Болезни Военный билет Призыв

Понятие о количественном анализе методы количественного анализа. Количественный анализ. Химические методы анализа. Химическая идентификация и анализ вещества

Качественный анализ неорганических веществ. Предмет и задачи качественного анализа. Основные понятия.

Качественный анализ – обнаружение или открытие составных компонентов в исследуемой системе.

Цель качественного анализа-определение; элементного или изотопного состава вещества. При анализе органических соединений находят непосредственно отдельные химические элементы, например углерод, серу, фосфор, азот или функциональные группы. При анализе неорганических соединений определяют, какие ионы, молекулы, группы атомов, химические элементы составляют анализируемое вещество.

Классификация методов качественного анализа. Аналитический сигнал

В зависимости от количества пробы используемой в анализе различают:

Макроанализ (масса – более 100 мг, объем р-ра – 10-100 мл)

Полу-микроанализ (масса – 10-100 мг, объем р-ра – 1-10 мл)

Микроанализ (масса – 1-10 мг, объем р-ра – 0,01-1 мл)

Субмикроанализ (масса – 0,1-1 мг, объем р-ра – 0,001-0,01 мл)

Ультрамикроанализ (масса – менее 0,1 мг, объем р-ра – менее 0,001 мл)

В случае необходимости обнаружения какого-либо компонента обычно

фиксируют появление аналитического сигнала – появление осадка, окраски, и т.д. Появление аналитического сигнала должно быть надежно

зафиксировано. При определении количества компонента измеряется величина

аналитического сигнала – масса осадка и т.п.

Дробный и систематический анализ. Групповой реагент.

Дробный анализ – обнаружение ионов с помощью специфических реакций в отдельных порциях исследуемого раствора, выполняется в любой последовательности.

Систематический анализ – определённая последовательность выполнения реакций, при которых каждый ион обнаруживается после того, как удаляются все мешающие ионы.

В ходе систематического анализа ионы выделяют из сложной смеси целыми группами, пользуясь одинаковым отношением к некоторым реагентам.

Реагенты, позволяющие выделить из сложной смеси группу ионов, называются групповыми реагентами.

Требования:

* должен осаждать ионы практически полностью

* получающийся осадок должен легко растворяться в щелочах или кислотах для проведения дальнейших исследований.

* его избыток не должен мешать обнаружению оставшихся в растворе ионов.

Классификация катионов на аналитические группы.

Сероводородная (сульфидно-аммиачная)

1 – Na+, K+, Pb+, Cs+, Fr+, NH4+, Mg+, (гр. реагент - нет)

2 – Ca+2, Sr+2, Ba+2, Ra+2, (гр. реагент – (NH 4) 2 CO 3 , pH=8-9)

3.1 – Fe (II и III), Mn+2, Zn+2, Co+2, Ni+2, (гр. реагент - (NH 4) 2 S, pH=8-9) (осаждаются в виде сульфидов)

3.2 – Al+3, Cr+3, Ti+4, Be+2 (гр. реагент - (NH 4) 2 S, pH=8-9) (осаждаются в виде гидроксидов)

4.1 – Cu+2, Hg+2, Bi+3, Cd+2, (гр. реагент – H 2 S) (не растворяются в (NH 4) 2 S)

4.2 – Sn+2, Sn+4, Sb+3, Sb+5, As+3, As+5,(гр. реагент – HCl, pH=0,5)

5 – Ag+, Bb+2, Hg+4 (гр. реагент - HCl)

Классификация анионов на аналитические группы.

1.1 (не раств. в HCl) – SO 4 -2, групповой реагент – BaCl.

1.2 (раств. в HCl) – SO 3 -2, S2O3 -2, CO 3 -2, SiO 3 -2, PO 4 -3 групповой реагент – BaCl.

2 – I-, Cl-, S, Br-, групповой реагент – AgNO 3.

3 – NO 3 -, CH 3 COO- групповой реагент – нет.

Предмет и задачи количественного анализа. Классификация методов количественного химического анализа.

Количественный анализ – определяет количественное содержание компонентов в исследуемой системе.

Методами количественного химического анализа устанавливают, в каких количественных соотношениях находятся составные части в исследуемом веществе. Количественными методами можно определить соединение химического элемента или другой составной части в содержании, сплаве, смеси, растворе. Кроме того, количественные методы позволяют определять атомные, эквивалентные и молекулярные массы, константы равновесия, произведения растворимости, кислотность или щелочность среды.

Гравиметрические (весовые) методы – выделяют и взвешивают осадок.

