Болезни Военный билет Призыв

Программы реализующие генетический алгоритм. Как наши их, да

Года четыре назад, в универе услышал о таком методе оптимизации, как генетический алгоритм. О нем везде сообщалось ровно два факта: он клёвый и он не работает. Вернее, работает, но медленно, ненадежно, и нигде его не стоит использовать. Зато он красиво может продемонстрировать механизмы эволюции. В этой статье я покажу красивый способ вживую посмотреть на процессы эволюции на примере работы этого простого метода. Нужно лишь немного математики, программирования и все это приправить воображением.

Кратко об алгоритме

Итак, что же такое генетический алгоритм? Это, прежде всего, метод многомерной оптимизации, т.е. метод поиска минимума многомерной функции. Потенциально этот метод можно использовать для глобальной оптимизации, но с этим возникают сложности, опишу их позднее.

Сама суть метода заключается в том, что мы модулируем эволюционный процесс: у нас есть какая-то популяция (набор векторов), которая размножается, на которую воздействуют мутации и производится естественный отбор на основании минимизации целевой функции. Рассмотрим подробнее эти процессы.

Итак, прежде всего наша популяция должна размножаться . Основной принцип размножения - потомок похож на своих родителей. Т.е. мы должны задать какой-то механизм наследования. И лучше будет, если он будет включать элемент случайности. Но скорость развития таких систем очень низкая - разнообразие генетическое падает, популяция вырождается. Т.е. значение функции перестает минимизироваться.

Для решения этой проблемы был введен механизм мутации , который заключается в случайном изменении каких-то особей. Этот механизм позволяет привнести что-то новое в генетическое разнообразие.
Следующий важный механизм - селекция . Как было сказано, селекция - отбор особей (можно из только родившихся, а можно из всех - практика показывает, что это не играет решающую роль), которые лучше минимизируют функцию. Обычно отбирают столько особей, сколько было до размножения, чтобы из эпохи в эпоху у нас было постоянное количество особей в популяции. Также принято отбирать «счастливчиков» - какое-то число особей, которые, возможно, плохо минимизируют функцию, но зато внесут разнообразия в последующие поколения.

Этих трех механизмов чаще всего недостаточно, чтобы минимизировать функцию. Так популяция вырождается - рано или поздно локальный минимум забивает своим значением всю популяцию. Когда такое происходит, проводят процесс, называемый встряской (в природе аналогии - глобальные катаклизмы), когда уничтожается почти вся популяция, и добавляются новые (случайные) особи.

Вот описание классического генетического алгоритма, он прост в реализации и есть место для фантазии и исследований.

Постановка задачи

Итак, когда я уже решил, что хочу попробовать реализовать этот легендарный (пусть и неудачливый) алгоритм, речь зашла о том, что же я буду минизимировать? Обычно берут какую-нибудь страшную многомерную функцию с синусами, косинусами и т.д. Но это не очень интересно и вообще не наглядно. Пришла одна незатейливая идея - для отображения многомерного вектора отлично подходит изображение, где значение отвечает за яркость. Таким образом, мы можем ввести простую функцию - расстояние до нашего целевого изображения, измеряемое в разности яркости пикселей. Для простоты и скорости я взял изображения с яркостью 0, либо 255.

С точки зрения математики такая оптимизация - сущий пустяк. График такой функции представляет собой огромную многомерную «яму» (как трехмерный парабалоид на рисунке), в которую неизбежно скатишься, если идти по градиенту. Единственный локальный минимум является глобальным. .

Проблема только в том, что уже близко к минимуму количество путей, по которым можно спуститься вниз сильно сокращается, а всего у нас столько направлений, сколько измерений (т.е. количество пикселей). Очевидно, что решать эту задачу при помощи генетического алгоритма не стоит, но мы можем посмотреть на интересные процессы, протекающие в нашей популяции.

Реализация

Были реализованы все механизмы, описанные в первом параграфе. Размножение проводилось простым скрещиванием случайных пикселей от «мамы» и от «папы». Мутации производились путем изменения значения случайного пикселя у случайной особи на противоположное. А встряска производилась, если минимум не меняется на протяжении пяти шагов. Тогда производится «экстремальная мутация» - замена происходит более интенсивно, чем обычно.

В качестве исходных картинок я брал нонограмы («японские сканворды»), но, по правде говоря, можно брать просто черные квадраты - нет абсолютно никакой разницы. Ниже показаны результаты для нескольких изображений. Здесь для всех, кроме «домика», количество мутаций было 100 в среднем на каждую особь, особей в популяции было 100, при размножении популяция увеличивалась в 4 раза. Счастливчиков было 30% в каждой эпохе. Для домика значения были выбраны меньшие (30 особей в популяции, мутаций по 50 на особь).




Экспериментально я установил, что использование «счастливчиков» в селекции понижает скорость стремления популяции к минимуму, но зато помогает выбираться из стагнации - без «счастливчиков» стагнация будет постоянна. Что можно увидеть из графиков: левый график - развитие популяции «фараона» со счастливчиками, правый - без счастливчиков.


Таким образом, мы видим, что этот алгоритм позволяет решить поставленную задачу, пусть и за очень долгое время. Слишком большое количество встрясок, в случае больших изображений, может решить большее количество особей в популяции. Оптимальный подбор параметров для разных размерностей я оставляю за рамками данного поста.

Глобальная оптимизация

Как было сказано, локальная оптимизация - задача довольно тривиальная, даже для многомерных случаев. Гораздо интересней посмтреть, как будет алгоритм справляться с глобальной оптимизацией. Но для этого нужно сначала построить функцию со множеством локальных минимумов. А это в нашем случае не так сложно. Достаточно брать минимум из расстояний до нескольких изображений (домик, динозаврик, рыбка, кораблик). Тогда первоначальный алгоритм будет «скатываться» в какую-то случайную ямку. И можно просто запускать его несколько раз.

