Болезни Военный билет Призыв

Радиус электронной орбиты в атоме водорода. Энергетическое строение атома водорода

Простейший из атомов, атом водорода явился своеобразным тест-объектом для теории Бора. Ко времени создания теории он был хорошо изучен экспериментально. Было известно, что он содержит единственный электрон. Ядром атома является протон – положительно заряженная частица, заряд которой равен по модулю заряду электрона, а масса в 1836 раз превышает массу электрона. Еще в начале XIX века были открыты дискретные спектральные линии в видимой области излучения атома водорода (так называемый линейчатый спектр). Впоследствии закономерности, которым подчиняются длины волн (или частоты) линейчатого спектра, были хорошо изучены количественно (И. Бальмер, 1885 г.). Совокупность спектральных линий атома водорода в видимой части спектра была названа серией Бальмера. Позже аналогичные серии спектральных линий были обнаружены в ультрафиолетовой и инфракрасной частях спектра. В 1890 году И. Ридберг получил эмпирическую формулу для частот спектральных линий:

Для серии Бальмера m = 2, n = 3, 4, 5, ... . Для ультрафиолетовой серии (серия Лаймана) m = 1, n = 2, 3, 4, ... . Постоянная R в этой формуле называется постоянной Ридберга. Ее численное значение R = 3,29·10 15 Гц. До Бора механизм возникновения линейчатых спектров и смысл целых чисел, входящих в формулы спектральных линий водорода (и ряда других атомов), оставались непонятными.

Постулаты Бора определили направление развития новой науки – квантовой физики атома. Но они не содержали рецепта определения параметров стационарных состояний (орбит) и соответствующих им значений энергии E n .

Правило квантования, приводящее к согласующимся с опытом значениям энергий стационарных состояний атома водорода, Бором было угадано. Он предположил, что момент импульса электрона, вращающегося вокруг ядра, может принимать только дискретные значения, кратные постоянной Планка. Для круговых орбит правило квантования Бора записывается в виде

где e – элементарный заряд, ε 0 – электрическая постоянная. Скорость электрона υ и радиус стационарной орбиты r n связаны правилом квантования Бора. Отсюда следует, что радиусы стационарных круговых орбит определяются выражением

Радиусы последующих орбит возрастают пропорционально n 2 .

Полная механическая энергия E системы из атомного ядра и электрона, обращающегося по стационарной круговой орбите радиусом r n , равна

Целое число n = 1, 2, 3, ... называется в квантовой физике атома главным квантовым числом.

Согласно второму постулату Бора, при переходе электрона с одной стационарной орбиты с энергией E n на другую стационарную орбиту с энергией E m < E n атом испускает квант света, частота ν nm которого равна ΔE nm / h:

Подстановка числовых значений m e , e, ε 0 и h в эту формулу дает результат

который очень хорошо согласуется с эмпирическим значением R. Рис. 6.3.1 иллюстрирует образование спектральных серий в излучении атома водорода при переходе электрона с высоких стационарных орбит на более низкие.

На рис. 6.3.2. изображена диаграмма энергетических уровней атома водорода и указаны переходы, соответствующие различным спектральным сериям.

Прекрасное согласие боровской теории атома водорода с экспериментом служило веским аргументом в пользу ее справедливости. Однако попытки применить эту теорию к более сложным атомам не увенчались успехом. Бор не смог дать физическую интерпретацию правилу квантования. Это было сделано десятилетием позже де Бройлем на основе представлений о волновых свойствах частиц. Де Бройль предложил, что каждая орбита в атоме водорода соответствует волне, распространяющейся по окружности около ядра атома. Стационарная орбита возникает в том случае, когда волна непрерывно повторяет себя после каждого оборота вокруг ядра. Другими словами, стационарная орбита соответствует круговой стоячей волне де Бройля на длине орбиты (рис. 6.3.3). Это явление очень похоже на стационарную картину стоячих волн в струне с закрепленными концами.

В стационарном квантовом состоянии атома водорода на длине орбиты должно укладываться по идее де Бройля целое число длин волн λ, т. е.

Подставляя в это соотношение длину волны де Бройля λ = h / p, где p = m e υ – импульс электрона, получим:

Таким образом, боровское правило квантования связано с волновыми свойствами электронов.

Успехи теории Бора в объяснении спектральных закономерностей в изучении атома водорода были поразительны. Стало ясно, что атомы – это квантовые системы, а энергетические уровни стационарных состояний атомов дискретны. Почти одновременно с созданием теории Бора было получено прямое экспериментальное доказательство существования стационарных состояний атома и квантования энергии. Дискретность энергетических состояний атома была продемонстрирована в 1913 г., в опыте Д. Франка и Г. Герца, в котором исследовалось столкновение электронов с атомами ртути. Оказалось, что если энергия электронов меньше 4,9 эВ, то их столкновение с атомами ртути происходит по закону абсолютно упругого удара. Если же энергия электронов равна 4,9 эВ, то столкновение с атомами ртути приобретает характер неупругого удара, т. е. в результате столкновения с неподвижными атомами ртути электроны полностью теряют свою кинетическую энергию. Это означает, то атомы ртути поглощают энергию электрона и переходят из основного состояния в первое возбужденное состояние,

Спектральная линия с такой частотой действительно была обнаружена в ультрафиолетовой части спектра излучения атомов ртути.

Представление о дискретных состояниях противоречит классической физике. Поэтому возник вопрос, не опровергает ли квантовая теория ее законы.

Квантовая физика не отменила фундаментальных классических законов сохранения энергии, импульса, электрического разряда и т. д. Согласно сформулированному Н. Бором принципу соответствия, квантовая физика включает в себя законы классической физики, и при определенных условиях можно обнаружить плавный переход от квантовых представлений к классическим. Это можно видеть на примере энергетического спектра атома водорода (рис. 6.3.2). При больших квантовых числах n >> 1 дискретные уровни постепенно сближаются, и возникает плавный переход в область непрерывного спектра, вытекающего из классической физики.

Половинчатая, полуклассическая теория Бора явилась важным этапом в развитии квантовых представлений, введение которых в физику требовало кардинальной перестройки механики и электродинамики. Такая перестройка была осуществлена в 20-е – 30-е годы XX века.

Представление Бора об определенных орбитах, по которым движутся электроны в атоме, оказалось весьма условным. На самом деле движение электрона в атоме очень мало похоже на движение планет или спутников. Физический смысл имеет только вероятность обнаружить электрон в том или ином месте, описываемая квадратом модуля волновой функции |Ψ| 2 . Волновая функция Ψ является решением основного уравнения квантовой механики – уравнения Шредингера. Оказалось, что состояние электрона в атоме характеризуется целым набором квантовых чисел. Главное квантовое число n определяет квантование энергии атома. Для квантования момента импульса вводится так называемое орбитальное квантовое число l. Проекция момента импульса на любое выделенное в пространстве направление (например, направление вектора магнитного поля) также принимает дискретный ряд значений. Для квантования проекции момента импульса вводится магнитное квантовое число m. Квантовые числа n, l, m связаны определенными правилами квантования. Например, орбитальное квантовое число l может принимать целочисленные значения от 0 до (n – 1). Магнитное квантовое число m может принимать любые целочисленные значения в интервале ±l. Таким образом, каждому значению главного квантового числа n, определяющему энергетическое состояние атома, соответствует целый ряд комбинаций квантовых чисел l и m. Каждой такой комбинации соответствует определенное распределение вероятности |Ψ| 2 обнаружения электрона в различных точках пространства («электронное облако»).