Титриметрические (объемные) методы – измерение V стандартного раствора, необходимого для реакции.

Газоволюметрические – Измерение V газа, выделяющегося в ходе реакции.

Количественный анализ предназначен для определения количественных соотношений составных частей исследуемого вещества. Другими словами, количественный анализ дает возможность установить количественный элементный или молекулярный состав анализируемого вещества или содержание отдельных его компонентов.

В ряде случаев требуется установить содержание всех элементов, ионов или соединений, входящих в состав данного исследуемого вещества. Например, при анализе медных сплавов (бронз и латуней) определяют содержание меди, олова, свинца, цинка и других элементов. При анализе растворов электролитных ванн, применяемых для никелирования металлов, определяют содержание и т. п.

В других случаях требуется установить содержание некоторых отдельных элементов, ионов или соединений, входящих в состав анализируемого продукта. Так, при анализе металлического сплава химика-аналитика может интересовать лишь содержание меди и олова, или ванадия и вольфрама, или алюминия и магния, или только железа и т. д.

Иногда определяют не только общее содержание того или иного элемента (иона), но и формы нахождения его в исследуемом веществе. Например, при анализе руды определяют не только общее содержание серы, но и содержание свободной , сульфидной , пиритной и сульфатной серы.

В задачу количественного анализа входит также определение разнообразных реакционноспособных (активных) атомов и функциональных групп в различных (преимущественно в органических) соединениях. Совокупность химических, физических и физико-химических методов, применяемых для решения этой задачи, называют функциональным анализом. К такого рода методам относятся титриметрические, электрохимические (потенциометрические, полярографические, хронокондуктометрические и др.), спектроскопические [фотоколориметрические, спектрофотометрические, инфракрасная спектроскопия (ИКС), ультрафиолетовая спектроскопия (УФС), метод комбинационного рассеивания света (КРС), ядерный магнитный резонанс (ЯМР), рентгеноспектроскопия, масс-спектроскопия, хроматографические и другие методы (см. ниже).

Одним из важных разделов количественного анализа является так называемый фазовый анализ, который имеет большое значение в цветной и черной металлургии. Фазовый анализ представляет собой совокупность разнообразных химических, физических и физико-химических методов разделения и определения отдельных структурных (фазовых) составляющих гетерогенных систем. К этим методам относятся: химические и электрохимические методы избирательного растворения, рентгеноструктурный петрографический, металлографический, кристаллооптический, электронномикроскопический, термографический и др.

Фазовый анализ сталей и сплавов дает возможность судить о содержании отдельных структурных (фазовых) составляющих исследуемого сплава (карбидов, боридов, нитридов, карбонитридов, карбоборидов, интерметал-лидов, свободного и связанного углерода и т. п.), т. е. о составе отдельных фаз гетерогенных систем.

При исследовании вещества неизвестного состава (например, шлака, руды, сплава и т. п.) количественному анализу предшествует качественный, так как выбор метода количественного определения каждой составной части анализируемого вещества зависит от результатов качественного анализа.

Часто бывает известен качественный состав анализируемых веществ (кислот, оснований, солей, сплавов и т. п.), а нередко известно и приблизительное содержание в них отдельных компонентов. Поэтому при исследовании известного вещества (например, соды, технической серной кислоты и т. п.) в большинстве случаев не требуется предварительно проводить качественный анализ этого вещества. В таких случаях определяют содержание данного вещества в анализируемом образце или концентрацию его раствора. Иногда определяют только содержание одного или нескольких элементов, не являющихся основными компонентами данной сложной смеси, т. е. определяют примеси, например серу и фосфор в чугуне и стали, благородные металлы в отходах металлургического производства и т. д.

В последнее время в связи с развитием новых отраслей промышленности стало необходимым определять содержание в анализируемом веществе ничтожнейших количеств примесей (микропримесей). Определение микропримесей имеет большое значение при анализе особо чистых веществ.

Таким образом, количественный анализ позволяет установить:

1. Количественные соотношения составных частей неизвестного индивидуального соединения, т. е. установить его формулу.

9. Состав отдельных фаз гетерогенных систем, в которых определяемые вещества распределяются в зависимости от изменения рецептуры получаемого технического объекта, способа его получения, термической и механической обработки и т. д.

В широком смысле слова количественным анализом следует называть совокупность химических, физических и физико-химических методов исследования, позволяющих с требуемой точностью определять в образце анализируемого вещества количественное содержание отдельных составных частей или концентрацию их в растворе, а также устанавливать содержание примесей в исследуемом техническом объекте.

