лишь головоломку с вычислением полного сопротивления электрической цепи, образованной ребрами проволочного куба, и тот удивительный факт, что куб может проходить через отверстие в меньшем кубе. В самом деле, стоит вам взять куб так, чтобы одна из его вершин была направлена прямо на вас, а ребра образовали правильный шестиугольник, как вы увидите, что в сечении, перпендикулярном лучу зрения, есть достаточно места для квадратного отверстия, которое чуть больше грани самого куба. В электрической головоломке речь идет о цепи, изображенной на рис. 93. Сопротивление каждого ребра куба равно одному ому. Чему равно сопротивление всей цепи, если ток течет от А к В? Инженеры-электрики извели немало бумаги, пытаясь решить эту задачу, хотя при надлежащем подходе найти ее решение совсем несложно.

Все пять Платоновых тел использовались в качестве игральных костей. После куба наибольшую популярность приобрели игральные кости в форме октаэдра. Как сделать такую кость, показано на рис. 94. Начертив и вырезав полоску и перенумеровав грани, ее перегибают вдоль ребер, а "открытые" ребра склеивают прозрачной лентой. Получается миниатюрный октаэдр. Сумма очков на противоположных гранях октаэдрической игральной кости, как и у обычной кубической, равна семи. При желании с помощью новой кости вы можете показать забавный фокус с отгадыванием задуманного числа. Попросите кого-нибудь загадать любое число от 0 до 7. Положите октаэдр на стол так, чтобы загадавший мог видеть только грани с цифрами 1, 3, 5 и 7, и спросите, не видит ли он задуманного им числа. Если он отвечает утвердительно, вы запоминаете про себя число 1. Затем вы переворачиваете октаэдр так, чтобы загадавшему были видны грани с цифрами 2, 3, 6 и 7, и снова задаете тот же вопрос. На этот раз утвердительный ответ означает, что вы должны запомнить число 2. В третий (и последний раз) вы повторяете свой вопрос, повернув октаэдр так, чтобы загадавший мог видеть грани с цифрами 4, 5, 6 и 7. Утвердительный ответ в этом случае оценивается числом 4. Сложив оценки всех трех ответов, вы получите задуманное вашим приятелем число. Этот фокус без труда объяснит всякий, кто знаком с двоичной системой счисления. Чтобы легче было отыскать нужные положения октаэдра, как-нибудь пометьте три вершины, которые должны быть обращены к вам, когда вы стоите лицом к зрителю (задумавшему число).

Существуют и другие не менее интересные способы нумерации граней октаэдрической игральной кости. Например, числа от 1 до 8 можно расположить так, что сумма чисел на четырех гранях, сходящихся в общей вершине, будет постоянна. Эта сумма всегда равна 18, однако существует три различных способа нумерации граней (мы не считаем различными кости, которые переходят друг в друга при поворотах и отражениях), удовлетворяющих заданному выше условию.

Изящный способ построения додекаэдра предложен книге Гуго Штейнгауза "Математический калейдоскоп" * . Из плотного картона нужно вырезать две фигуры, показанные на рис. 95. Стороны пятиугольников должны быть около 2,5-3 см. Лезвием ножа осторожно надрежем картон вдоль сторон внутреннего пятиугольника, с тем чтобы развертка легко сгибалась в одну сторону. Подготовив таким же образом вторую развертку, наложим ее на первую так, чтобы выступы второй развертки пришлись против вырезов первой. Придерживая обе развертки рукой, скрепим их резинкой, пропуская ее попеременно то над выступающим концом одной развертки, то под выступающим концом другой. Ослабив давление руки на развертки, вы увидите, как на ваших глазах, словно по волшебству, возникнет додекаэдр.