Состояния, в которых орбитальное квантовое число l = 0, описываются сферически симметричными распределениями вероятности. Они называются s-состояниями (1s, 2s, ..., ns, ...). При значениях l > 0 сферическая симметрия электронного облака нарушается. Состояния с l = 1 называются p-состояниями, с l = 2 – d-состояниями и т. д.

На рис. 6.3.4 изображены кривые распределения вероятности ρ (r) = 4πr 2 |Ψ| 2 обнаружения электрона в атоме водорода на различных расстояниях от ядра в состояниях 1s и 2s.

Как видно из рис. 6.3.4, электрон в состоянии 1s (основное состояние атома водорода) может быть обнаружен на различных расстояниях от ядра. С наибольшей вероятностью его можно обнаружить на расстоянии, равном радиусу r 1 первой боровской орбиты. Вероятность обнаружения электрона в состоянии 2s максимальна на расстоянии r = 4r 1 от ядра. В обоих случаях атом водорода можно представить в виде сферически симметричного электронного облака, в центре которого находится ядро.

Чтобы получить согласие с результатами наблюдений, Бор предположил, что электрон в атоме водорода движется только по тем круговым орбитам, для которых его момент импульса

где n - квантовые числа, т – масса электрона, - его скорость, r - радиус орбиты. (Рассуждения, которые привели Бора к этому предположению мы опустим.)

С помощью этого правила квантования можно найти радиусы круговых стационарных орбит водорода и водородоподобных систем: ионов атомов с одним оставшимся электроном (Н, Не + , Li + + , …) и соответствующие им энергии. Пусть заряд ядра водородоподобной системы равен e . Масса ядра значительно больше массы электрона, поэтому ядро при движении электрона можно считать неподвижным. Следуя Бору, будем предполагать, что электрон движется вокруг ядра по окружности радиуса r .

Согласно 2-му закону Ньютона

(3.12.9)

Решая совместно (3.12.8) и (3.12.9), можно найти радиусы электронных орбит и их скорости на этих орбитах:

. (3.12.10)

Таким образом, радиус первой (ближайшей к ядру) орбиты электрона в атоме водорода (его обозначают обычно и называют первым Боровским радиусом )

нм (3.12.11)

Внутренняя энергия атома складывается из кинетической энергии электрона (ядро полагают неподвижным) и потенциальной энергии взаимодействия электрона с ядром. С учетом (3.12.10) получим:

. (3.12.12)

При переходе атома водорода (Z =1) из состояния в состояние излучается фотон

. (3.12.13)

Тогда частота испущенного света равна

, (3.12.14)

Что соответствует обобщенной формуле Бальмера, если постоянная Ридберга определяется . (3.12.15)

Расчет по этой формуле хорошо согласуется с экспериментально определенным значением.

Схема энергетических уровней (разрешенных значений энергии) атома водорода приведена на рис.3.12.4. Там же показаны возможные переходы, сопровождающиеся излучением фотонов определенной частоты.



Лекция 3.13.

Волновые свойства частиц вещества.

Гипотеза де-Бройля. Волны де-Бройля.

Как было сказано ранее, свет (и вообще излучение) имеет двойственную природу: в одних явлениях (интерференция, дифракция и др.) свет проявляет себя как волны, в других явлениях с не меньшей убедительностью – как частицы. Это и побудило де-Бройля (в 1923 г.) высказать идею о том, что материальные частицы должны обладать и волновыми свойствами, т.е. распространить подобный корпускулярно-волновой дуализм на частицы с массой покоя, отличной от нуля.

Если с такой частицей связана какая-то волна, можно ожидать, что она распространяется в направлении скорости υ частицы. О природе этой волны ничего определенного де-Бройлем не было высказало. Не будем и мы пока выяснять их природу, хотя сразу же подчеркнем, что эти волны не электромагнитные. Они имеют, как мы увидим далее, специфическую природу, для которой нет аналога в классической физике.

Итак, де-Бройль высказал гипотезу, что соотношение для импульса p=ћω/c , относящееся к фотонам, имеет универсальный характер, т. е. частицам можно сопоставить волну, длина которой

Эта формула получила название формулы де-Бройля , а λ – дебройлевской длины волны частицы с импульсом р .

Де-Бройль также предположил, что пучок частиц, падающих на двойную щель, должен за ними интерферировать.

Вторым, независимым от формулы (3.13.1), соотношением является связь между энергией Е частицы и частотой ω дебройлевской волны:

В принципе энергия Е определена всегда с точностью до прибавления произвольной постоянной (в отличие от ΔЕ ), следовательно, частота ω является принципиально ненаблюдаемой величиной (в отличие от дебройлевской длины волны).

С частотой ω и волновым числом k связаны две скорости - фазовая υ ф и групповая u :

(3.13.3)

Умножив числитель и знаменатель обоих выражений на ћ с учетом (3.13.1) и (3.13.2), получим, ограничившись рассмотрением только нерелятивистского случая, т.е. полагая E = p 2 /2m (кинетическая энергия):

(3.13.4)

Отсюда видно, что групповая скорость равна скорости частицы, т. е. является принципиально наблюдаемой величиной, в отличие от υ ф ‑ из-за неоднозначности Е .

Из первой формулы (3.13.4) следует, что фазовая скорость дебройлевских волн

(3.13.5)

т. е. зависит от частоты ω, а значит дебройлевские волны обладают дисперсией даже в вакууме. Далее будет показано, что в соответствии с современной физической интерпретацией фазовая скорость дебройлевских волн имеет чисто символическое значение, поскольку эта интерпретация относит их к числу принципиально ненаблюдаемых величин. Впрочем, сказанное видно и сразу, так как Е в (3.13.5) определена, как уже говорилось, с точностью до прибавления произвольной постоянной.

Установление того факта, что согласно (3.13.4) групповая скорость дебройлевских волн равна скорости частицы, сыграло в свое время важную роль в развитии принципиальных основ квантовой физики, и в первую очередь в физической интерпретации дебройлевских волн. Сначала была сделана попытка рассматривать частицы как волновые пакеты весьма малой протяженности и таким образом решить парадокс двойственности свойств частиц. Однако подобная интерпретация оказалась ошибочной, так как все составляющие пакет гармонические волны распространяются с разными фазовыми скоростями. При наличии большой дисперсии, свойственной дебройлевским волнам даже в вакууме, волновой пакет «расплывается». Для частиц с массой порядка массы электрона пакет расплывается практически мгновенно, в то время как частица является стабильным образованием.

