Болезни Военный билет Призыв

Построить корреляционное поле. Корреляционный и регрессионный анализ данных. Линейной парной регрессии

Различают два вида зависимости между экономическими явле­ниями : функциональную и статистическую. Зависимость между дву­мя величинами X и Y , отображающими соответственно два явле­ния, называется функциональной , если каждому значению величины x соответствует единственное значение величины Y и наоборот. Примером функциональной связи в экономике может служить за­висимость производительности труда от объема произведенной продукции и затрат рабочего времени. При этом следует отметить, что если Х – детерминированная, не случайная величина, то и фун­кционально зависящая от нее величина Y тоже является детерминированной. Если же Х – величина случайная, то и Y также случай­ная величина.

Однако гораздо чаще в экономике имеет место не функциональ­ная, а статистическая зависимость , когда каждому фиксирован­ному значению независимой переменой X соответствует не одно, а множество значений зависимой переменной Y, причем заранее нельзя сказать, какое именно значение примет Y . Это связано с тем, что на Y кроме переменной X влияют и многочисленные неконт­ролируемые случайные факторы. В этой ситуации Y является слу­чайной величиной, а переменная X может быть как детерминиро­ванной, так и случайной величиной.

Частным случаем статистичес­кой зависимости является корреляционная зависимость , при кото­рой функциональной зависимостью связаны фактор X и среднее значение (математическое ожидание) результативного показателя Y . Статистическая зависимость может быть выявлена лишь по результатам достаточно большого числа наблюдений. Графически статистическая зависимость двух признаков может быть представлена с помощью поля корреляции, при построении которого на оси абсцисс откладывается значение факторного признака X , а по оси ординат – результирующего Y .

Корреляционная связь частный случай статистической связи, при котором разным значениям переменной соответствуют разные средние значения другой переменной. Корреляционная связь предполагает, что изучаемые переменные имеют количественное выражение.

Если изучается связь между двумя признаками, налицо парная корреляция; если изучается связь между многими признаками – множественная корреляция.

В качестве примера на рис.

1 представлены данные, иллюстри­рующие прямую зависимость между х и у (рис. 1, а) и обратную зависимость (рис. 1, б). В случае «а» это прямая зависимость между, к примеру, среднедушевым доходом (х ) и сбережением (у ) в семье. В случае «б» речь идет об обратной зависимости. Такова, наш пример, зависимость между производительностью труда (х ) и себе­стоимостью единицы продукции (у ). На рис. 1 каждая точка характер изучает объект наблюдения со своими значениями х и у .

Рис. 1. Поле корреляции

На рис. 1 также представлены прямые линии, линейные уравнения регрессии типа , характеризующие функциональную зависимость между независимой переменной х и средним зна­чением результативного показателя у . Таким образом, по уравнению регрессии, зная х , можно восстановить лишь среднее значение у .

Корреляционный анализ

1.3 Корреляционные поля и цель их построения

Корреляция изучается на основании экспериментальных данных, представляющих собой измеренные значения (x i , y i) двух признаков. Если экспериментальных данных немного, то двумерное эмпирическое распределение представляется в виде двойного ряда значений x i и y i . При этом корреляционную зависимость между признаками можно описывать разными способами. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Корреляционный анализ, как и другие статистические методы, основан на использовании вероятностных моделей, описывающих поведение исследуемых признаков в некоторой генеральной совокупности, из которой получены экспериментальные значения x i и y i . Когда исследуется корреляция между количественными признаками, значения которых можно точно измерить в единицах метрических шкал (метры, секунды, килограммы и т.д.), то очень часто принимается модель двумерной нормально распределенной генеральной совокупности. Такая модель отображает зависимость между переменными величинами x i и y i графически в виде геометрического места точек в системе прямоугольных координат. Эту графическую зависимость называются также диаграммой рассеивания или корреляционным полем.
Данная модель двумерного нормального распределения (корреляционное поле) позволяет дать наглядную графическую интерпретацию коэффициента корреляции, т.к. распределение в совокупности зависит от пяти параметров: м x , м y - средние значения (математические ожидания); у x ,у y - стандартные отклонения случайных величин Х и Y и р - коэффициент корреляции, который является мерой связи между случайными величинами Х и Y.
Если р = 0, то значения, x i , y i , полученные из двумерной нормальной совокупности, располагаются на графике в координатах х, у в пределах области, ограниченной окружностью (рисунок 5, а). В этом случае между случайными величинами Х и Y отсутствует корреляция и они называются некоррелированными. Для двумерного нормального распределения некоррелированность означает одновременно и независимость случайных величин Х и Y.