Но есть более интересное решение данной проблемы: можно понять, что мы скатились в локальный минимум, сделать сильную встряску (или вообще инициировать особи заново), и в дальнейшем добавлять штрафы при приближении к известному минимуму. Как видно, картинки чередуются. Замечу, что мы не имеем права трогать исходную функцию. Но мы можем запоминать локальные минимумы и самостоятельно добавлять штрафы.

На этой картинке изображен результат, когда при достижении локального минимума (сильная стагнация), популяция просто вымирает.

Здесь популяция вымирает, и добавляется небольшой штраф (в размере обычного расстояния до известного минимума). Это сильно снижает вероятность повторов.

Более интересно, когда популяция не вымирает, а просто начинает подстрариваться под новые условия (след. рисунок). Это достигается при помощи штрафа в виде 0.000001 * sum ^ 4. В таком случае, новые образы становятся немного зашумлены:

Этот шум устраняется путем ограничения штрафа в max(0.000001 * sum ^ 4, 20). Но мы видим, что четвертого локального минимума (динозавра) достичь не удается - скорее всего, потому, что он слишком близко расположен к какому-то другому.

Биологическая интерпретация


Какие же выводы мы можем сделать из, не побоюсь этого слова, моделирования? Прежде всего, мы видим, половое размножение - важнейший двигатель развития и приспосабливаемости. Но только его не достаточно. Роль случайных, маленьких изменений чрезвычайна важна. Именно они обеспечивают возникновение новых видов животных в процессе эволюции, а у нас обеспечивает разнообразие популяции.

Важнейшую роль в эволюции Земли играли природные катаклизмы и массовые вымирания (вымирания динозавров, насекомых и т.д. - крупных всего было около десяти - см. диаграмму ниже). Это было подтверждено и нашим моделированием. А отбор «счастливчиков» показал, что самые слабые организмы на сегодня способны в будущем стать основой для последующих поколений.

Как говорится, все как в жизни. Этот метод «сделай эволюцию сам» наглядно показывает интересные механизмы и их роль в развитии. Конечно, существует много более стоящих эволюционных моделей (основанных, конечно, на дифурах), учитывающих больше факторов, более приближенные к жизни. Конечно, существуют более эффективные методы оптимизации.

P.S.

Писал программу на Matlab (вернее, даже на Octave), потому что тут все - голимые матрицы, и есть инструменты для работы с картинками. Исходный код прилагается.

Исходный код

function res = genetic(file) %generating global A B; im2line(file); dim = length(A(1,:)); count = 100; reprod = 4; mut = 100; select = 0.7; stagn = 0.8; pop = round(rand(count,dim)); res = ; B = ; localmin = ; localcount = ; for k = 1:300 %reproduction for j = 1:count * reprod pop = ; end %mutation idx = 10 * (length(res) > 5 && std(res(1:5)) == 0) + 1; for j = 1:count * mut a = floor(rand() * count) + 1; b = floor(rand() * dim) + 1; pop(a,b) = ~pop(a,b); end %selection val = func(pop); val(1:count) = val(1:count) * 10; npop = zeros(count,dim); = sort(val); res = ; opt = pop(i(1),:); fn = sprintf("result/%05d-%d.png",k,s(1)); line2im(opt*255,fn); if (s(1) == 0 || localcount > 10) localmin = ; localcount = ; B = ; % pop = round(rand(count,dim)); continue; % break; end for j = 1:floor(count * select) npop(j,:) = pop(i(j),:); end %adding luckers for j = (floor(count*select)+1) : count npop(j,:) = pop(floor(rand() * count) + 1,:); end %fixing stagnation if (length(res) > 5 && std(res(1:5)) == 0) if (localmin == res(1)) localcount = localcount+1; else localcount = 1; end localmin = res(1); for j = 1:count*stagn a = floor(rand() * count) + 1; npop(a,:) = crossingover(npop(a,:),rand(1,dim)); end end pop = npop; end res = res(length(res):-1:1); end function res = crossingover(a, b) x = round(rand(size(a))); res = a .* x + b .* (~x); end function res = func(v) global A B; res = inf; for i = 1:size(A,1) res = min(res,sum(v ~= A(i,:),2)); end for i = 1:size(B,1) res = res + max(0.000001 * sum(v == B(i,:),2) .^ 4,20); end end function = im2line(files) global A sz; A = ; files = cellstr(files); for i = 1:size(files,1) imorig = imread(char(files(i,:))); sz = size(imorig); A = )]; end A = A / 255; end function = line2im(im,file) global sz; imwrite(reshape(im*255,sz),file); end

Теги: Добавить метки

Генетические алгоритмы (ГА) предназначены для решения задач оптимизации. В основе генетического алгоритма лежит метод случайного поиска. Основным недостатком случайного поиска является то, что нам неизвестно, сколько понадобится времени для решения задачи. Для того, чтобы избежать таких расходов времени при решении задачи, применяются методы, проявившиеся в биологии. При этом используются методы открытые при изучении эволюции и происхождения видов. Как известно, в процессе эволюции выживают наиболее приспособленные особи. Это приводит к тому, что приспособленность популяции возрастает, позволяя ей лучше выживать в изменяющихся условиях.

В генетических алгоритмах каждое решение является битовой строкой (хромосомой) определенной длины в популяции фиксированного размера.