Таким образом, представление частицы в виде волнового пакета оказалось несостоятельным. Проблема двойственности свойств частиц требовала иного подхода к своему решению.

Вернемся к гипотезе де-Бройля. Выясним, в каких явлениях могут проявиться волновые свойства частиц, если они, эти свойства, действительно существуют. Мы знаем, что независимо от физической природы волн - это интерференция и дифракция. Непосредственно наблюдаемой величиной в них является длина волны. Во всех случаях дебройлевская длина волны определяется формулой (3.13.1). Проведем с помощью нее некоторые оценки.

Прежде всего, убедимся, что гипотеза де-Бройля не противоречит понятиям макроскопической физики. Возьмем в качестве макроскопического объекта, например, пылинку, считая, что ее масса m = 1мг и скорость V = 1 мкм/с. Соответствующая ей дебройлевская длина волны

(3.13.6)

Т. е. даже у такого небольшого макроскопического объекта как пылинка дебройлевская длина волны оказывается неизмеримо меньше размеров самого объекта. В таких условиях никакие волновые свойства, конечно, проявить себя не могут в условиях доступных измерению размеров.

Иначе обстоит дело, например, у электрона с кинетической энергией K и импульсом . Его дебройлевская длина волны

(3.13.7)

где K должно быть измерено в электрон-вольтах (эВ). При K = 150 эВ дебройлевская длина волны электрона равна согласно (3.13.7) λ = 0,1нм. Такой же порядок величины имеет постоянная кристаллической решетки. Поэтому, аналогично тому, как в случае рентгеновских лучей, кристаллическая структура может быть подходящей решеткой для получения дифракции дебройлевских волн электронов. Однако гипотеза де-Бройля представлялась настолько нереальной, что довольно долго не подвергалась экспериментальной проверке.

Экспериментально гипотеза де-Бройля была подтверждена в опытах Дэвиссона и Джермера (1927г.). Идея их опытов заключалась в следующем. Если пучок электронов обладает волновыми свойствами, то можно ожидать, даже не зная механизма отражения этих волн, что их отражение от кристалла будет иметь такой же интерференционный характер, как у рентгеновских лучей.

В одной серии опытов Дэвиссона и Джермера для обнаружения дифракционных максимумов (если таковые есть) измерялись ускоряющее напряжение электронов и одновременно положение детектора D (счетчика отраженных электронов). В опыте использовался монокристалл никеля (кубической системы), сошлифованный так, как показано на рис.3.13. Если его повернуть вокруг вертикальной оси в Рис.3.13.1

положение, соответствующее рисунку, то в этом положении

сошлифованная поверхность покрыта правильными рядами атомов, перпендикулярными к плоскости падения (плоскости рисунка), расстояние между которыми d = 0,215нм. Детектор перемещали в плоскости падения, меняя угол θ. При угле θ = 50 0 и ускоряющем напряжении V = 54B наблюдался особенно отчётливый максимум отраженных Рис.3.13.2.

электронов, полярная диаграмма которых показала на рис.3.13.2.Этот максимум можно истолковать как интерференционный максимум первого порядка от плоской дифракционной решетки с указанным выше периодом в соответствии с формулой

что видно из рис.3.13.3. На этом рисунке каждая жирная точка представляет собой проекцию цепочки атомов, расположенных на прямой, перпендикулярной плоскости рисунка. Период d может быть измерен независимо, например, по дифракции рентгеновских лучей. Рис.3.13.3.

Вычисленная по формуле (3.13.7) дебройлевская длина волны для V = 54B равна 0,167нм. Соответствующая же длина волны, найденная из формулы (3.13.8), равна 0,165нм. Совпадение настолько хорошее, что полученный результат следует признать убедительным подтверждением гипотезы де-Бройля.

Другими опытами, подтверждающим гипотезу де-Бройля, были опыты Томсона и Тартаковского. В этих опытах пучок электронов пропускался через поликристаллическую фольгу (по методу Дебая при изучении дифракции рентгеновского излучения). Как и в случае рентгеновского излучения, на фотопластинке, расположенной за фольгой, наблюдалась система дифракционных колец. Сходство обеих картин поразительно. Подозрение, что система этих колец порождается не электронами, а вторичным рентгеновским излучением, возникающим в результате падения электронов на фольгу, легко рассеивается, если на пути рассеянных электронов создать магнитное поле (поднести постоянный магнит). Оно не влияет на рентгеновское излучение. Такого рода проверка показала, что интерференционная картина сразу же искажалась. Это однозначно свидетельствует, что мы имеем дело именно с электронами.

Г. Томсон осуществил опыты с быстрыми электронами (десятки кэВ), П.С. Тарковский - со сравнительно медленными электронами (до 1,7 кэВ).

Для успешного наблюдения дифракции волн на кристаллах необходимо, чтобы длина волны этих волн была сравнима с расстояниями между узлами кристаллической решетки. Поэтому для наблюдения дифракции тяжелых частиц необходимо пользоваться частицами с достаточно малыми скоростями. Соответствующие опыты по дифракции нейтронов и молекул при отражении от кристаллов были проделаны и также полностью подтвердили гипотезу де-Бройля в применении и к тяжелым частицам.

Благодаря этому было экспериментально доказано, что волновые свойства являются универсальным свойством всех частиц. Они не обусловлены какими-то особенностями внутреннего строения той или иной частицы, а отражают их общий закон движения.

Описанные выше опыты выполнялись с использованием пучков частиц. Поэтому возникает естественный вопрос: наблюдаемые волновые свойства выражают свойства пучка частиц или отдельных частиц?

Чтобы ответить на этот вопрос, В. Фабрикант, Л. Биберман и Н. Сушкин осуществили в 1949 г. опыты, в которых применялись столь слабые пучки электронов, что каждый электрон проходил через кристалл заведомо поодиночке, и каждый рассеянный электрон регистрировался фотопластинкой. При этом оказалось, что отдельные электроны попадали в различные точки фотопластинки совершенно беспорядочным на первый взгляд образом (рис.3.13.4а ). Между тем при достаточно длительной экспозиции на фотопластинке возникала дифракционная картина (рис.3.13.4б ), абсолютно идентичная картине дифракции от обычного электронного пучка. Так было доказано, что волновыми свойствами обладают и отдельные частицы.

Таким образом, мы имеем дело с микрообъектами, которые обладают одновременно как корпускулярными, так и волно-

выми свойствами. Это позволяет нам в дальнейшем говорить

об электронах, но выводы, к которым мы придем, имеют Рис.3.13.4.

общий смысл и в равной степени применимы к любым частицам.

Парадоксальное поведение микрочастиц.