* (Эта игрушка была приложена лишь к первому изданию книги Г. Штейнгауза . В дальнейших изданиях, в том числе и в русском (1949), ее нет.- Прим. ред. )

Раскрасим модель додекаэдра таким образом, чтобы каждая грань была выкрашена только одним цветом. Чему равно наименьшее число красок, которыми можно раскрасить додекаэдр, если требуется, чтобы любые две смежные грани были разного цвета? Ответ: наименьшее число красок равно четырем. Нетрудно убедиться, что существуют четыре различных способа наиболее экономной раскраски додекаэдра (при этом два раскрашенных додекаэдра будут зеркальными отражениями двух других). Для раскраски тетраэдра также требуется четыре краски, но существует лишь два варианта раскраски, при этом один тетраэдр переходит в другой при зеркальном отражении. Куб можно раскрасить тремя, а октаэдр - двумя красками. Для каждого из этих тел существует лишь один способ наиболее экономной раскраски. Раскрасить икосаэдр можно всего лишь тремя красками, но сделать это можно не менее чем 144 способами. Лишь в 6 из них раскрашенные икосаэдры совпадают со своими зеркальными отражениями.

Рассмотрим еще одну задачу. Предположим, что муха, разгуливая по 12 ребрам икосаэдра, ползает по каждому из них по крайней мере один раз. Каков наименьший путь, который должна проделать муха, чтобы побывать на всех ребрах иксаэдра? Возвращаться в исходную точку не обязательно; некоторые ребра мухе придется пройти дважды (из всех пяти Платоновых тел только октаэдр обладает тем свойством, что его ребра можно обойти, побывав на каждом из них лишь по одному разу). Решению задачи может помочь проекция икосаэдра на плоскость (рис. 96). Только следует иметь в виду, что длина всех ребер одинакова.

Поскольку и поныне встречаются чудаки, все еще пытающиеся найти решение задач о трисекции угла и квадратуре круга, хотя давно уже доказано, что ни то, ни другое невозможно, кажется странным, что никто не предпринимает попыток найти новые правильные многогранники сверх уже известных пяти Платоновых тел. Одна из причин такого парадоксального положения заключается в том, что понять, почему не существует более пяти правильных тел, крайне несложно. Следующее простое доказательство существования не более пяти правильных тел восходит к Евклиду.

Многогранный угол правильного тела должен быть образован по крайней мере тремя гранями. Рассмотрим простейшую из граней: равносторонний треугольник. Многогранный угол можно построить, приложив друг к другу три, четыре или пять таких треугольников. При числе треугольников свыше пяти сумма плоских углов, примыкающих к вершине многогранника, составляет 360° или даже больше, и, следовательно, такие треугольники не могут образовывать многогранный угол. Итак, существует лишь три способа построения правильного выпуклого многогранника с треугольными гранями. Пытаясь построить многогранный угол из квадратных граней, мы убедимся, что это можно сделать лишь из трех граней. Аналогичными рассуждениями нетрудно показать, что в одной вершине правильного многоугольника могут сходиться три и только три пятиугольные грани. Грани не могут иметь форму многоугольников с числом сторон больше 5, так как, приложив, например, друг к другу три шестиугольника, мы получим в сумме угол в 360 0 .

Приведенное только что рассуждение не доказывает возможности построения пяти правильных тел, оно лишь объясняет, почему таких тел не может быть больше пяти. Более тонкие рассуждения заставляют прийти к выводу, что в четырехмерном пространстве имеется лишь шесть правильных политопов (так называются аналоги трехмерных правильных тел). Любопытно отметить, что?в пространстве любого числа измерений, большем 4, существует лишь три правильных политопа: аналоги тетраэдра, куба и октаэдра.

Невольно напрашивается вывод. Математика в значительной мере ограничивает многообразие структур, которые могут существовать в природе. Обитатели далее самой отдаленной галактики не могут играть в кости, имеющие форму неизвестного нам правильного выпуклого многогранника. Некоторые теологи честно признали, что даже сам господь бог не смог бы построить шестое платоново тело в трехмерном пространстве. Точно так же геометрия ставит непреодолимые границы разнообразию структуры кристаллов. Может быть, наступит день, когда физики откроют математические ограничения, которым должно удовлетворять число фундаментальных частиц и основных законов природы. Разумеется, никто сейчас не имеет ни малейшего представления о том, каким образом математика делает невозможной ту или иную структуру, называемую "живой" (если только математика вообще причастна к этому кругу явлений). Вполне допустимо, например, что наличие углеродных соединений является непременным условием возникновения жизни. Как бы то ни было, человечество заранее готовит себя к мысли о возможности существования жизни на других планетах. Платоновы же тела служат напоминанием о том, что на Марсе и Венере может не оказаться многого из того, о чем думают наши мудрецы.