Впервые подобный алгоритм был предложен в 1975 году Дж. Холландом (John Holland) в Мичиганском университете. Он получил название «репродуктивный план Холланда» и лег в основу практически всех вариантов генетических алгоритмов.

Из биологии мы знаем, что любой организм может быть представлен своим фенотипом , который фактически определяет, чем является объект в реальном мире, и генотипом , который содержит всю информацию об объекте на уровне хромосомного набора. При этом каждый ген, то есть элемент информации генотипа, имеет свое отражение в фенотипе. Таким образом, для решения задач нам необходимо представить каждый признак объекта в форме, подходящей для использования в генетическом алгоритме. Все дальнейшее функционирование механизмов генетического алгоритма производится на уровне генотипа, позволяя обойтись без информации о внутренней структуре объекта, что и обуславливает его широкое применение в самых разных задачах.

В наиболее часто встречающейся разновидности генетического алгоритма для представления генотипа объекта применяются битовые строки. При этом каждому атрибуту объекта в фенотипе соответствует один ген в генотипе объекта. Ген представляет собой битовую строку, чаще всего фиксированной длины, которая представляет собой значение этого признака.

Основные генетические операторы

Как известно в теории эволюции важную роль играет то, каким образом признаки родителей передаются потомкам. В генетических алгоритмах за передачу признаков родителей потомкам отвечает оператор, который называется скрещивание (его также называют кроссовер или кроссинговер ). Этот оператор определяет передачу признаков родителей потомкам. Действует он следующим образом:

  1. из популяции выбираются две особи, которые будут родителями;
  2. определяется (обычно случайным образом) точка разрыва;
  3. потомок определяется как конкатенация части первого и второго родителя.

Рассмотрим функционирование этого оператора :

Хромосома_1: 0000000000

Хромосома_2: 1111111111

Допустим, разрыв происходит после 3-го бита хромосомы, тогда

Хромосома_1: 0000000000 >> 000 1111111 Результирующая_хромосома_1

Хромосома_2: 1111111111 >> 111 0000000 Результирующая_хромосома_2

Затем с вероятностью 0,5 определяется одна из результирующих хромосом в качестве потомка.

Следующий генетический оператор предназначен для того, чтобы поддерживать разнообразие особей с популяции. Он называется оператором мутации . При использовании данного оператора каждый бит в хромосоме с определенной вероятностью инвертируется.

Кроме того, используется еще и так называемый оператор инверсии , который заключается в том, что хромосома делится на две части, и затем они меняются местами. Схематически это можно представить следующим образом:

000 1111111 >> 1111111 000

В принципе для функционирования генетического алгоритма достаточно этих двух генетических операторов, но на практике применяют еще и некоторые дополнительные операторы или модификации этих двух операторов. Например, кроссовер может быть не одноточечный (как было описано выше), а многоточечный, когда формируется несколько точек разрыва (чаще всего две). Кроме того, в некоторых реализациях алгоритма оператор мутации представляет собой инверсию только одного случайно выбранного бита хромосомы.

Схема функционирования генетического алгоритма

Теперь, зная как интерпретировать значения генов, перейдем к описанию функционирования генетического алгоритма. Рассмотрим схему функционирования генетического алгоритма в его классическом варианте.

  1. Инициировать начальный момент времени t=0. Случайным образом сформировать начальную популяцию, состоящую из k особей. B 0 = {A 1 ,A 2 ,…,A k)
  2. Вычислить приспособленность (пригодность ) каждой особи F Ai = fit(A i) , i=1…k и популяции в целом F t = fit(B t) (также иногда называемую термином фиттнес ). Значение этой функции определяет насколько хорошо подходит особь, описанная данной хромосомой, для решения задачи.
  3. Выбрать особь A c из популяции. A c = Get(B t)
  4. С определенной вероятностью (вероятностью кроссовера P c) выбрать вторую особь из популяции А c1 = Get(B t) и произвести оператор кроссовера A c = Crossing(A c ,A c1).
  5. С определенной вероятностью (вероятностью мутации P m) выполнить оператор мутации. A c = mutation(A c).
  6. С определенной вероятностью (вероятностью инверсии P i) выполнить оператор инверсии A c = inversion(A c).
  7. Поместить полученную хромосому в новую популяцию insert(B t+1 ,A c).
  8. Выполнить операции, начиная с пункта 3, k раз.
  9. Увеличить номер текущей эпохи t=t+1.
  10. Если выполнилось условие останова, то завершить работу, иначе переход на шаг 2.

Рассмотрим подробнее отдельные этапы алгоритма.

Наибольшую роль в успешном функционировании алгоритма играет этап отбора родительских хромосом на шагах 3 и 4. При этом возможны различные варианты. Наиболее часто используется метод отбора, называемый рулеткой . При использовании такого метода вероятность выбора хромосомы определяется ее приспособленностью, то есть

P Get(Ai) ~ Fit(A i)/Fit(B t).

Использование этого метода приводит к тому, что вероятность передачи признаков более приспособленными особями потомкам возрастает. Другой часто используемый метод – турнирный отбор . Он заключается в том, что случайно выбирается несколько особей из популяции (обычно 2) и победителем выбирается особь с наибольшей приспособленностью. Кроме того, в некоторых реализациях алгоритма применяется так называемая стратегия элитизма , которая заключается в том, что особи с наибольшей приспособленностью гарантировано переходят в новую популяцию. Использование элитизма обычно позволяет ускорить сходимость генетического алгоритма. Недостаток использования стратегии элитизма в том, что повышается вероятность попадания алгоритма в локальный минимум.

Другой важный момент – определение критериев останова.