Рассмотренные в предыдущем параграфе эксперименты вынуждают констатировать, что перед нами один из загадочнейших парадоксов: что означает утверждение «электрон - это одновременно частица и волна »?

Попытаемся разобраться в этом вопросе с помощью мысленного эксперимента, аналогичного опыту Юнга по изучению интерференции света (фотонов) от двух щелей. После прохождения пучка электронов через две щели на экране образуется система максимумов и минимумов, положение которых можно рассчитать по формулам волновой оптики, если каждому электрону сопоставить дебройлевскую волну.

В явлении интерференции от двух щелей таятся сама суть квантовой теории, поэтому уделим этому вопросу особое внимание.

Если мы имеем дело с фотонами, то парадокс (частица - волна) можно устранить, предположив, что фотон в силу своей специфичности расщепляется на две части (на щелях), которые затем интерферируют.

А электроны? Они ведь никогда не расщепляются - это установлено совершенно достоверно. Электрон может пройти либо через щель 1, либо через щель 2 (рис.3.13.5). Следовательно, распределение их на экране Э должно быть суммой распределений 1 и 2 (рис.3.13.5а ) - оно показано пунктирной кривой. Рис.13.13.5.

Хотя логика в этих рассуждениях безупречна, такое распределение не осуществляется. Вместо этого мы наблюдаем совершенно иное распределение (рис.3.13.5б ).

Не есть ли это крушение чистой логики и здравого смысла? Ведь все выглядит так, как если бы 100 + 100 = 0 (в точке P). В самом деле, когда открыта или щель 1 или щель 2, то в точку P приходит, скажем, по 100 электронов в секунду, а если открыты обе щели, то ни одного!..

Более того, если сначала открыть щель 1, а потом постепенно открывать щель 2, увеличивая ее ширину, то по здравому смыслу число электронов, приходящих в точку P ежесекундно, должно расти от 100 до 200. В действительности же - от 100 до нуля.

Если подобную процедуру повторить, регистрируя частицы, например, в точке O (см. рис.3.13.5б ), то возникает не менее парадоксальный результат. По мере открывания щели 2 (при открытой щели 1) число частиц в точке O растет не до 200 в секунду, как следовало бы ожидать, а до 400!

Как открывание щели 2 может повлиять на электроны, которые, казалось бы, проходят через щель 1? Т. е. дело обстоит так, что каждый электрон, проходя через какую-то щель, «чувствует» и соседнюю щель, корректируя свое поведение. Или подобно волне проходит сразу через обе щели (!?). Ведь иначе интерференционная картина не может возникнуть. Попытка все же определить, через какую щель проходит тот или иной электрон, приводит к разрушению интерференционной картины, но это уже совсем другой вопрос.

Какой же вывод? Единственный способ «объяснения», этих парадоксальных результатов заключается в создании математического формализма, совместимого с полученными результатами и всегда правильно предсказывающего наблюдаемые явления. Причем, разумеется, этот формализм должен быть внутренне непротиворечивым.

И такой формализм был создан. Он ставит в соответствие каждой частице некоторую комплексную пси-функцию Ψ(r , t ). Формально она обладает свойствами классических волн, поэтому ее часто называют волновой функцией . Поведение свободной равномерно движущейся в определенном направлении частицы описывает плоская волна де-Бройля

Но более подробно об этой функции, ее физическом смысле и уравнении, которое управляет ее поведением в пространстве и времени, речь пойдет в следующей лекции.

Возвращаясь к поведению электронов при прохождении через две щели, мы должны признать: тот факт, что в принципе нельзя ответить на вопрос, через какую щель проходит электрон (не разрушая интерференционной картины), несовместим с представлением о траектории. Таким образом, электронам, вообще говоря, нельзя приписать траектории .

Однако при определенных условиях, а именно когда дебройлевская длина волны микрочастицы становится очень малой и может оказаться много меньше, например, расстояния между щелями или атомных размеров, понятие траектории снова приобретает смысл. Рассмотрим этот вопрос более подробно и сформулируем более корректно условия, при которых можно пользоваться классической теорией.

Принцип неопределенности

В классической физике исчерпывающее описание состояния частицы определяется динамическими параметрами, такими как координаты, импульс, момент импульса, энергия и др. Однако реальное поведение микрочастиц показывает, что существует принципиальный предел точности, с которой подобные переменные могут быть указаны и измерены.

Глубокий анализ причин существования этого предела, который называют принципом неопределенности , провел В. Гейзенберг (1927г.). Количественные соотношения, выражающие этот принцип в конкретных случаях, называют соотношениями неопределенностей .

Своеобразие свойств микрочастиц проявляется в том, что не для всех переменных получаются при измерениях определенные значения. Существуют пары величин, которые не могут быть одновременно определены точно.

Наиболее важными являются два соотношения неопределенностей.

Первое из них ограничивает точности одновременного измерения координат и соответствующих проекций импульса частицы. Для проекции, например, на ось х оно выглядит так:

Второе соотношение устанавливает неопределенность измерения энергии, ΔE , за данный промежуток времени Δt :

Поясним смысл этих двух соотношений. Первое из них утверждает, что если положение частицы, например, по оси х известно с неопределенностью Δx , то в тот же момент проекцию импульса частицы на эту же ось можно измерить только с неопределенностью Δp= ћ x . Заметим, что эти ограничения не касаются одновременного измерения координаты частицы по одной оси и проекции импульса - по другой: величины x и p y , y и p x и т. д. могут иметь одновременно точные значения.

Согласно второму соотношению (3.13.11) для измерения энергии с погрешностью ΔЕ необходимо время, не меньшее, чем Δt =ћ E . Примером может служить «размытие» энергетических уровней водородоподобных систем (кроме основного состояния). Это связано с тем, что время жизни во всех возбужденных состояниях этих систем порядка 10 -8 с. Размытие же уровней приводит к уширению спектральных линий (естественное уширение), которое действительно наблюдается. Сказанное относится и к любой нестабильной системе. Если время жизни ее до распада порядка τ, то из-за конечности этого времени энергия системы имеет неустранимую неопределенность, не меньшую, чем ΔE≈ ћ /τ.

Укажем еще пары величин, которые не могут быть одновременно точно определены. Это любые две проекции момента импульса частицы. Поэтому не существует состояния, в котором бы все три и даже какие-либо две из трех проекций момента импульса имели определенные значения.

Обсудим более подробно смысл и возможности соотношения Δx ·Δp x ≥ћ . Прежде всего, обратим внимание на то, что оно определяет принципиальный предел неопределенностей Δx и Δp x , с которыми состояние частицы можно характеризовать классически, т.е. координатой x и проекцией импульса p x . Чем точнее x , тем с меньшей точностью, возможно установить p x , и наоборот.