Рисунок 5 - Графическая интерпретация взаимосвязи между показателями

Если р = 1 или р = -1, то между случайными величинами Х и Y существует линейная функциональная зависимость (Y = c + dX). В этом случае говорят о полной корреляции. При р = 1 значения x i , y i определяют точки, лежащие на прямой линии, имеющей положительный наклон (с увеличением x i значения y i также увеличиваются), при р = -1 прямая имеет отрицательный наклон (рисунок 5, б). В промежуточных случаях (-1 < p < 1) точки, соответствующие значениям xi , y i , попадают в область, ограниченную некоторым эллипсом (рисунок 5, в, г), причем при p > 0 имеет место положительная корреляция (с увеличением x i значения y i имеют тенденцию к возрастанию), при p < 0 корреляция отрицательная. Чем ближе р к, тем уже эллипс и тем теснее экспериментальные значения группируются около прямой линии. Здесь же следует обратить внимание на то, что линия, вдоль которой группируются точки, может быть не только прямой, а иметь любую другую форму: парабола, гипербола и т. д. В этих случаях мы рассматривали бы так называемую, нелинейную (или криволинейную) корреляцию (риунок 5, д).

Таким образом, визуальный анализ корреляционного поля помогает выявить не только наличия статистической зависимости (линейную или нелинейную) между исследуемыми признаками, но и ее тесноту и форму. Это имеет существенное значение для следующего шага в анализе ѕ выбора и вычисления соответствующего коэффициента корреляции.

Корреляционную зависимость между признаками можно описывать разными способами. В частности, любая форма связи может быть выражена уравнением общего вида Y = f(X), где признак Y - зависимая переменная, или функция от независимой переменной X, называемой аргументом. Соответствие между аргументом и функцией может быть задано таблицей, формулой, графиком и т. д.

Динамическое программирование

В сельском хозяйстве непрерывно протекают разнообразные экономические процессы, в результате которых складываются определенные производственные результаты, формируются экономические явления...

Целью курсовой работы является: развитие умения разрабатывать имитационные модели организационных и технических объектов, а также получения практических навыков работы в среде GPSS World...

Имитационное моделирование работы билетной кассы железнодорожного вокзала

Исследование функционирования работы билетной кассы на железнодорожном вокзале и анализ влияния времени обслуживания в каждой кассе на очереди и количество обслуженных гражданских и военных пассажиров...

Исследование свойств случайных величин, планирование эксперимента и анализ данных

Корреляционное поле используется для выявления и демонстрации зависимостей между двумя связанными наборами данных и для подтверждения предполагаемых зависимостей между ними...

Корреляционно-регрессионный анализ однофакторной стохастической связи

Метод последовательных сравнений

Программно реализовать интерактивный метод последовательных...

Моделирование систем массового обслуживания

Развитие современного общества характеризуется повышением технического уровня, усложнением организационной структуры производства, углублением общественного разделения труда...

Обработка результатов полного факторного плана для получения математической модели результатов полного факторного плана

Основными целями и задачами планирования эксперимента являются: 1) Планирование эксперимента с целью математического описания объекта. Целью данного эксперимента является получение математической модели методом регрессионного анализа...

Определение рационального маршрута следования коммивояжера

Целью данной работы является определение рационального маршрута следования коммивояжера и выбора экономически целесообразного способа поездки. Задача - выбрать такой вид транспорта для объезда коммивояжером населенных пунктов...

Оценка инвестиционных проектов

Необходимо разработать имитационную модель финансово-экономической деятельности фирмы по реализации этого проекта, выбрать схему финансирования и оценить показатели экономической эффективности проекта...

Построение структурной схемы устройства станка 3Б722

Выбор объекта морфологического исследования. Приобретение практических навыков структурного анализа. 2. Общие сведения Шлифование - это процесс обработки заготовок абразивными материалами...