В качестве критериев останова алгоритма могут использоваться такие:

  • сформировано заданное число поколений;
  • популяция достигла заданного качества;
  • достигнут определенный уровень сходимости.

Пример

Найти максимум функции f(x)=x2 в диапазоне 0

В качестве функции пригодности выступает сама функция, чем больше значение, чем больше ее значение, тем лучше пригодность хромосомы.

Установим размер популяции, равный четырем строкам.

Таблица 11.1 – Начальная популяция и оценка пригодности

Начальная популяция

Относительная пригодность, %

Так как функция пригодности второй строки - лучшая, отбираем две копии второй строки и оставляем первую и четвертую строки в родительском пуле. Отбор партнеров производим случайным образом: партнером первой строки служит вторая, партнером четвертой - тоже вторая. Положение точек скрещивания также случайно и выбирается следующим образом: для пары из первой и второй строк точка скрещивания - после четвертого бита; для пары из второй четвертой строк - после второго бита.

Таблица 11.2– Родительский пул и скрещивание

Родительский пул

Парная строка

До скрещивания

После скрещивания

Второе поколение без мутации приведено ниже.

Таблица 11.3 – Второе поколение

Начальная популяция

Относительная пригодность, %

Видно, что третья строка является лучшей во втором поколении и значении x=27 достаточно близко к отыскиваемому максимуму. Очевидно, что через несколько шагов оптимальное решение будет найден даже без использования оператора мутации.

Применение генетических алгоритмов

Генетический алгоритм для решения любой проблемы должен содержать, как правило, следующие компоненты:

  • генетическое представление потенциальных решений задачи;
  • способ создания начальной популяции потенциальных решений;
  • оценочную функцию создания начальной популяции потенциальных решений;
  • генетические операторы, изменяющие генетический состав потомства;
  • значения параметров генетического алгоритма (вероятности скрещивания и мутации, размер популяции, количество поколений и др.).

Генетические алгоритмы широко используются для того, чтобы быстро решать сложнейшие оптимизационные задачи в бизнесе и финансах. Но этим сфера их применения не ограничивается. Многочисленные варианты генетических алгоритмов употребляются при исследовании разнообразных научных и технических проблем: создание реактивных двигателей, повышение эффективности обслуживания самолетов авианосцами и др. Генетические алгоритмы используются также для создания вычислительных структур, применяются при проектировании нейронных сетей и при управлении роботами. Кроме этого, они приносят неоценимую помощь при моделировании процессов развития в биологических, социальных и других системах.

Примеры программного обеспечения

На рынке программного обеспечения имеется несколько продуктов, использующих генетические алгоритмы: Evoler, GeneHunter, Genetic Training Option for BrainMaker, Auto2Fit, Omega, Genitor, Xpert Rule Gen Asy, PC/Beagle, EM, Escapate, GAGA, Gausd, Genesis, OOGA, EnGENer, Game, GA Workbench, Pegasus и др.

Генетические алгоритмы предназначены для решения задач оптимизации. Примером подобной задачи может служить обучение нейросети, то есть подбора таких значений весов, при которых достигается минимальная ошибка. При этом в основе генетического алгоритма лежит метод случайного поиска. Основным недостатком случайного поиска является то, что нам неизвестно сколько понадобится времени для решения задачи. Для того, чтобы избежать таких расходов времени при решении задачи, применяются методы, проявившиеся в биологии. При этом используются методы открытые при изучении эволюции и происхождения видов. Как известно, в процессе эволюции выживают наиболее приспособленные особи. Это приводит к тому, что приспособленность популяции возрастает, позволяя ей лучше выживать в изменяющихся условиях.

Впервые подобный алгоритм был предложен в 1975 году Джоном Холландом (John Holland) в Мичиганском университете. Он получил название "репродуктивный план Холланда" и лег в основу практически всех вариантов генетических алгоритмов. Однако, перед тем как мы его рассмотрим подробнее, необходимо остановится на том, каким образом объекты реального мира могут быть закодированы для использования в генетических алгоритмах.

Представление объектов

Из биологии мы знаем, что любой организм может быть представлен своим , который фактически определяет, чем является объект в реальном мире, и генотипом , который содержит всю информацию об объекте на уровне хромосомного набора. При этом каждый ген, то есть элемент информации генотипа, имеет свое отражение в фенотипе. Таким образом, для решения задач нам необходимо представить каждый признак объекта в форме, подходящей для использования в генетическом алгоритме. Все дальнейшее функционирование механизмов генетического алгоритма производится на уровне генотипа, позволяя обойтись без информации о внутренней структуре объекта, что и обуславливает его широкое применение в самых разных задачах.

В наиболее часто встречающейся разновидности генетического алгоритма для представления генотипа объекта применяются битовые строки. При этом каждому атрибуту объекта в фенотипе соответствует один ген в генотипе объекта. Ген представляет собой битовую строку, чаще всего фиксированной длины, которая представляет собой значение этого признака.

Кодирование признаков, представленных целыми числами

Для кодирования таких признаков можно использовать самый простой вариант – битовое значение этого признака. Тогда нам будет весьма просто использовать ген определенной длины, достаточной для представления всех возможных значений такого признака. Но, к сожалению, такое кодирование не лишено недостатков. Основной недостаток заключается в том, что соседние числа отличаются в значениях нескольких битов, так например числа 7 и 8 в битовом представлении различаются в 4-х позициях, что затрудняет функционирование генетического алгоритма и увеличивает время, необходимое для его сходимости. Для того, чтобы избежать эту проблему лучше использовать кодирование, при котором соседние числа отличаются меньшим количеством позиций, в идеале значением одного бита. Таким кодом является код Грея, который целесообразно использовать в реализации генетического алгоритма. Значения кодов Грея рассмотрены в таблице ниже:

Таблица 1. Соответствие десятичных кодов и кодов Грея

Двоичное кодирование

Кодирование по коду Грея

Десятичный код

Двоичное значение

Шестнадцатеричное значение

Десятичный код

Двоичное значение

Шестнадцатеричное значение

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Таким образом, при кодировании целочисленного признака мы разбиваем его на тетрады и каждую тетраду преобразуем по коду Грея.