Основоположником современного количественного анализа является М. В. Ломоносов, положивший начало систематическому применению весов при химических исследованиях. В 1756 г. М. В. Ломоносов экспериментальным путем доказал сформулированный им еще ранее (1748 г.) закон сохранения массы вещества, являющийся основой количественного анализа. М. В. Ломоносовым созданы основы физической химии, оказавшей существенное влияние на развитие теории аналитической химии. В 1748 г. М. В. Ломоносов организовал первую в России химическую лабораторию. Его научные исследования имеют важное значение в истории развития русской химической науки.

Примеры количественного анализа. Количественный анализ основан на точном измерении массы и объема определяемых веществ или продуктов их химических превращений, или расходуемых реактивов, вступающих в реакции с определяемыми веществами.

Например, определяемую составную часть анализируемого вещества выделяют в виде осадка, который отфильтровывают, промывают от посторонних примесей, высушивают или прокаливают и взвешивают. Зная массу выделившегося вещества (так называемой весовой формы) и его формулу, можно вычислить содержание определяемого вещества. Так, определяют по массе осадка , выделившегося при взаимодействии .

Другим примером может служить измерение объема раствора точно известной концентрации, израсходованного на реакцию с . Зная объем и концентрацию прибавленного раствора , можно вычислить содержание в соляной кислоте.

Примером количественного анализа может также служить измерение объема выделившейся двуокиси углерода, получаемой при взаимодействии определенной навески мела с хлористоводородной кислотой. Зная объем газа , можно вычислить содержание карбонатов в меле.

В ряде случаев в целях количественного анализа измеряют различные показатели оптических, электрических и других физических свойств исследуемых веществ. Данные измерений используют для вычисления результатов анализа.

Результаты количественного анализа выражают различными способами. Например, содержание в растворе хорошо растворимого соединения выражают в граммах, в граммах на 100 г раствора, в процентах, в граммах или в миллиграммах на 1 миллилитр; содержание малорастворимых веществ в граммах на и в молях на . Состав металлических сплавов выражают в процентах содержания элементов в сплаве и т. д.

Значение количественного анализа. Количественный анализ является основным методом контроля химических процессов, сырья, промежуточных и готовых продуктов производства, а также наряду с качественным анализом служит важнейшим методом исследования при выполнении химических научно-исследовательских работ.

Количественный анализ играет большую роль в науке, технике и промышленности, в значительной степени способствуя прогрессу химической промышленности и связанных с ней отраслей производства, а также развитию химии и других естественных наук, например геохимии, геологии, минералогии, агрохимии, биологии, почвоведения, медицины и т. п.

М. В. Ломоносов (1711-1765).

Внедрение в производство и научно-исследовательскую работу высокочувствительных и точных методов количественного определения ультрамалых количеств примесей в значительной мере способствовало развитию атомной и полупроводниковой техники, производству жаростойких сплавов и высококачественных полимерных материалов.

Лабораторная работа №9

Химическая идентификация и анализ вещества

Аналитическая химия – это научная дисциплина, которая развивает и применяет методы, общие подходы и приборы для получения информации о составе и природе вещества в пространстве и времени. Под химическим составом понимают состав элементный (наиболее важный и распространённый вид анализа), молекулярный, фазовый, изотопный. При определении химического состава органических соединений часто применяют функциональный анализ – установлении наличия конкретных функциональных групп в молекуле анализируемого соединения.

Различают методы качественного и количественного анализа. Цель качественного анализа – обнаружение элементов, ионов, молекул, функциональных групп, свободных радикалов, фаз, содержащихся в исследуемом образце на основе сопоставления их экспериментально полученных характеристик с имеющимися справочными данными, иными словами, химическая идентификация. При анализе органических соединений находят непосредственно отдельные элементы (например, углерод, кислород, азот) или функциональные группы. При анализе неорганических соединений определяют какие ионы, молекулы, группы атомов, химические элементы составляют анализируемое вещество. Задача количественного анализа – определение количественного содержания и соотношения компонентов в анализируемом веществе или смеси.

Химическая идентификация (обнаружение) – это установление вида и состояния фаз, молекул, атомов, ионов и других составных частей вещества на основе сопоставления экспериментальных и соответствующих справочных данных для известных веществ. Идентификация является целью качественного анализа. При идентификации обычно определяется комплекс свойств веществ, например: цвет, фазовое состояние, плотность, вязкость, температуры плавления, кипения и фазового перехода, растворимость, электродный потенциал, энергия ионозации.