Разработка модели предприятия тепличного хозяйства, используя методологии проектирования IDEF0, DFD и IDEF3

Целями данной курсовой работы были: применение методов предпроектного обследования предприятия; анализ полученных материалов для последующего моделирования; разработка модели процесса в стандарте IDEF0; описание документооборота и...

Трендовые и корреляционные модели

Функциональное моделирование

Создаваемая IDEF0-модель имеет конкретное назначение, называемое целью модели. Цель моделирования можно понять из следующего формального определения модели : M есть модель системы S...

Эконометрические модели рентабельности собственного капитала (на примере СПК "Слава")

Так как в данной курсовой работе рассматривается рентабельность собственного капитала, то возьмем ее за результативный показатель. Одним из факторов, оказывающих влияние, является рентабельность продаж, %...

1. Тема работы.

2. Краткие теоретические сведения.

3. Порядок выполнения работы.

4. Исходные данные для разработки математической модели.

5. Результаты разработки математической модели.

6. Результаты исследования модели. Построение прогноза.

7. Выводы.

В задачах 2-4 можно использовать ППП Excel для расчетов характеристик модели.

Работа № 1.

Построение моделей парной регрессии. Проверка остатков на гетероскедастичность.

По 15 предприятиям, выпускающим один и тот же вид продукции известны значения двух признаков:

х - выпуск продукции, тыс. ед.;

у - затраты на производство, млн. руб.

x y
5,3 18,4
15,1 22,0
24,2 32,3
7,1 16,4
11,0 22,2
8,5 21,7
14,5 23,6
10,2 18,5
18,6 26,1
19,7 30,2
21,3 28,6
22,1 34,0
4,1 14,2
12,0 22,1
18,3 28,2

Требуется:

1. Построить поле корреляции и сформулировать гипотезу о форме связи .

2. Построить модели:

Линейной парной регрессии.

Полулогарифмической парной регрессии.

2.3 Степенной парной регрессии.
Для этого:


2. Оценить тесноту связи с помощью коэффициента (индекса)
корреляции.

3. Оценить качество модели с помощью коэффициента (индекса)
детерминации и средней ошибки аппроксимации
.

4. Дать с помощью среднего коэффициента эластичности
сравнительную оценку силы связи фактора с результатом
.

5. С помощью F -критерия Фишера оценить статистическую надежность результатов регрессионного моделирования .

По значениям характеристик, рассчитанных в пунктах 2-5 выбрать лучшее уравнение регрессии.

Используя метод Гольфрельда-Квандта проверить остатки на гетероскедастичность.

Строим поле корреляции.

Анализируя расположение точек поля корреляции, предполагаем, что связь между признаками х и у может быть линейной, т.е. у=а+bх , или нелинейной вида: у=а+blnх, у = ах b .

Основываясь на теории изучаемой взаимосвязи, предполагаем получить зависимость у от х вида у=а+bх, т. к. затраты на производство y можно условно разделить на два вида: постоянные, не зависящие от объема производства - a , такие как арендная плата, содержание администрации и т.д.; и переменные, изменяющиеся пропорционально выпуску продукции bх, такие как расход материала, электроэнергии и т.д.


2.1. Модель линейной парной регрессии .

2.1.1. Рассчитаем параметры a и b линейной регрессии у=а+bх .

Строим расчетную таблицу 1.

Таблица 1

Параметры a и b уравнения

Y x = a + bx


Разделив на n b :

Уравнение регрессии:

=11,591+0,871x

С увеличением выпуска продукции на 1 тыс. руб. затраты на производство увеличиваются на 0,871 млн. руб. в среднем, постоянные затраты равны 11,591 млн. руб.

2.1.2. Тесноту связи оценим с помощью линейного коэффициента парной корреляции.

Предварительно определим средние квадратические отклонения признаков.

Средние квадратические отклонения:

Коэффициент корреляции:

Между признаками X и Y наблюдается очень тесная линейная корреляционная связь.

2.1.3. Оценим качество построенной модели.

т. е. данная модель объясняет 90,5% общей дисперсии у , на долю необъясненной дисперсии приходится 9,5%.