В практических реализациях генетических алгоритмов обычно не возникает необходимости преобразовывать значения признака в значение гена. На практике имеет место обратная задача, когда по значению гена необходимо определить значение соответствующего ему признака.

Таким образом, задача декодирования значения генов, которым соответствуют целочисленные признаки, тривиальна.

Кодирование признаков, которым соответствуют числа с плавающей точкой

Самый простой способ кодирования, который лежит на поверхности – использовать битовое представление. Хотя такой вариант имеет те же недостатки, что и для целых чисел. Поэтому на практике обычно применяют следующую последовательность действий:

  1. Разбивают весь интервал допустимых значений признака на участки с требуемой точностью.
  2. Принимают значение гена как целочисленное число, определяющее номер интервала (используя код Грея).
  3. В качестве значения параметра принимают число, являющиеся серединой этого интервала.

Рассмотрим вышеописанную последовательность действий на примере:

Допустим, что значения признака лежат в интервале . При кодировании использовалось разбиение участка на 256 интервалов. Для кодирования их номера нам потребуется таким образом 8 бит. Допустим значение гена: 00100101bG (заглавная буква G показывает, что используется кодирование по коду Грея). Для начала, используя код Грея, найдем соответствующий ему номер интервала: 25hG->36h->54d. Теперь посмотрим, какой интервал ему соответствует… После несложных подсчетов получаем интервал . Значит значение нашего параметра будет (0,20703125+0,2109375)/2=0,208984375.

Кодирование нечисловых данных

При кодировании нечисловых данных необходимо предварительно преобразовать их в числа. Более подробно это описано в статьях нашего сайта, посвященных использованию нейронных сетей.

Определение фенотипа объекта по его генотипу

Таким образом, для того, чтобы определить фенотип объекта (то есть значения признаков, описывающих объект) нам необходимо только знать значения генов, соответствующим этим признакам, то есть генотип объекта. При этом совокупность генов, описывающих генотип объекта, представляет собой хромосому . В некоторых реализациях ее также называют особью. Таким образом, в реализации генетического алгоритма хромосома представляет собой битовую строку фиксированной длины. При этом каждому участку строки соответствует ген. Длина генов внутри хромосомы может быть одинаковой или различной. Чаще всего применяют гены одинаковой длины. Рассмотрим пример хромосомы и интерпретации ее значения. Допустим, что у объекта имеется 5 признаков, каждый закодирован геном длинной в 4 элемента. Тогда длина хромосомы будет 5*4=20 бит

0010 1010 1001 0100 1101

теперь мы можем определить значения признаков

Признак Значение гена Двоичное значение признака Десятичное значение признака
Признак 1
Признак 2
Признак 3
Признак 4
Признак 5

Основные генетические операторы

Как известно в теории эволюции важную роль играет то, каким образом признаки родителей передаются потомкам. В генетических алгоритмах за передачу признаков родителей потомкам отвечает оператор, который называется скрещивание (его также называют кроссовер или кроссинговер). Этот оператор определяет передачу признаков родителей потомкам. Действует он следующим образом:

  1. из популяции выбираются две особи, которые будут родителями;
  2. определяется (обычно случайным образом) точка разрыва;
  3. потомок определяется как конкатенация части первого и второго родителя.

Рассмотрим функционирование этого оператора:

Затем с вероятностью 0,5 определяется одна из результирующих хромосом в качестве потомка.

Следующий генетический оператор предназначен для того, чтобы поддерживать разнообразие особей с популяции. Он называется оператором мутации . При использовании данного оператора каждый бит в хромосоме с определенной вероятностью инвертируется.

Кроме того, используется еще и так называемый оператор инверсии , который заключается в том, что хромосома делится на две части, и затем они меняются местами. Схематически это можно представить следующим образом

000 1111111 >> 1111111 000

В принципе для функционирования генетического алгоритма достаточно этих двух генетических операторов, но на практике применяют еще и некоторые дополнительные операторы или модификации этих двух операторов. Например, кроссовер может быть не одноточечный (как было описано выше), а многоточечный, когда формируется несколько точек разрыва (чаще всего две). Кроме того, в некоторых реализациях алгоритма оператор мутации представляет собой инверсию только одного случайно выбранного бита хромосомы.

Схема функционирования генетического алгоритма

Теперь, зная как интерпретировать значения генов, перейдем к описанию функционирования генетического алгоритма. Рассмотрим схему функционирования генетического алгоритма в его классическом варианте.