Ответы

Полное сопротивление цепи, образованной ребрами куба (сопротивление каждого ребра 1 ом ) составляет 5 / 6 ома . Соединим накоротко три ближайшие к А вершины куба и проделаем то же самое с тремя вершинами, ближайшими к В. Мы получим две треугольные цепи. Ни в одной из них тока не будет, так как они соединяют эквипотенциальные точки. Нетрудно заметить, что между вершиной А и ближайшей к ней треугольной цепью параллельно включены три сопротивления по 1 ому (общее сопротивление 1 / 3 ома ), между двумя треугольными цепями в параллель соединено 6 сопротивлений по 1 ому (общее сопротивление этого участка цепи 1 / 6 ома ) и между второй треугольной цепью и точкой В имеется 3 параллельно соединенных проводника по 1 ому (то есть всего 1 / 3 ома ). Таким образом, полное сопротивление цепи между точками А и В равно 5 / 6 ома .

И условие задачи, и метод решения нетрудно обобщить на случай цепи, образованной ребрами четырех остальных Платоновых тел.

Перечислим три способа нумерации граней октаэдра, удовлетворяющих условию: сумма чисел на гранях, примыкающих к любой вершине, должна быть равна 18. Числа, встречаемые при обходе (по часовой стрелке или против нее) одной вершины: 6, 7, 2, 3; при обходе противоположной вершины: 1, 4, 5, 8 (6 рядом с 1, 7 рядом с 4 и т. д.); при обходе остальных вершин: 1, 7, 2, 8 и 4, 6, 3, 5; 4, 7, 2, 5 и 6, 1, 8, 3. Простое доказательство того, что октаэдр - единственное из пяти правильных тел, чьи грани можно пронумеровать так, чтобы сумма чисел на гранях, примыкающих к любой вершине, была постоянна, можно найти в книге У. У. Роуза Болла * .

* (W. W. Rouse Ball, Mathematical recreations and essays, London, MacMillan, New York, St. Martin"s Press, 1956, p. 418. )

Кратчайшее расстояние, которое должна преодолеть муха для того, чтобы побывать на всех ребрах икосаэдра, равно 35 единицам (единица - длина ребра икосаэдра). Стерев пять ребер икосаэдра (например, ребра FM, BE, JA, ID и НС на рис. 96), мы получим граф, на котором нечетное число ребер сходится только в двух точках G и К. Поэтому муха может обойти весь этот граф (начав свой путь к точке G и закончив его в точке К), пройдя по каждому ребру лишь один раз. Пройденное мухой расстояние равно 25 единицам. Это самый длинный путь, все участки которого проходятся по одному разу. Если муха на своем пути встречает стертые ребра, мы просто добавляем их к пути из G в К, считая, что муха проходит их дважды (в противоположных направлениях). Пять стертых ребер, проходимых дважды, составляют добавку в 10 единиц к уже пройденному пути. В сумме это и составляет 35 единиц.

Введение

Данная курсовая работа предназначена для того чтобы:

1) закрепить, углубить и расширить теоретические знания в области методов моделирования поверхностей и объектов, практические умения и навыки программной реализации методов;

2) усовершенствовать навыки самостоятельной работы;

3) выработать умения формулировать суждения и выводы, логически последовательно и доказательно их излагать.