Следовательно, качество модели высокое.

А i .

Предварительно из уравнения регрессии определим теоретические значения для каждого значения фактора.

Ошибка аппроксимации А i , i =1…15:

Средняя ошибка аппроксимации:

2.1.4. Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,515%.

2.1.5. Оценим статистическую значимость полученного уравнения.
Проверим гипотезу H 0 , что выявленная зависимость у от х носит случайный характер, т. е. полученное уравнение статистически незначимо. Примем α=0,05. Найдем табличное (критическое) значение F- критерия Фишера:

Найдем фактическое значение F - критерия Фишера:

следовательно, гипотеза H 0 H 1 x и y неслучайна.

Построим полученное уравнение.

2.2. Модель полулогарифмической парной регрессии .

2.2.1. Рассчитаем параметры а и b в регрессии:

у x =а +blnх .

Линеаризуем данное уравнение, обозначив:

y=a + bz .

Параметры a и b уравнения

= a + bz

определяются методом наименьших квадратов:


Рассчитываем таблицу 2.

Таблица 2

Разделив на n и решая методом Крамера, получаем формулу для определения b :

Уравнение регрессии:

= -1,136 + 9,902z

2.2.2. Оценим тесноту связи между признаками у и х .

Т. к. уравнение у = а + bln x линейно относительно параметров а и b и его линеаризация не была связана с преобразованием зависимой переменной _у , то теснота связи между переменными у и х , оцениваемая с помощью индекса парной корреляции R xy , также может быть определена с помощью линейного коэффициента парной корреляции r yz

среднее квадратическое отклонение z :

Значение индекса корреляции близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида = a + bz.

2.2.3. Оценим качество построенной модели.

Определим коэффициент детерминации:

т. е. данная модель объясняет 83,8% общей вариации результата у , на долю необъясненной вариации приходится 16,2%. Следовательно, качество модели высокое.

Найдем величину средней ошибки аппроксимации А i .

Предварительно из уравнения регрессии определим теоретические значения для каждого значения фактора. Ошибка аппроксимации А i , :

, i =1…15.

Средняя ошибка аппроксимации:

.

Ошибка небольшая, качество модели высокое.

2.2.4.Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,414%.

2.2.5. Оценим статистическую значимость полученного уравнения.
Проверим гипотезу H 0 , что выявленная зависимость у от х носит случайный характер, т.е. полученное уравнение статистически незначимо. Примем α=0,05.

Найдем табличное (критическое) значение F -критерия Фишера:

Найдем фактическое значение F -критерия Фишера:

следовательно, гипотеза H 0 отвергается, принимается альтернативная гипотеза H 1 : с вероятностью 1-α=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.

Построим уравнение регрессии на поле корреляции

2.3. Модель степенной парной регрессии.

2.3.1. Рассчитаем параметры а и b степенной регрессии:

Расчету параметров предшествует процедура линеаризации данного уравнения:

и замена переменных:

Y=lny, X=lnx, A=lna

Параметры уравнения:

определяются методом наименьших квадратов:


Рассчитываем таблицу 3.

Определяем b :

Уравнение регрессии:

Построим уравнение регрессии на поле корреляции:

2.3.2. Оценим тесноту связи между признаками у и х с помощью индекса парной корреляции R yx .

Предварительно рассчитаем теоретическое значение для каждого значения фактора x, и , тогда:

Значение индекса корреляции R xy близко к 1, следовательно, между переменными у и х наблюдается очень тесная корреляционная связь вида:

2.3.3. Оценим качество построенной модели.

Определим индекс детерминации:

R 2 =0,936 2 =0,878,

т. е. данная модель объясняет 87,6% общей вариации результата у, а на долю необъясненной вариации приходится 12,4%.

Качество модели высокое.

Найдем величину средней ошибки аппроксимации.

Ошибка аппроксимации А i , i =1…15:

Средняя ошибка аппроксимации:

Ошибка небольшая, качество модели высокое.

2.3.4. Определим средний коэффициент эластичности:

Он показывает, что с увеличением выпуска продукции на 1% затраты на производство увеличиваются в среднем на 0,438%.

2.3.5.Оценим статистическую значимость полученного уравнения.