  1. Инициировать начальный момент времени $t=0$. Случайным образом сформировать начальную популяцию, состоящую из $k$ особей. $B_0 = \{A_1,A_2, \dots, A_k\}$
  2. Вычислить приспособленность каждой особи $F_{Ai} = fit(A_i)$ , $i=1…k$ и популяции в целом $F_t = fit(B_t)$ (также иногда называемую термином фиттнес). Значение этой функции определяет насколько хорошо подходит особь, описанная данной хромосомой, для решения задачи.
  3. Выбрать особь $A_c$ из популяции $A_c = \mbox Get(B_t)$
  4. С определенной вероятностью (вероятностью кроссовера $P_c$) выбрать вторую особь из популяции $A_{c1} = \mbox Get(B_t)$ и произвести оператор кроссовера $A_c = \mbox {Crossing}(A_c, A_{c1})$.
  5. С определенной вероятностью (вероятностью мутации $P_m$) выполнить оператор мутации $A_c = \mbox {mutation}(A_c)$.
  6. С определенной вероятностью (вероятностью инверсии $P_i$) выполнить оператор инверсии $A_c = \mbox {inversion}(A_c)$.
  7. Поместить полученную хромосому в новую популяцию $\mbox {insert} (B_{t+1},A_c)$.
  8. Выполнить операции, начиная с пункта 3, $k$ раз.
  9. Увеличить номер текущей эпохи $t=t+1$.
  10. Если выполнилось условие останова, то завершить работу, иначе переход на шаг 2.

Теперь рассмотрим подробнее отдельные этапы алгоритма.

Наибольшую роль в успешном функционировании алгоритма играет этап отбора родительских хромосом на шагах 3 и 4. При этом возможны различные варианты. Наиболее часто используется метод отбора, называемый рулеткой . При использовании такого метода вероятность выбора хромосомы определяется ее приспособленностью, то есть $P_{Get(Ai)} ~ Fit(A_i)/Fit(B_t)$. Использование этого метода приводит к тому, что вероятность передачи признаков более приспособленными особями потомкам возрастает. Другой часто используемый метод – турнирный отбор . Он заключается в том, что случайно выбирается несколько особей из популяции (обычно 2) и победителем выбирается особь с наибольшей приспособленностью. Кроме того, в некоторых реализациях алгоритма применяется так называемая стратегия элитизма , которая заключается в том, что особи с наибольшей приспособленностью гарантировано переходят в новую популяцию. Использование элитизма обычно позволяет ускорить сходимость генетического алгоритма. Недостаток использования стратегии элитизма в том, что повышается вероятность попадания алгоритма в локальный минимум.

Другой важный момент – определение критериев останова. Обычно в качестве них применяются или ограничение на максимальное число эпох функционирования алгоритма, или определение его сходимости, обычно путем сравнивания приспособленности популяции на нескольких эпохах и остановки при стабилизации этого параметра.

Одной из задач интеллектуальных систем является поиск оптимального решения: когда на систему влияет множество внешних и внутренних факторов, интеллектуальное устройство должно учесть их все и выбрать оптимальное поведение с точки зрения своей выгоды. Допустим, если Вы — хозяин склада, Вам необходимо учитывать много факторов (стоимость единиц товаров, спрос, издержки на хранение различных товаров на складе и т.д.) для минимизации издержек и получение наибольшей прибыли.

Другой пример: вы едете по скользкой дороге, и вдруг ваш автомобиль начинает заносить, справа в нескольких метрах от вас столб, а по встречной полосе едет грузовик. Внимание вопрос: как выйти из ситуации с наименьшими потерями, а лучше вообще без них. Факторов, которые нужно учитывать много: ваша скорость и скорость встречного автомобиля, расстояние до столба, «крутость» заноса и т.д. Что нужно делать? Давать газу, пытаясь выйти из заноса, или тормозить, или, может, попытаться аккуратно съехать в кювет, так чтобы не попасть в столб. Вариантов много, и для того чтобы определить оптимальный — нужно попробовать их все. Будь это компьютерной игрой – вы могли бы сохраниться и переигрывать до тех пор, пака результат вас не удовлетворит. Это и есть поиск оптимального решения.

В системах искусственного интеллекта для решения подобных задач применяются .

Генетические алгоритмы – адаптивные методы поиска, которые используются для решения задач функциональной оптимизации. Они основаны на механизмах и моделях эволюции, и генетических процессов биологических алгоритмов.

Скажем проще: по сути, генетический алгоритм — это метод перебора решений для тех задач, в которых невозможно найти решение с помощью математических формул. Однако простой перебор решений в сложной многомерной задаче – это бесконечно долго. Поэтому генетический алгоритм перебирает не все решения, а только лучшие. Алгоритм берёт группу решений и ищет среди них наиболее подходящие. Затем немного изменяет их – получает новые решения, среди которых снова отбирает лучшие, а худшие отбрасывает. Таким образом, на каждом шаге работы алгоритм отбирает наиболее подходящие решения (проводит селекцию), считая, что они на следующем шаге дадут ещё более лучшие решения (эволюционируют).

Причём тут биология?

Как вы уже поняли, в теории генетических алгоритмов проводится аналогия между задачей и биологическим процессом. Отсюда и терминология…

Особь – одно решение задачи.

Популяция — набор решений задачи. В начале алгоритма случайным образом генерируется набор решений (начальная популяция). Эти решения будут становиться лучше (эволюционировать) в процессе работы алгоритма до тех пор, пока не удовлетворят условиям задачи.

И сразу самый простой классический пример. Допустим, роботу необходимо объехать шесть контрольных точек за наименьшее время. Расстояние от каждой точки до каждой задано в виде матрицы расстояний.

Это вариация задачи о коммивояжёре (путешественнике) – относится к классу NP-полных, проще говоря, не может быть решена с помощью математических формул.

Решение задачи – это последовательность прохождения контрольных точек. Возьмём несколько возможных решений (особей)– это и есть .

Определения качества решений

Функция пригодности – функция определяющая качество особей популяции. В нашем примере это будет сумма расстояний от точки до точки в выбранном маршруте.

ФП = Р(1)+Р(2)+Р(3)+Р(4)+Р(5)+Р(6),

где Р(1) … Р(6) – расстояние между точками в соответствующем переходе из матрицы расстояний

Нам необходимо найти минимальное расстояние, поэтому, чем меньше значение ФП для особи, тем лучше.