Подчеркнем, что истинный смысл соотношения (3.13.10) отражает тот факт, что в природе объективно не существует состояний частицы с точно определенными значениями обеих переменных, x и p х. Вместе с тем мы вынуждены, поскольку измерения проводятся с помощью макроскопических приборов, приписывать частицам не свойственные им классические переменные. Издержки такого подхода и выражают соотношения неопределенностей.

После того, как выяснилась необходимость описывать поведение частиц волновыми функциями, соотношения неопределенностей возникают естественным образом - как математическое следствие теории.

Считая соотношение неопределенностей (3.13.10) универсальным, оценим, как бы оно сказалось на движении макроскопического тела. Возьмем очень маленький шарик массы m = 1мг. Определим, например, с помощью микроскопа его положение с погрешностью Δx≈ 10 -5 см (она обусловлена разрешающей способностью микроскопа). Тогда неопределенность скорости шарика Δυ = Δp /m≈ (ћ x )/m ~ 10 -19 см/с. Такая величина недоступна никакому измерению, а потому и отступление от классического описания совершенно несущественно. Другими словами, даже для такого маленького (но макроскопического) шарика понятие траектории применимо с высокой степенью точности.

Иначе ведет себя электрон в атоме. Грубая оценка показывает, что неопределенность скорости электрона, движущегося по боровской орбите атома водорода, сравнима с самой скоростью: Δυ ≈ υ. При таком положении представление о движении электрона по классической орбите теряет всякий смысл. И вообще, при движении микрочастиц в очень малых областях пространства понятие траектории оказывается несостоятельным .

Вместе с тем, при определенных условиях движение даже микрочастиц может рассматриваться классически, т. е. как движение по траектории. Так происходит, например, при движении заряженных частиц в электромагнитных полях (в электронно-лучевых трубках, ускорителях и др.). Эти движения можно рассматривать классически, поскольку для них ограничения, обусловленные соотношением неопределенностей, пренебрежимо малы по сравнению с самими величинами (координатами и импульсом).

Опыт со щелью . Соотношение неопределенностей (3.13.10) проявляет себя при любой попытке точного измерения положения или импульса микрочастицы. И каждый раз мы приходим к «неутешительному» результату: уточнение положения частицы приводит к увеличению неопределенности импульса, и наоборот. В качестве иллюстрации такой ситуации рассмотрим следующий пример.

Попытаемся определить координату x свободно движущейся с импульсом p частицы, поставив на ее пути перпендикулярно направлению движения экран со щелью шириной b (рис.3.13.6). До прохождения частицы через щель ее проекция импульса p х имеет точное значение: p x = 0. Это значит, что Δ p x = 0, но

координата x частицы является совершенно неопреде ленной согласно (3.13.10): мы не можем сказать, Рис.3.13.6.

пройдет ли данная частица через щель.

Если частица пройдет сквозь щель, то в плоскости щели координата x будет зарегистрирована с неопределенностью Δx ≈ b . При этом вследствие дифракции с наибольшей вероятностью частица будет двигаться в пределах угла 2θ, где θ - угол, соответствующий первому дифракционному минимуму. Он определяется условием, при котором разность хода волн от обоих краев щели будет равна λ (это доказывается в волновой оптике):

В результате дифракции возникает неопределенность значения p х - проекции импульса, разброс которого

Учитывая, что b ≈ Δх и p = 2πћ /λ., получим из двух предыдущих выражений:

что согласуется по порядку величины с (3.13.10).

Таким образом, попытка определить координату x частицы, действительно, привела к появлению неопределенности Δp в импульсе частицы.

Анализ многих ситуаций, связанных с измерениями, показывает, что измерения в квантовой области принципиально отличаются от классических измерений. В отличие от последних, в квантовой физике существует естественный предел точности измерений. Он в самой природе квантовых объектов и не может быть преодолен никаким совершенствованием приборов и методов измерений. Соотношение (3.13.10) и устанавливает один из таких пределов. Взаимодействие между микрочастицей и макроскопическим измерительным прибором нельзя сделать сколь угодно малым. Измерение, например координаты частицы, неизбежно приводит к принципиально неустранимому и неконтролируемому искажению состояния микрочастицы, а значит и к неопределенности в значении импульса.

Некоторые выводы .

Соотношение неопределенностей (3.13.10) является одним из фундаментальных положений квантовой теории. Одного этого соотношения достаточно, чтобы получить ряд важных результатов, в частности:

1. Невозможно состояние, в котором частица находилась бы в состоянии покоя.

2. При рассмотрении движения квантового объекта необходимо во многих случаях отказаться от самого понятия классической траектории.

3. Часто теряет смысл деление полной энергии E частицы (как квантового объекта) на потенциальную U и кинетическую K . В самом деле, первая, т. е. U , зависит от координат, а вторая - от импульса. Эти же динамические переменные не могут иметь одновременно определенного значения.

Лекция 3.14.

Уравнение Шрёдингера. Квантование энергии и момента импульса. Атом водорода.

Волновая функция. Уравнение Шрёдингера.

В развитие идеи де-Бройля о волновых свойствах вещества Э.Шрёдингер получил в 1926г. свое знаменитое уравнение. Он сопоставил движению микрочастицы комплексную функцию координат и времени, которую назвал волновой функцией и обозначил греческой буквой . Поэтому ее называют также пси-функцией. Она характеризует состояние микрочастицы. Физический смысл водновой функции состоит в следующем: квадрат ее модуля определяет вероятность нахождения частицы в промежутке между точками х и х+dх в момент времени t. Точнее величина является плотностью вероятности или плотностью распределения координат частицы.

Из такого определения следуют свойства волновой функции. Она должна быть однозначной, непрерывной, гладкой (производная не терпит разрыва), конечной. Кроме того, она должна подчиняться условию нормировки .

Основная задача физики микрочастиц (волновой или квантовой механики) как раз и состоит в нахождении волновых функций и связанных с ними физических следствий в самых разнообразных условиях. Для ее решения служит волновое уравнение Шрёдингера – основное уравнение нерелятивистской квантовой механики. (Заметим, что одним из решений этого уравнения в свободном пространстве должна быть плоская волна де-Бройля (3.13.9).)

Особое значение в квантовой механике имеют стационарные состояния. Это такие состояния, в которых все наблюдаемые физические параметры не меняются с течением времени. Оказывается, что в стационарных состояниях

, (3.14.1)

где частота постоянна, а функция не зависит от времени. Эта независящая от времени часть волновой функции может быть найдена из уравнения Шрёдингера для стационарных состояний

, (3.14.2)

где т - масса частицы, Е – ее энергия, - функция, которая в случае стационарных состояний имеет смысл потенциальной энергии частицы.

Энергия частицы Е входит в уравнение в качестве параметра. В теории дифференциальных уравнений доказывается, что уравнения вида (3.14.2) имеют решения, удовлетворяющие стандартным условиям, не при любых значениях параметра Е, а лишь при некоторых избранных значениях. Эти избранные значения называются собственными значениями энергии. Решения (значения волновой функции), соответствующие собственным значениям Е , называются собственными функциями. Совокупность собственных значений называется спектром величины (энергии). Если эта совокупность образует дискретную последовательность, спектр называется дискретным, если же – непрерывную последовательность, спектр непрерывный или сплошной.