Проверим гипотезу H 0 , что выявленная зависимость у от х носит случайный характер, т. е. полученное уравнение статистически незначимо. Примем α=0,05.

табличное (критическое) значение F -критерия Фишера:

фактическое значение F -критерия Фишера:

следовательно, гипотеза H 0 отвергается, принимается альтернативная гипотеза H 1 : с вероятностью 1-α=0,95 полученное уравнение статистически значимо, связь между переменными x и y неслучайна.

Таблица 3

3. Выбор лучшего уравнения.

Составим таблицу полученных результатов исследования.

Таблица 4

Анализируем таблицу и делаем выводы.

ú Все три уравнения оказались статистически значимыми и надежными, имеют близкий к 1 коэффициент (индекс) корреляции, высокий (близкий к 1) коэффициент (индекс) детерминации и ошибку аппроксимации в допустимых пределах.

ú При этом характеристики линейной модели указывают, что она несколько лучше полулогарифмической и степенной описывает связь между признаками x и у.

ú Поэтому в качестве уравнения регрессии выбираем линейную модель.

Теоретическая часть

Для различия направленности влияния одного признака на другой введены понятия положительной и отрицательной связи.

Если с увеличением (уменьшением) одного признака в основном увеличиваются (уменьшаются) значения другого, то такая корреляционная связь называется прямой или положительной.

Если с увеличением (уменьшением) одного признака в основном уменьшаются (увеличиваются) значения другого, то такая корреляционная связь называется обратной или отрицательной.

Корреляционные поля и их использование в предварительном анализе корреляционной связи

При постановке вопроса о корреляционной зависимости между двумя статистическими признаками Х и У проводят эксперимент с параллельной регистрацией их значений.

Пример -
Будем называть корреляционным полем зону разброса таким образом полученных точек на графике. Визуально анализируя корреляционное поле на рисунке 8, можно заметить, что оно как бы вытянуто вдоль какой-либо прямой линии. Такая картина характерна для так называемой линейной корреляционной взаимосвязи между признаками. При этом можно в общем предположить, что с увеличением конечной скорости разбега увеличивается и длина прыжка, и наоборот. Т.е. между рассматриваемыми признаками наблюдается прямая (положительная) взаимосвязь.

Наряду с этим примером из множества других возможных корреляционных полей можно выделить следующие (рис.9-11):

На рисунке 9 тоже просматривается линейная взаимосвязь, но с увеличением значений одного признака, уменьшаются значения другого, и наоборот, т.е. связь обратная или отрицательная. Можно предположить, что на рисунке 11 точки корреляционного поля разбросаны около какой-то кривой линии. В таком случае говорят, что между признаками существует криволинейная корреляционная связь.

В отношении корреляционного поля, изображенного на рисунке 10, нельзя сказать, что точки располагаются вдоль какой-то прямой или кривой линии, оно имеет сферическую форму. В этом случае говорят, что признаки Х и Y не зависят друг от друга.



Кроме этого по корреляционному полю можно примерно судить о тесноте корреляционной связи, если эта связь существует. Здесь говорят: чем меньше точки разбросаны около воображаемой усредненной линии, тем теснее корреляционная связь между рассматриваемыми признаками.

Визуальный анализ корреляционных полей помогает разобраться в сущности корреляционной взаимосвязи, позволяет высказать предположение о наличии, направленности и тесноте связи. Но точно сказать, имеется связь между признаками или нет, линейная связь или криволинейная, тесная связь (достоверная) или слабая (недостоверная), с помощью этого метода нельзя. Наиболее точным методом выявления и оценки линейной взаимосвязи между признаками является метод определения различных корреляционных показателей по статистическим данным.

3. Коэффициенты корреляции и их свойства

Часто для определения достоверности взаимосвязи между двумя признаками(Х, У) используютнепараметрический (ранговый) коэффициент корреляции Спирмена и параметрический коэффициент корреляции Пирсона . Величина этих показателей корреляционной связи определяется по следующим формулам:

(1)

Где: dx - ранги статистических данных признака х;

dy - ранги статистических данных признака у.

(2)

Где: - статистические данные признака х,

Статистические данные признака у.