Качественный анализ характеризуется пределом обнаружения (открываемый минимум) сухого вещества, т.е. минимальным количествомнадежно идентифицируемого вещества, и предельной концентрацией вещества С min ,. Эти две величины связаны друг с другрм соотношением:



Методы качественного анализа

Сухие методы анализа. Летучие соединения металлов окрашивают пламя горелки в тот или иной цвет. Поэтому, если внести изучаемое вещество на платиновой проволоке в бесцветное пламя горелки, то происходит окрашивание пламени в присутствии в молекуле вещества тех или иных элементов

Мокрые методы анализа. Методы качественного анализа базируются на ионных реакциях, которые позволяют идентифицировать элементы в форме тех или иных ионов. В ходе реакции образуются труднорастворимые соединения, окрашенные комплексные соединения, происходит окисление или восстановление с изменением цвета раствора. Любой катион можно идентифицировать с помощью определенной реакции, если удалить другие катионы, мешающие этой идентификации.

Для идентификации с помощью образования труднорастворимых соединений используют как групповые, так и индивидуальные осадители.

Анионы обычно классифицируют по растворимости солей, либо по окислительно-восстановительным свойствам.

Методы количественного анализа

Методы определения часто делят на химические, физико-химические, иногда выделяют группу физических методов анализа. Химические методы основаны на химических реакциях. Для анализа используют только такие реакции, которые сопровождаются внешними эффектами, например, изменением цвета раствора, выделением газа, выпадением или растворением осадка и т.д. Эти внешние эффекты являются, в данном случае, аналитическими сигналами . Происходящие химические изменения называют аналитическими реакциями , а вещества, вызывающие эти реакции – химическими реагентами . В случае физико-химических методов происходящие химические изменения, влекущие за собой изменение таких параметров, как интенсивность окраски раствора в спектрофотометрии, величина диффузионного тока в вольтмперометрии и т.д., регистрируются с помощью физических приборов. При анализе физическими методами химические реакции не используют, а изучают физические свойства вещества с помощью приборов. К физическим методам относят хроматографию, рентгеноструктурный, люминесцентный, радиоактивационный методы анализа и др.

Титриметрический метод основан на том, что все вещества реагируют между собой в строго эквивалентных количествах.Аналитическим сигналом в титриметрии является объём. Эквивалент – это некая реальная или условная частица, которая может присоединять, высвобождать или быть каким-либо другим образом эквивалентна одному иону водорода в кислотно-основных реакциях или одному электрону в окислительно-восстановительных реакциях.

Условной частицей может быть атом, молекула, ион, часть молекулы. Например, в реакции

Na 2 CO 3 + HCl = NaHCO 3 + NaCl

условной частицей является молекула Na 2 CO 3 , а в реакции

Na 2 CO 3 + 2HCl = Na 2 CO 3 + 2NaCl

условной частицей является ½ Na 2 CO 3 .

В реакции

KMnO 4 + 5 e + 8H + → Mn 2+ + 4 H 2 O + K +

условная единица – 1/5 KMnO 4.

Число, показывающее, какая доля молекулы эквивалентна в данной реакции одному иону водорода или электрону, называется фактором эквивалентности (f) . Например, f Na 2 CO 3 = 1 – для первой реакции, f Na 2 CO 3 = 1/2 – для второй реакции и f KMnO 4 = 1/5 – для третьей реакции.

На практике пользоваться молекулами, ионами, эквивалентами неудобно, так как они очень малы (~ 10 -24 г). Используется моль, который содержит 6,02·1023 условных частиц. Масса одного моля называется молярной массой, а масса одного моля эквивалента называется молярной массой эквивалента Э. Молярной массой эквивалента вещества Х называют массу одного моля эквивалента этого вещества, равную произведению фактора эквивалентности на молярную массу вещества Х:

Э = мол.масса ∙f (9)

Молярная масса имеет размерность г/моль. Например, мол. масса Na 2 CO 3 = 106 (г/моль), мол.масса ½ Na 2 CO 3 = 53 (г/моль) или, по-другому, Э Na 2 CO 3 (f=1) =106, Э Na 2 CO 3 (f=1/2) =53.