Таким образом, из основных положений квантовой механики без каких-либо дополнительных предположений следует квантование (дискретность) энергии .

Частица в бесконечно глубокой потенциальной яме.

Рассмотрим квантование энергии на простейшем примере движения частицы, находящейся в бесконечно глубокой одномерной потенциальной яме. Пусть частица может двигаться только вдоль оси х, где движение ограничено непроницаемыми для частицы стенками: х = 0 и х = l. Потенциальная энергия рана нулю при 0≤ х ≤ l и обращается в бесконечность при х < 0 и x > l .

Поскольку волновая функция в этом случае будет зависеть только от х , уравнение Шрёдингера будет иметь вид

. (3.14.3)

За пределы потенциальной ямы частица попасть не может. Поэтому вероятность обнаружить там частицу, а, следовательно, и волновая функция в этих областях равна нулю. Из условия непрерывности следует, что и на границах ямы она равна нулю

. (3.14.4)

В области, где не равна тождественно нулю, уравнение (3.14.3) примет вид . (3.14.5)

Введя обозначение , (3.14.6)

получим уравнение , (3.14.7)

решение которого будет иметь вид

Из первой части условия (3.14.4) следует . Вторая часть этого условия

Будет выполнена лишь в случае, если

(n= 1,2,3,…), (3.14.9)

откуда, приняв во внимание (3.14.6), найдем собственные значения энергии частицы (п= 1,2,3,…). (3.14.10)

Спектр энергии оказался дискретным.

Оценим «расстояния» между соседними уровнями. Разность энергий между двумя соседними уровнями равна

Если оценить эту величину для молекулы газа в сосуде (т ~ 10 кг, l ~ 10cм), получим Дж эВ. Столь густо расположенные энергетические уровни будут практически восприниматься как сплошной спектр энергии, так что, хотя квантование энергии в принципе будет иметь место, на характере движения молекул это сказываться не будет. Аналогичный результат получим, если рассмотреть поведение свободных электронов в металле (те же размеры ямы, т ~ 10 кг, Дж эВ). Однако, совсем другой результат получится для электрона, если область, в пределах которой он может двигаться, будет порядка атомных размеров (~ 10 м). В этом случае

так что дискретность энергетических уровней будет весьма заметна.

Атом водорода.

Рассмотрим систему, называемую водородоподобным атомом, состоящую из неподвижного ядра с зарядом Ze и движущегося вокруг него электрона (при Z=1 – это атом водорода). Потенциальная энергия электрона представляет собой в этом случае сферически симметричную функцию

Такой случай не предусматривался теорией Бора. В ней движение электрона вокруг ядра происходило по плоским орбитам. Но в квантовой механике, в которой нет представления о движении электронов по орбитам, нет препятствий для реализации сферически симметричных состояний атома. Поэтому уравнение Шрёдингера целесообразно записать в сферической системе координат: r, . Решая это уравнение, получим, что собственные значения энергии могут принимать 1)любые положительные значения 2) дискретные отрицательные значения, равные (п= 1,2,3,…). (3.14.13)

Случай Е > 0 соответствует электрону, пролетающему вблизи ядра и удаляющемуся на бесконечность. Случай Е < 0 - электрону, связанному с ядром. Заметим, что полученное выражение (3.14.13) совпадает с соответствующей формулой теории Бора (3.12.12). Однако в квантовой механике эти значения получаются из решения основного уравнения без введения каких-либо дополнительных предположений.

Собственные функции уравнения Шрёдингера оказываются от трех целочисленных параметров, которые принято обозначать п, l, т , и распадаются на два множителя, один из которых зависит только от r , другой – от углов

Параметры п, т называются квантовыми числами. Параметр п называется главным квантовым числом и совпадает с номером уровня энергии в (3.14.13). Параметр l называется азимутальным (или орбитальным) квантовым числом и может при заданном п принимать значения

После нескольких месяцев работы Бор в 1913 г. опубликовал свою квантовую теорию атома. Основу этой теории составляют три постулата.

Первый постулат Бора :

Атом может находиться не во всех состояниях, допускае­мых классической физикой, а только в особых, квантовых (или стационарных) состояниях, каждому из которых со­ответствует своя определенная энергия Е n . В стационар­ном состоянии атом не излучает и не поглощает энергию.

Второй постулат Бора:

При переходе атома из одного стационарного состояния в другое излучается или поглощается квант света с энер­гией ћω, равной разности энергий стационарных состо­яний (рис.25.5):

ћω = |Е n 2 -Е n 1 | (25.1)

Е n 1 - энергия в начальном состоянии, Е n 2 - энергия в конечном состоянии.

Третий постулат Бора:

В стационарном состоянии электрон может двигаться только по такой («разрешенной») орбите, радиус которой удовлетворяет условию:

m·υ·r=n·ћ (25.2)

Условие стационарности электронных орбит, где m·υ·r - момент импульса электрона, n - номер квантового со­стояния (n =1, 2, 3, ...).

Целое число n, определяющее номер квантового состояния и энергию атома в этом состоянии, называется главным квантовым числом .

Применив свою теорию к простейшему из атомов - атому во­дорода, Бор получил результаты, полностью согласующиеся с экс­периментальными данными.

Рассмотрим простейший атом - атом водорода. Он состоит из ядра, в состав которого входит один протон, и одного электрона, вращающего­ся вокруг ядра по круговой орбите. На электрон со стороны ядра дейст­вует кулоновская сила притяжения, сообщая ему центростремительное ускорение, поэтому

(25.3)

[е - заряд электрона и протона, ε о - электрическая постоянная].

Поскольку должен выполняться первый постулат Бора, воспользу­емся условием стационарности электронных орбит. Определим из него скорость υ

(25.4)

возведем в квад­рат и подставим в (25.4). Из полученного выражения найдем

отсюда радиус орбит электрона в атоме водорода равен

(25.5)

Подставляя в (25.5) значения констант и считая n = 1, получаем значение первого боровского радиуса, который является единицей длины в атомной физике:

r Б = 0,528-10 -10 м.

§ 25.3 Энергия атома водорода

По боровской модели ядро атома считается неподвижным, поэтому полная энергия Е атома является суммой кинетической энергии Е к вращения электрона и потенциальной энергии Е п взаимодействия электрона с ядром:


(25.6)

Полученное значение Е отрицательно, так как потенциальная энер­гия двух зарядов, находящихся на бесконечно большом расстоянии, предполагается равной нулю. При сближении зарядов потенциальная энергия уменьшается.

Каждое значение энергии, которой обладает атом в том или ином стационарном состоянии, называют энергетическим уровнем . Чем больше n, тем дальше от ядра находится электрон и тем выше его энергетический уровень.