Тела Платона

Тела Платона - это выпуклые многогранники, все грани которых правильные многоугольники. Все многогранные углы правильного многогранника конгруэнтны. Как это следует уже из подсчета суммы плоских углов при вершине, выпуклых правильных многогранников не больше пяти. Указанным ниже путем можно доказать, что существует именно пять правильных многогранников (это доказал Евклид). Они - правильный тетраэдр, гексаэдр(куб), октаэдр, додекаэдр и икосаэдр. Названия этих правильных многогранников пришли из Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник". "двенадцатигранник", "двадцатигранник".

Таблица№1

Таблица№2

Название:

Радиус описанной сферы

Радиус вписанной сферы

Тетраэдр

Гексаэдр

Додекаэдр

Икосаэдр

Тетраэдр - четырехгранник, все грани которого треугольники, т.е. треугольная пирамида; правильный тетраэдр ограничен четырьмя равносторонними треугольниками. (рис.1).

Куб или правильный гексаэдр - правильная четырехугольная призма с равными ребрами, ограниченная шестью квадратами. (рис.1).

Октаэдр - восьмигранник; тело, ограниченное восемью треугольниками; правильный октаэдр ограничен восемью равносторонними треугольниками; один из пяти правильных многогранников. (рис.1).

Додекаэдр - двенадцатигранник, тело, ограниченное двенадцатью многоугольниками; правильный пятиугольник. (рис.1).

Икосаэдр - двадцатигранник, тело, ограниченное двадцатью многоугольниками; правильный икосаэдр ограничен двадцатью равносторонними треугольниками. (рис.1).


Куб и октаэдр дуальны, т.е. получаются друг из друга, если центры тяжести граней одного принять за вершины другого и обратно. Аналогично дуальны додекаэдр и икосаэдр. Тетраэдр дуален сам себе. Правильный додекаэдр получается из куба построением “крыш” на его гранях (способ Евклида), вершинами тетраэдра являются любые четыре вершины куба, попарно не смежные по ребру. Так получаются из куба все остальные правильные многогранники. Сам факт существования всего пяти действительно правильных многогранников удивителен - ведь правильных многоугольников на плоскости бесконечно много!

Все правильные многогранники были известны еще в Древней Греции, и им посвящена 13-я книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр? воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр? воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь.

В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента? землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным.

Важное место занимали правильные многогранники в системе гармоничного устройства мира И. Кеплера. Все та же вера в гармонию, красоту и математически закономерное устройство мироздания привела И. Кеплера к мысли о том, что поскольку существует пять правильных многогранников, то им соответствуют только шесть планет. По его мнению, сферы планет связаны между собой вписанными в них платоновыми телами. Поскольку для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором будет находиться Солнце.

Проделав огромную вычислительную работу, в 1596 г. И. Кеплер в книге "Тайна мироздания" опубликовал результаты своего открытия. В сферу орбиты Сатурна он вписывает куб, в куб? сферу Юпитера, в сферу Юпитера - тетраэдр, и так далее последовательно вписываются друг в друга сфера Марса? додекаэдр, сфера Земли? икосаэдр, сфера Венеры? октаэдр, сфера Меркурия. Тайна мироздания кажется открытой.

Сегодня можно с уверенностью сказать, что расстояния между планетами не связаны ни с какими многогранниками. Впрочем, возможно, что без "Тайны мироздания", "Гармонии мира" И. Кеплера, правильных многогранников не было бы трех знаменитых законов И. Кеплера, которые играют важную роль в описании движения планет.

Где еще можно увидеть эти удивительные тела? В книге немецкого биолога начала прошлого века Э. Геккеля "Красота форм в природе" можно прочитать такие строки: "Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы". Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видно и одноклеточные организмы? феодарии, форма которых точно передает икосаэдр. Чем же вызвана такая природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший объем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень? икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники? самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов (KAlSO4)2 12Н2О имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьмянистый сернокислый натрий - тетраэдра, бор - икосаэдра. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ.

Итак, правильные многогранники открыли нам попытки ученых приблизиться к тайне мировой гармонии и показали неотразимую привлекательность и красоту этих геометрических фигур.