В титриметрии используют растворы. Концентрация раствора выражается количеством вещества в единице объёма. За единицу объёма в титриметрии принят литр (1 дм 3). Раствор, содержащий 1 моль условных частиц в литре, называется молярным. Например, С HCl = 1 М (одномолрный раствор HCl), С HCl = 0,1 М (децимолрный раствор HCl), С ½ Na 2 CO 3 = 0,1 М (децимолрный раствор ½ Na 2 CO 3). Раствор, содержащий 1 моль эквивалентов в литре, называется нормальным; при этом необходимо указывать фактор эквивалентности. Например, 0,1 н Na 2 CO 3 (f=1) или 0,1 н Na 2 CO 3 (f=1/2), децимолрный раствор Na 2 CO 3. Если f=1, то молрная и нормальная концентрации совпадают.

Если два вещества прореагировали в эквивалентных количествах, то количество вещества 1 (n 1) равно количеству вещества 2 (n 2). Поскольку n 1 = M 1 V 1 и n 2 = M 2 V 2 , то

M 1 V 1 = M 2 V 2 .

Зная концентрацию одного из веществ и объёмы растворов, модно найти неизвестную концентрацию и, следовательно, массу другого вещества:

M 2 = (10) или N 2 = (11) и

m = М 2 ·мол.масса (12) или m = N 2 ·Э (13).

Кроме молярной и нормальной концентрации используют ещё титр раствора. Титр показывает число граммов растворённого вещества в 1 мл раствора. Титр по определяемому веществу показывает массу определяемого вещества, с которой реагирует 1 мл данного раствора; например, Т HCl /Са CO 3 = 0,006 г/см 3 , это означает, что 1 мл раствора HCl реагирует с 0,006 г СаСО 3 .

Титрованный, или стандартный, раствор – раствор, концентрация которого известна с высокой точностью. Титрование – прибавление титрованного раствора к анализируемому для определения точно эквивалентного количества. Титрующий раствор часто называют рабочим раствором или титрантом. Момент титрования, когда количество добавленного титранта химически эквивалентно количеству титруемого вещества, называется точкой эквивалентности (т,э.). Способы обнаружения т.э. разнообразны: визуальные (с помощью индикатора и безиндикаторные), физико-химические.

Реакции, используемые в титриметрии должны удовлетворять следующим требованиям:

  1. реакция должна протекать количественно, т.е. константа равновесия должна быть достаточно велика;
  2. реакция должна протекать с большой скоростью;
  3. реакция не должна осложняться протеканием побочных реакций;
  4. должен существовать способ фиксирования т.э.

По способу фиксирования точки эквивалентности выделяют методы титрования с цветными индикаторами, методы потенциометрического титрования, кондуктометрического, фотометрического и т.д. при классификации по типу основной реакции, протекающей при титровании, обычно выделяют следующие методы титриметрического анализа:

  1. Методы кислотно-основного взаимодействия связаны с процессом передачи протона:

Н + + ОН - = Н 2 О

СН 3 СООН + ОН - = СН 3 СОО - + Н 2 О

  1. Методы комплексообразования используют реакции образования координационных соединений:

Hg 2+ + 2Cl - = HgCl 2 (меркуриметрия)

Mg 2+ + H 2 Y 2- = MgY 2- + 2H + (комплексономерия)

  1. Методы осаждения основаны на реакциях образования малорастворимых соединений:

Ag + + Cl - = AgCl (аргентометрия)

Hg + 2Cl - = Hg 2 Cl 2 (меркурометрия)

  1. Методы окисления-восстановления объединяют многочисленную группу окислительно-восстановительных реакций:

MnO + 5 Fe 2+ + 8H + = Mn 2+ + 5Fe 3+ + 4 H 2 O (перманганатометрия)

2S 2 O + I 2 = S 4 O + 2I - (иодометрия)

Для нахождения точки эквивалентности часто строят дифференциальную кривую в координатах ΔрН/ΔV – V,т.е. определяют скорость изменения рН при изменении количества добавленного раствора в разных точках титрования. На точку эквивалентности указывает максимум полученной кривой, а отсчёт по оси абсцисс, соответствующий этому максимуму, даёт объём титранта, израсходованного на титрование до точки эквивалентности. Определение точки эквивалентности по дифференциальной кривой значительно точнее, чем по простой зависимости рН – V.

Пример. На титрование 20 см 3 0,02М раствора HCl расходуется 15,00 см 3 раствора NaOH. Определить молярную концентрацию этого раствора.

Решение. Так как вещества реагируют между собой в строго эквивалентных количествах, то количество HCl в точке эквивалентности должно быть равно количеству NaOH, т.е.

n(HCl) = n(NaOH); n(HCl) = C(HCl) · V(HCl) ; n(NaOH)= C(NaOH) · V(NaOH);

C(NaOH)= ;

C(NaOH) = = 0,02667 моль/дм 3 .