Эти коэффициенты обладают такими мощными признаками:

1. На основании коэффициентов корреляции можно судить только о прямолинейной корреляционной взаимосвязи между признаками. О криволинейной связи с их помощью ничего сказать нельзя.
2. Значения коэффициентов корреляции есть безразмерная величина, которая не может быть меньше -1 и больше +1, т.е.
3.
4. Если значения коэффициентов корреляции равны нулю, т.е. = 0 или = 0, то связь между признаками х, у отсутствует.
5. Если значения коэффициентов корреляции отрицательные, т.е. < 0 или < 0, то связь между признаками Х и Y обратная .
6. Если значения коэффициентов корреляции положительные, т.е. > 0 или y> 0 , то связь между признаками Х и Y прямая (положительная).
7. Если коэффициенты корреляции принимают значения +1 или -1, т.е. = ± 1 или = ± 1, то связь между признаками Х и Y линейная (функциональная) .
8. Только по величине коэффициентов корреляции нельзя судить о достоверности корреляционной связи между признаками. Эта достоверность еще зависит от числа степеней свободы.

Практическая часть.

Определите коэффициент корреляции между температурой тела и частотой пульса и дайте оценку выявленной взаимосвязи.

Строим корреляционное поле для основного и попутного компонентов. По оси абсцисс откладываем содержание основного компонента, в данном случае Hg, а по оси ординат – содержание попутного, т.е. Sn.

Для предварительной оценки силы связи на корреляционном поле необходимо провести линии, соответствующие медианам значений основного и попутного компонентов, разделив ими поле на четыре квадрата.

Количественной мерой силы связи является коэффициент корреляции. Его приближённую оценку рассчитывают по формуле:

где n1 суммарное количество точек в I и III, n2 = суммарное количество точек в II и IV.

I = 4 II = 8 III = 7 IV = 5

Далее используя вычисленные компьютером исходные данные (Хср, Yср, дисперсии Dx, Dy, и их ковариацию cov(x,y)) вычисляем значение коэффициента корреляции r и параметры уравнений линейной регрессии попутного компонента по основному и основного компонента по попутному.

Вычисляем по следующим формулам:

Исходные данные:

cov (x, y) = 163,86

r = cov(x, y)/√Dx * Dy = 163,86/√157,27* 645,61= 0,51

b = cov(x, y)/Dx = 163,86/157,27= 1,04

a = Yср – b * Xср = 153,13– (-0.08) * 36,75= 150.19

d = cov(x, y)/ Dy = 163,86/645,61= 0.25

c = Хср – d * Yср = 36,75– (0.25) * 153,13= -1.5

y =150.19+1.04x x = -1.5+0.25y

Строим линии регрессии на корреляционном поле.

Этап 7. Проверка гипотезы о наличии корреляционной связи

Проверка гипотезы о наличии корреляционной связи основана на том, что для двумерной нормально распределённой случайной величины X, Y при отсутствии корреляции между х и y, коэффициент корреляции равен «0». Для проверки гипотезы об отсутствии корреляционной связи необходимо вычислить значение критерия:

t = r * √(N – 2)/√(1 – r2) = 0,51* √(24-2)/√(1 – (0,51) 2) = 2.65

Для наших значений t = 2.65

Табличное значение ttab = 2.02

Так как вычисленное значение t превышает табличное значение, то гипотеза об отсутствии корреляционной связи отвергается. Связь присутствует.

Этап 8. Построение линий эмпирической регрессии. Вычисление корреляционного отношения

Выборочные данные группируются в классы по значениям содержаний основного компонента, в данном случае Hg. Для этого весь интервал значений от минимального содержания основного полезного компонента до максимального содержания делится на 6 интервалов. Для каждого интервала:

    Определяется количество значений, попавших в этот интервал n(i)

    Считается количество значений содержаний попутного компонента соответствующих значениям основного(y(I,ср)) и делится это количество на n(i)

Таблица 3

Граница интервалов

На корреляционном поле строим линию эмпирической регрессии.

dобщ = √Dy = 25,4

dусл = /N = 66,14

Величина корреляционного отношения попутного компонента по основному r рассчитывается по формуле:

r = dусл/ dобщ = 66,14/25,4 = 2,6