Энергетические уровни атома принято изображать горизонталь­ными линиями, а переходы атома из одного стационарного состояния в другое - стрелками (рис.25.6).

Когда атом переходит с более вы­сокого на более низкий уровень (чему соответствует «перескок» электрона на более близкую к ядру орбиту), то происходит излучение кванта света. При поглощении, наоборот, па­дающий на атом квант (фотон) пере­водит атом из состояния с меньшей в состояние с большей энергией; сам фо­тон при этом исчезает, а поглотивший его электрон оказывается на более да­лекой от ядра орбите.

Состояние атома сn =1 называют основным или нормальным состоянием . В этом состоянии энергия атома минимальна, и он может на­ходиться в нем (при отсутствии внешних воздействий) сколь угодно долго.

Все остальные состояния с n>1 называют возбужденными . В возбужденном состоянии атом может находиться в течение очень малого промежутка времени (порядка 10 -8 с), после чего самопро­извольно переходит в основное состояние (сразу или поэтапно, уро­вень за уровнем), излучая при этом соответствующие кванты.

В основном состоянии атом водорода обладает энергией Е і = -13,6 эВ. При переходе в возбужденные состояния его энергия воз­растает.

Минимальную энергию, которую нужно затратить для удаления электрона с первой боровской орбиты на «бесконечность», называют энергией ионизации W і или энергией связи атома водорода.

Таким образом, для ионизации атома водорода, находящегося в основном состоянии, ему необходимо сообщить энергию ΔЕ = W і = 13,6 эВ. Если же ему будет передаваться энергия ΔЕ < W і , то при ΔЕ=Е n -Е і атом перейдет в состояние с энергией Е п, а при ΔЕ ≠ Е n -Е і поглощения энергии не произойдет и атом останется в прежнем со­стоянии.

Такой («скачкообразный») характер поглощения энергии должен наблюдаться для атомов любого химического элемента. Для атомов ртути он был обнаружен уже в 1913 г. немецкими физиками-экс­периментаторами Д. Франком и Г. Герцем. Их опыты подтвердили существование в атомах дискретных энергетических уровней, что сыг­рало важнейшую роль в развитии квантовой теории атома.

Существование дискретных энергетических уровней является фундаментальным свойством атомов (так же как и молекул, и атомных ядер).

Попробуем применить известные нам законы физики, чтобы представить себе устройство атома, объясняющее дискретность его энергетических уровней.

Рассмотрим простейший из атомов - атом водорода. Порядковый номер водорода в периодической системе элементов равен единице, следовательно, водородный атом состоит из положительного ядра, заряд которого равен , и одного электрона. Между ядром и электроном действует сила притяжения зарядов. Наличие этой силы обеспечивает радиальное (центростремительное) ускорение, благодаря чему легкий электрон вращается вокруг тяжелого ядра по круговой или эллиптической орбите точно так же, как планета вращается вокруг Солнца под влиянием силы тяготения. Различным возможным состояниям атома соответствует, таким образом, различие в размерах (и форме) орбиты электрона, вращающегося вокруг ядра.

Энергия электрона в атоме слагается из кинетической энергии движения по орбите и потенциальной энергии в электрическом поле ядра. Можно показать (см. в конце параграфа), что энергия электрона на круговой орбите, а следовательно, и энергия атома в целом зависят от радиуса орбиты: меньшему радиусу орбиты соответствует меньшая энергия атома. Но, как мы видели в § 204, энергия атома может принимать не любые, а только определенные избранные значения. Так как энергия определяется радиусом орбиты, то каждому энергетическому уровню атома отвечает орбита определенного избранного радиуса.

Картина возможных круговых орбит электрона в атоме водорода изображена на рис. 367. Основному энергетическому уровню атома соответствует орбита наименьшего радиуса.

Рис. 367. Возможные орбиты электрона в атоме водорода: радиус орбит возрастает пропорционально , т.е. в отношении и т.д.

Нормально электрон находится на этой орбите. При сообщении достаточно большой порции энергии электрон переходит на другой энергетический уровень, т. е. «перескакивает» на одну из внешних орбит. Как указывалось, в таком возбужденном состоянии атом неустойчив. Через некоторое время электрон переходит на более низкий уровень, т. е. «перескакивает» на орбиту меньшего радиуса. Переход электрона с дальней орбиты на ближнюю сопровождается испусканием светового кванта.

Итак, из ядерной модели атома и дискретности его энергетических уровней вытекает существование избранных, «разрешенных», орбит электрона в атоме. Встает вопрос, почему электрон не может вращаться вокруг ядра по орбите произвольного радиуса. В чем физическое различие дозволенных и недозволенных орбит?

Законы механики и электричества, знакомые нам из предыдущих разделов учебника (см. тома I, II), не дают на эти вопросы никакого ответа. С точки зрения этих законов все орбиты совершенно равноправны. Существование выделенных орбит противоречит этим законам.

Не менее разительным противоречием известным нам законам физики является устойчивость атома (в основном состоянии). Мы знаем, что всякий заряд, движущийся с ускорением, излучает электромагнитные волны. Электромагнитное излучение уносите собой энергию. В атоме электрон движется с большой скоростью по орбите малого радиуса и, следовательно, обладает огромным центростремительным ускорением. Согласно известным нам законам электрон должен терять энергию, излучая ее в виде электромагнитных волн. Но, как было указано выше, если электрон теряет энергию, радиус его орбиты уменьшается. Следовательно, электрон не может вращаться по орбите постоянного радиуса. Расчеты показывают, что в результате уменьшения радиуса орбиты из-за излучения электрон должен был бы упасть на ядро за стомиллионную долю секунды. Этот вывод резко противоречит нашему ежедневному опыту, который свидетельствует об устойчивости атомов.

Итак, существует противоречие между данными о строении атома, полученными из эксперимента, и между основными законами механики и электричества, также найденными на опыте.

Но не следует забывать, что упомянутые законы найдены и проверены в экспериментах с телами, содержащими очень большое количество электронов, большое количество атомов. Мы не имеем основания считать, что эти законы применимы к движению отдельного электрона в атоме. Более того, расхождение между поведением электрона в атоме и законами классической физики указывает на неприменимость этих законов к атомным явлениям (см. также § 210).

Выше мы изложили так называемую планетарную модель атома, т.е. представление об электронах, вращающихся по разрешенным орбитам вокруг атомного ядра. При обосновании планетарной модели мы пользовались законами классической физики. Но, как уже отмечалось и как мы увидим подробнее в § 210, движение электрона в атоме относится к области явлений, в которой классическая механика неприменима. Неудивительно поэтому, что более глубокое изучение «микромира» показало неполноту, грубую приближенность планетарной модели; действительная картина атома сложнее. Все же эта модель отражает правильно многие основные свойства атома, и поэтому, несмотря на приближенность, ею иногда пользуются.