Цель работы: изучить«сухие» и «мокрые» методы химической идентификации, ознакомиться с основными положениями титриметрического метода анализа и методикой определения концентрации кислот и щелочей.

Оборудование и материалы:

1. газовая горелка,

2. платиновая проволочка,

3. пробирки,

4. штатив для пробирок,

5. штатив,

6. бюретка,

7. колба для титрования

8. набор реактивов: сухие соли – KCl, LiCl, NaCl, CaCl 2 , BaCl 2 , SrCl 2 , CuCl 2 , 0,5н растворы Na 3 PO 4 , AgNO 3 , FeSO 4 , K 3 , K 4 , KOH, FeCl 3 , KSCN, KI, NaCl, NaBr, HNO 3 .

Методы количественного анализа. Количественный анализ предназначен для определения количественного состава анализируемого вещества. Существуют химические, физические и физико-химические методы количественного анализа. Основой всякого количественного исследования является измерение. Химические методы количественного анализа основаны на измерении массы и объема. Количественные исследования позволили ученым установить такие основные законы химии, как закон сохранения массы вещества, закон постоянства состава, закон эквивалентов и др. законы, на которых основана химическая наука. Принципы количественного анализа являются основной для химико-аналитического контроля производственных процессов различных отраслей промышленности и составляют предмет т. н. технического анализа. Различают 2-ва основных метода количественного химического анализа: весовой или гравиметрический и объемный или титриметрический.

Весовым анализом наз-ся метод количественного анализа, в котором точно измеряют только массу. Объемный анализ - основан на точном измерении массы веществ и объема раствора реактива известной концентрации, реагирующего с определенным количеством анализируемого вещества. Особым видом кол-го анализа является анализ газов и газовых смесей, т.н. газовый анализ, выполняемый тоже путем измерения объема или массы анализируемой смеси или газа. Определение одного и того же вещества можно выполнить весовым или объемным методами анализа. Выбирая метод определения, аналитик должен учитывать необходимую точность результата, чувствительность реакции и быстроту выполнения анализа, а в случае массовых определений - доступность и стоимость применяемых реактивов. В связи с зтим различают макро-, микро-, полумикро-, ультрамикрометоды кол-го анализа, при помощи которых можно проводить анализ минимальных количеств анализируемого вещества. В настоящее время простые химические методы все больше вытесняются физическими и физико-химическим методами, для работы с которыми необходимы дорогостоящие приборы и оборудование.

Оптические, электрохимические, хроматографические, различные спектро- и фотометрические исследования (инфракрасная, атомноадсорбционная, пламенная и т.д.), потенциометрия, полярография, масс-спектрометрия, ЯМР исследования. С одной стороны эти методы ускоряют получение результатов, повышают их точность и чувствительность измерений: предел обнаружения (1-10 -9 мкг) и предельная концентрация (до 10 -15 г/мл), селективность (можно определять составные компоненты смеси без их разделения и выделения), возможность их компьютеризации и автоматизации. Но с другой стороны все более удаляют от химии, снижают знание химических методов анализа у аналитиков, что и привело к ухудшению преподавания химии в школах, отсутствию хороших учителей-химиков, оснащенных школьных химических лабораторий, снижению знаний по химии у школьников.

К недостаткам следует отнести сравнительно большую ошибку определения (от 5 до 20 %, в то время как химический анализ дает ошибку обычно от 0,1 до 0,5 %), сложность аппаратуры и ее высокую стоимость. Требования, предъявляемые к реакциям в количественном анализе. Реакции должны протекать быстро, до конца, по возможности, - при комнатной температуре. Исходные вещества, вступающие в реакцию, должны реагировать в строго определенных количественных соотношениях (стехиометрически) и без побочных процессов. Примеси не должны мешать проведению количественного анализа. При проведении измерений не исключены ошибки, погрешности измерений и расчетов. Для исключения ошибок, сведения их к минимуму, измерение проводят в повторностях (параллельных определениях), не менее 2-х и проводят метрологическую оценку результатов (имеется в виду правильность и воспроизводимость результатов анализа).

Важнейшими характеристиками методов анализа является их чувствительность и точность. Чувствительностью метода анализа называют наименьшее количество вещества, которое можно достоверно определить данным методом. Точностью анализа называют относительную ошибку определения, которая представляет собой отношение разности найденного (х 1) и истинного (х) содержания вещества к истинному содержанию вещества и находят по формуле:

Отн. ош.= (х 1 -х)/ х, для выражения в процентах умножают на 100. За истинное содержание принимают среднеарифметическое содержание вещества, найденное при анализе пробы в 5 -7 определениях.