Давайте посчитаем функции пригодности. Для первой особи:

Для остальных особей таким же образом получаем.

Идея генетических алгоритмов (ГА) появилась достаточно давно (1950-1975 гг.), но по-настоящему объектом изучения они стали только в последние десятилетия. Первооткрывателем в этой области признано считать Д. Холланда, который позаимствовал многое из генетики и адаптировал под вычислительные машины. ГА широко используются в системах искусственного интеллекта, нейронных сетях и задачах оптимизации.

Эволюционный поиск

Модели генетических алгоритмов были созданы на базе эволюции в живой природе и методах рандомного поиска. При этом случайный поиск является реализацией наиболее простой функции эволюции – случайных мутаций и последующего отбора.

Эволюционный поиск с математической точки зрения означает не что иное, как преобразование имеющегося конечного множества решений в новое. Функция, отвечающая за этот процесс, и есть генетический поиск. Главным отличием такого алгоритма от случайного поиска является активное использование накопленной в ходе итераций (повторений) информации.

Зачем нужны генетические алгоритмы

ГА преследуют следующие цели:

  • объяснить адаптационные механизмы как в естественной среде, так и в интеллектуально-исследовательской (искусственной) системе;
  • моделирование эволюционных функций и их применение для эффективного поиска решений различных задач, главным образом оптимизационных.

На данный момент сутью генетических алгоритмов и их модифицированных версий можно назвать поиск эффективных решений с учетом качества результата. Другими словами, поиск наилучшего баланса между производительностью и точностью. Происходит это за счет известной всем парадигмы «выживание наиболее приспособленной особи» в неопределенных и нечетких условиях.

Особенности ГА

Перечислим главные отличия ГА от большинства других методов поиска оптимального решения.

  • работа с закодированными определенным образом параметрами задачи, а не напрямую с ними;
  • поиск решения происходит не путем уточнения начального приближения, а во множестве возможных решений;
  • использование только целевой функции, не прибегая к ее производным и модификациям;
  • применение вероятностного подхода к анализу, вместо строго детерминированного.

Критерии работы

Генетические алгоритмы производят расчеты исходя из двух условий:

  1. Выполнение заданного числа итераций.
  2. Качество найденного решения соответствует требованиям.

При выполнении одного из этих условий генетический алгоритм перестанет выполнять дальнейшие итерации. Помимо этого, использование ГА различных областей пространства решений позволяет им куда лучше находить новые решения, которые имеют более подходящие значения целевой функции.

Базовая терминология

Ввиду того, что ГА основаны на генетике, то и большая часть терминологии соответствует ей. Любой генетический алгоритм работает исходя из начальной информации. Множество начальных значений есть популяция Пt = {п1, п2, ..., пn}, где пi = {г1, ..., гv}. Разберем подробнее:

  • t - это номер итерации. t1, ..., tk - означает итерации алгоритма с номера 1 по k, и на каждой итерации создается новая популяция решений.
  • n - размер популяции Пt.
  • п1, ..., пi - хромосома, особь, или организм. Хромосома или цепочка - это закодированная последовательность генов, каждый из которых имеет порядковый номер. При этом следует иметь в виду, что хромосома может быть частным случаем особи (организма).
  • гv - это гены, являющиеся частью закодированного решения.
  • Локус - это порядковый номер гена в хромосоме. Аллель - значение гена, которое может быть как числовым, так и функциональным.

Что значит "закодированный" в контексте ГА? Обычно любое значение кодируется на основе какого-либо алфавита. Простейшим примером является перевод чисел из десятеричной системы счисления в двоичное представление. Таким образом алфавит представляется как множество {0, 1}, а число 15710 будет кодироваться хромосомой 100111012 , состоящей из восьми генов.

Родители и потомки

Родителями называются элементы, выбираемые в соответствии с заданным условием. Например, часто таким условием является случайность. Выбранные элементы за счет операций скрещивания и мутации порождают новые, которые называются потомками. Таким образом, родители в течение реализации одной итерации генетического алгоритма создают новое поколение.


Наконец, эволюцией в данном контексте будет чередование поколений, каждое новое из которых отличается набором хромосом в угоду лучшей приспособленности, то есть более подходящему соответствию заданным условиям. Общий генетический фон в процессе эволюции называется генотипом, а формирование связи организма с внешней средой – фенотипом.

Функция приспособленности

Волшебство генетического алгоритма в функции пригодности. У каждой особи есть свое значение, которое можно узнать через функцию приспособления. Ее главной задачей является оценка этих значений у разных альтернативных решений и выбор лучшего из них. Иными словами, наиболее приспособленного.

В оптимизационных задачах функция приспособленности носит название целевой, в теории управления называется погрешностью, в теории игр – функцией стоимости, и т. д. Что именно будет представлено в виде функции приспособления, зависит от решаемой задачи.

В конечном итоге можно заключить, что генетические алгоритмы анализируют популяцию особей, организмов или хромосом, каждая из которых представлена комбинацией генов (множеством некоторых значений), и выполняют поиск оптимального решения, преобразовывая особи популяции посредством проведения искусственной эволюции среди них.

Отклонения в ту или иную сторону отдельных элементов в общем случае находятся в соответствии с нормальным законом распределения величин. При этом ГА обеспечивает наследственность признаков, наиболее приспособленные из которых закрепляются, обеспечивая тем самым лучшую популяцию.

Базовый генетический алгоритм

Разложим по шагам наиболее простой (классический) ГА.