Рассмотрим зависимость энергии атома водорода от радиуса электронной орбиты. Кинетическую энергию движения электрона по орбите радиуса мы определим из того условия, чту центростремительное ускорение обеспечивается силой кулонного притяжения зарядов (в системе СИ ). Приравнивая ускорение создаваемое этой силой, центростремительному ускорению , найдем, что кинетическая энергии электрона обратно пропорциональна радиусу орбиты, т.е. .

Выделим две орбиты радиуса и . Кинетическая энергия вращения электрона на второй орбите больше, чем на первой на величину .

Если орбиты недалеко отстоят одна от другой, то и . Поэтому в знаменателе можно пренебречь величиной , и разница кинетических энергий будет приближенно равна .

Потенциальная энергия электрона, напротив, больше на первой, далекой орбите, ибо для удаления электрона от ряда нужно совершить работу против сил электрического притяжения, действующих между электроном и ядром; эта работа идет на увеличение потенциальной энергии.

Пусть электрон переводится с ближней орбиты на дальнюю по радиальному пути. Длина пути равна . Электрическая сила вдоль этого пути непостоянна по модулю. Но так как орбиты близки одна к другой , можно для приближенного вычисления работы использовать значение силы на среднем расстоянии электрона от ядра, равном . По закону Кулона сила есть , а работа на пути , равная приросту потенциальной энергии, будет равна .

Таким образом, при переходе электрона с дальней орбиты на ближнюю уменьшение его потенциальной энергии равно удвоенному приросту кинетической энергии. Мы доказали эту теорему для близких орбит, расстояние между которыми удовлетворяет условию . Суммируя изменения энергии электрона при переходах между последовательными парами близких орбит, убеждаемся, что теорема справедлива и для сколь угодно удаленных орбит.

Рассмотрим теперь бесконечно далекую орбиту, т. е. . Потенциальную энергию электрона на ней примем за начало отсчета потенциальной энергии, т. е. положим . Кинетическая энергия обращается при в нуль; при переходе с орбиты на конечную орбиту радиуса она возрастет на величину . Потенциальная энергия уменьшится на вдвое большую величину , т. е.

.(206.1)

Полная энергия электрона равна, следовательно, ; она тем меньше (знак минус!), чем меньше радиус орбиты.

Пример 1. Вычислить для атома водорода радиус первой боровской орбиты и скорости электрона на ней.

Решение. Радиус n–й боровской орбиты r n и скорость u n электрона на ней связаны между собой уравнением первого постулата Бора:

mu n r n = ћn . (3.1)

Чтобы иметь еще одно уравнение, связывающие величины u n и r n , запишем второй закон Ньютона для электрона, движущегося под действием кулоновской силы притяжения ядра по круговой орбите. Учитывая, что ядром атома водорода является протон, заряд которого равен по модулю заряду электрона, запишем:

где m – масса электрона, – нормальное ускорение. Решив совместно (3.1) и (3.2) получим:

Положив здесь n = 1 , произведем вычисления:

; .

Пример 2. Электрон в атоме водорода перешел с четвертого энергетического уровня на второй. Определить энергию испущенного при этом фотона и его длину волны.

Решение. Для определения энергии фотона воспользуемся сериальной формулой для водородоподобных ионов:

, (3.3)

где λ – длина волны фотона; R – постоянная Ридберга; Z – заряд ядра в относительных единицах (при Z = 1 формула переходит в сериальную формулу для водорода); n 1 – номер орбиты, на которую перешел электрон; n 2 – номер орбиты, с которой перешел электрон (n 1 и n 2 – главные квантовые числа).

Энергия фотона Е выражается формулой

Поэтому, умножив обе части равенства (13.3) на hc , получим выражение для энергии фотона:

.

Т.к. Rhc есть энергия ионизации E i атома водорода, то

.

Из равенства (3.4) выразим длину волны фотона

Вычисления выполним во внесистемных единицах: E i = 13,6 эВ; Z = 1; n 1 = 2; n 2 = 4:

эВ = 2,55 эВ.

м .

Пример 3. Электрон, начальной скоростью которого можно пренебречь, прошел ускоряющую разность потенциалов U . Найти длину волны де Бройля электрона для двух случаев: 1) U 1 = 51 В; 2) U 2 = 510 кВ.

Решение. Длина волны де Бройля для частицы зависит от ее импульса р и определяется формулой

где h – постоянная Планка.

Импульс частицы можно определить, если известна ее кинетическая энергия Т . Связь импульса с кинетической энергией различна для нерелятивистского случая (когда кинетическая энергия частицы много меньше ее энергии покоя) и для релятивистского случая (когда кинетическая энергия сравнима с энергией покоя частицы).

В нерелятивистском случае

где m 0 – масса покоя частицы.

В релятивистском случае

, (3.7)

где E 0 = m 0 с 2 – энергия покоя частицы.

Формула (3.5) с учетом соотношений (3.6) и (3.7) запишется:

В нерелятивистском случае

В релятивистском случае

. (3.9)

Сравним кинетические энергии электрона, прошедше­го заданные в условии задачи разности потенциалов U 1 = 51 В и U 2 = 510 кВ, с энергией покоя электрона и в зависимости от этого решим, какую из формул (3.8) или (3.9) следует применить для вычисления длины волны де Бройля.


Как известно, кинетическая энергия электрона, прошедшего ускоряющую разность потенциалов U ,

T = eU .

В первом случае T 1 = еU 1 = 51 эВ= 0,51 10 -4 МэВ, что много меньше энергии покоя электрона Е 0 = m 0 с 2 = 0,51 МэВ. Следовательно, в этом случае можно применить формулу (3.8). Для упрощения расчетов заметим, что T 1 = 10 -4 m 0 c 2 . Подставив это выражение в формулу (3.8), перепишем ее в виде

.

Учитывая, что есть комптоновская длина волны λ , получаем

Т.к. λ = 2,43пм, то

Во втором случае кинетическая энергия T 2 = eU 2 = 510 кэВ = 0,51 МэВ, т.е. равна энергии покоя электрона. В этом случае необходимо применить релятивистскую формулу (3.9). Учитывая, что Т 2 = 0,51МэВ = m 0 с 2 , по формуле (3.9) находим

,

Подставим значение λи произведем вычисления:

Пример 4. Кинетическая энергия электрона в атоме водорода составляет величину порядка Т = 10 эВ. Используя соотношение неопределенностей, оценить мини­мальные линейные размеры атома.

Решение. Соотношение неопределенностей для координаты и импульса имеет вид

где – неопределенность координаты частицы (в данном случае электрона); Dр х – неопределенность импульса частицы (электрона); – постоянная Планка.

Из соотношения неопределенностей следует, что чем точнее определяется положение частицы в пространстве, тем более неопределенным становится импульс, а, следовательно, и энергия частицы. Пусть атом имеет линейные размеры l , тогда электрон атома будет находиться где-то в пределах области с неопределенностью