Метод Чувствительность, моль/л Точность,%

Титриметрический 10 -4 0,2

Гравиметрический 10 -5 0,05

Весовым (гравиметрическим) анализом называют метод количественного анализа, при котором количественный состав анализируемого вещества устанавливают на основании измерений масс, путем точного взвешивания массы устойчивого конечного вещества известного состава, в которое полностью переведен данный определяемый компонент. Например, гравиметрическое определение серной к-ты в водном растворе осуществляется с помощью водного раствора соли бария: ВаС1 2 + Н 2 SО 4 > ВаSО 4 v +2 НСl. Осаждение проводят в таких условиях, в которых практически весь сульфат-ион переходит в осадок ВаSО 4 с наибольшей полнотой - количественно, с минимальными потерями, вследствие незначительной, но все же имеющейся растворимости сульфата бария. Далее осадок отделяют от раствора, промывают для удаления растворимых примесей, высушивают, прокаливают, для удаления летучих сорбированных примесей и взвешивают на аналитических весах в виде чистого безводного сульфата бария. А затем рассчитывают массу серной кислоты. Классификация методов гравиметрического анализа. Методы осаждения, отгонки, выделения, термогравиметрические методы (термогравиметрия).

Методы осаждения - определяемую составную часть количественно связывают в такое химическое соединение, в виде которого она может быть выделена и взвешена. Состав этого соединения должен быть строго определенным, т.е. точно выражаться химической формулой, и оно не должно содержать каких-либо посторонних примесей. Соединение, в виде которого определяемую составную часть взвешивают, называют весовой формой.. Пример, определение Н 2 SО 4 (выше), определение массовой доли железа в его растворимых солях, основанное на осаждении железа (111) в форме гидроксида Fе(ОН) 3 хН 2 О с последующим его отделением и прокаливанием до оксида Fе 2 О 3 (весовая форма). Методы отгонки. Определяемый компонент выделяют из анализируемой пробы в виде газообразного вещества и измеряют либо массу отогнанного вещества (прямой метод), либо массу остатка (косвенный метод).

Прямой метод широко используется для определения содержания воды в анализируемых веществах путем ее отгонки из взвешенного образца и конденсации, а затем измеряют объем конденсированной воды в приемнике. По плотности пересчитывают объем воды на массу и, зная массу образца и воды, рассчитывают содержание воды в анализируемой пробе. Косвенный метод отгонки широко применяют для определения содержания летучих веществ (включая слабосвязанную воду) по изменению массы образца до и после высушивания до постоянного веса в термостате (в сушильном шкафу) при постоянной температуре. Условия проведения таких испытаний (температура, время сушки) определяются природой образца и конкретно указываются в методических руководствах.

Методы выделения основаны на выделении из раствора определяемого компонента путем электролиза на одном из электродов (электрогравиметрический метод). Затем электрод с выделевшимся веществом промывают, высушивают и взвешивают. По увеличению массы электрода с веществом находят массу выделившегося на электроде вещества (сплавы золота, меди переводят в раствор).

Термогравиметрические методы не сопровождаются отделением исследуемого вещества, а исследуется сам образец поэтому эти методы условно относят к гравиметрическим методам анализа. Методы основаны на измерении массы анализируемого вещества при его непрерывном нагревании в заданном температурном интервале на специальных приборах - дериватографах. По полученным термогравиграммам при их расшифровке можно определить содержание влаги и других составляющих анализируемого вещества.

Основные этапы гравиметрического определения: расчет массы навески анализируемой пробы и объема (или массы) осадителя; взвешивание (взятие) навески образца; растворение навески анализируемого образца; осаждение, т.е. получение осаждаемой формы определяемого компонента; фильтрование (отделение осадка от маточного раствора); промывание осадка; высушивание и (при необходимости) прокаливание осадка до постоянной массы, т. е. получение гравиметрической формы; взвешивание гравиметрической формы; расчет результатов анализа, их статистическая обработка и представление. Каждая из этих операций имеет свои особенности.