  1. Инициализация начальных значений, то есть определение первичной популяции, того множества особей, с которыми будет происходить эволюция.
  2. Установление первичной приспособленности каждой особи в популяции.
  3. Проверка условий прекращения итераций алгоритма.
  4. Использование функции селекции.
  5. Применение генетических операторов.
  6. Создание новой популяции.
  7. Шаги 2-6 повторяются в цикле до выполнения необходимого условия, после чего происходит выбор наиболее приспособленной особи.

Пройдемся вкратце по мало очевидным частям алгоритма. Условий прекращения работы может быть два:

  1. Количество итераций.
  2. Качество решения.

Генетическими операторами является оператор мутаций и оператор скрещивания. Мутация изменяет случайные гены с определенной вероятностью. Как правило, вероятность мутации имеет низкое числовое значение. Поговорим подробнее о процедуре генетического алгоритма "скрещивание". Он происходит по следующему принципу:

  1. Для каждой пары родителей, содержащих L генов, случайным образом выбирается точка скрещивания Тскi.
  2. Первый потомок составляется путем присоединения к генам первого родителя [Тскi+1; L] генов второго родителя.
  3. Второй потомок составляется обратным путем. Теперь к генам второго родителя добавляется гены первого родителя на позициях [Тскi+1; L].

Тривиальный пример

Решим задачу генетическим алгоритмом на примере поиска особи с максимальным числом единиц. Пусть особь состоит из 10 генов. Зададим первичную популяцию в количестве восьми особей. Очевидно, наилучшей особью должна быть 1111111111. Составим для решения ГА.

  • Инициализация. Выберем 8 случайных особей:

Из таблицы видно, что особи 3 и 7 имеют наибольшее число единиц, а значит являются наиболее подходящими членами популяции для решения задачи. Так как на данный момент решения требуемого качества нет, алгоритм продолжает работу. Необходимо провести селекцию особей. Для простоты объяснения пусть селекция происходит случайным образом, и мы получаем выборку особей {п7, п3, п1, п7, п3, п7, п4, п2} - это родители для новой популяции.

  • Использование генетических операторов. Снова для простоты положим, что вероятность мутаций равна 0. Иными словами все 8 особей передают свои гены такими, какие есть. Для проведения скрещивания, составим пары особей случайным образом: (п2, п7), (п1, п7), (п3, п4) и (п3, п7). Так же случайным способом выбираются точки скрещивания для каждой пары:
  • Составление новой популяции, состоящей из потомков:

Дальнейшие действия очевидны. Самое интересное в ГА открывается в случае, если оценить среднее количество единиц в каждой популяции. В первой популяции в среднем на каждую особь приходилось 5,375 единиц, в популяции потомков – 6,25 единиц на особь. И такая особенность будет наблюдаться даже в случае, если в ходе мутаций и скрещивания особь с наибольшим числом единиц в первой популяции потеряется.

План реализации

Создание генетического алгоритма представляет собой достаточно сложную задачу. Сначала перечислим план в виде шагов, после чего подробнее разберем каждый из них.

  1. Определение представления (алфавита).
  2. Определение операторов случайных изменений.
  3. Определение выживания особей.
  4. Генерация первичной популяции.

Первый этап гласит о том, что алфавит, в который будут кодироваться все элементы множества решений или популяции, должен быть достаточно гибким, чтобы одновременно позволял производить нужные операции случайных перестановок и оценивать приспособленность элементов, как первичных, так и прошедших через изменения. Математически установлено, что создать идеальный алфавит для этих целей невозможно, поэтому его составление – это один из самых сложных и ответственных этапов, чтобы обеспечить стабильную работу ГА.


Не менее сложным является определение операторов изменения и создания потомков. Существует множество операторов, которые способны выполнять требуемые действия. Например, из биологии известно, что каждый вид может размножаться двумя способами: половым (скрещиванием) и бесполым (мутациями). В первом случае родители обмениваются генетическим материалом, во втором – происходят мутации, определенные внутренними механизмами организма и внешним воздействием. Помимо этого, можно применять несуществующие в живой природе модели размножения. Например, использовать гены трех и более родителей. Аналогично скрещиванию в генетическом алгоритме мутации может быть заложен разнообразный механизм.

Выбор способа выживания может быть крайне обманчивым. Существует множество способов в генетическом алгоритме для селекции. И, как показывает практика, правило "выживание наиболее приспособленного" далеко не всегда оказывается лучшим. При решении сложных технических проблем часто оказывается, что лучшее решение выплывает из множества средних или даже худших. Поэтому зачастую принято использовать вероятностный подход, который гласит, что лучшее решение имеет больше шансов на выживание.


Последний этап обеспечивает гибкость работы алгоритма, которой нет ни у какого другого. Первичную популяцию решений можно задать как исходя из каких-либо известных данных, так и совершенно случайным образом простой перестановкой генов внутри особей и созданием случайных особей. Однако всегда стоит помнить, что от начальной популяции во многом зависит эффективность алгоритма.

Эффективность

Эффективность генетического алгоритма полностью зависит от правильности реализации этапов, описанных в плане. Особенно влиятельным пунктом здесь является создание первичной популяции. Для этого существует множество подходов. Опишем несколько:

  1. Создание полной популяции, что будет включать всевозможные варианты особей в некоторой заданной области.
  2. Случайное создание особей на основе всех допустимых значений.
  3. Точечное случайное создание особей, когда среди допустимых значений выбирается диапазон для генерации.
  4. Комбинирование первых трех способов создания популяции.

Таким образом, можно заключить, что эффективность генетических алгоритмов во многом зависит от опыта программиста в этом вопросе. Это является как недостатком генетических алгоритмов, так и их достоинством.