При расчете оптимальной массы навески анализируемого вещества учитывают возможную массовую долю определяемого компонента в анализируемой пробе и в гравиметрической форме, массу гравиметрической формы, систематическую ошибку взвешивания на аналитических весах (обычно 0,0002), характер получаемого осадка - аморфный, мелкокристаллический, крупнокристаллический. Расчет исходной навески ведут исходя из того, что масса гравиметрической навески должна быть не меньше 0,1 г. В общем случае нижний предел оптимальной массы m исходной навески анализируемого вещества (в граммах) рассчитывают по формуле: m = 100m (ГФ) F/ W(X), где m(ГФ) - масса гравиметрической формы в граммах; F - гравиметрический фактор, фактор пересчета, аналитический множитель); W(X) - массовая доля (в %) определяемого компонента в анализируемом веществе. Гравиметрический фактор F численно равен массе определяемого компонента в граммах, соответствующий одному грамму гравиметрической формы.

Гравиметрический фактор рассчитывают по формуле как отношение молярной массы М(Х) определяемого компонента Х к молярной массе гравиметрической формы М(ГФ), умноженное на число n молей определяемого компонента, из которого получается один моль гравиметрической формы: F = n M(X) / M (ГФ). Так, если из 2-х молей Fе С1 3 6Н 2 О получается один моль гравиметрической формы Fе 2 О 3 , то n = 2. Если из одного моля Ва(NО 3) 2 получают один моль гравиметрической формы ВаСrО 4 , то n = 1.

Общие понятия. Определение содержания (концентрации, массы и т.д.) компонентов в анализируемом веществе называется количественным анализом. С помощью количественного анализа выявляют массовые соотношения компонентов в анализируемом образце, концентрацию вещества в растворе или в газе. При количественном анализе измеряют те или иные химические, физико-химические и физические параметры анализируемого образца, которые зависят от его состава или содержания того иного компонента. В большинстве методов полученные при анализе результаты сравнивают со свойствами известных веществ. Результаты анализа обычно выражают в массовых долях, в %.

Количественный анализ проводят в определенной последовательности, в которую входит отбор и подготовка проб, проведения анализа, обработка и расчет результатов анализа. Как и в качественном анализе, различают макрометоды, полукмикрометоды, микро - и ультрамикрометоды.

Количественный анализ широко используется для изучения состава руд, металлов, неорганических и органических соединений. В последние годы особое внимание обращается на определение содержание токсичных веществ в воздухе, водоемах, почвах, в продуктах питания, различных товарах.

Классификация методов количественного анализа. Все методы количественного анализа можно разделить на две группы химические и инструментальные. Это разделение условно, так как многие инструментальные методы основаны на использовании химических законов и свойств веществ. Обычно количественные методы анализа классифицируют по измеряемым физическим или химическим свойствам.

Таблица 18.3 - Основные методы количественного анализа

Измеряемая величина (свойство) Название метода Масса вещества, доступная измерению Теоретические основы метода (см. параграф или главу)
Масса Объём Плотность Поглощение или испускание инфра- красных лучей Колебания молекул Поглощение или испускание види - мых, ультрафиоле- товых и рентгенов- ских лучей. Колебания атомов. Рассеяние света Диффузионный ток на электроде Электродный по- тенциал Количество электричества Электрическая проводимость Радиоактивность Скорость реакции Тепловой эффект реакции Вязкость Поверхностное натяжение Понижение темпе- ратуры замерзания Повышение темпе- татуры кипения Гравиметрический Масс-спектрометри- ческий Титрометрический Газоволюметрический Денсиметрический Инфракрасная спектроскопия Комбинационное рассеяние Спектральный и рент- геноспектральный Фотометрический (колориметрия, спек- трофотометрия и дру- гие) Атомно- адсорбционная спек- троскопия Люминесцентный Полярография и вольт- амперометрия Потенциометрический Кулонометрический Кондуктомерический Радиоактивных инди- каторов Кинетический Каталический Термометрия и калориметрия Вискозиметрический Тензометрический Криоскопический Эбулиоскопический От макро- до ультрамикроколичеств Микроколичества От макро-до ультрамикро - количеств То же Макро - и микроколичества То же То же Полумикро- и микроколи- чества То же Микроколичества То же Полумикро- и микроколичества Макро - и микроколичества Микро - и ультрамикро- количества Макро- и микроколичества От макро- до ультрамикро- количеств Макро - и микроко- личества Макроколичества То же » » » Параграф 8.6 - Гл. 8 Гл. 8 - Параграф 1. 1, 7.4 - Параграф 1.1-1.3,7.4 Параграф 2.4, 2.5, 3.4 - - Параграф 9.5 Параграф 9.3, 9.4 Параграф 9.2 Параграф 8.4 Гл.17 Параграф 7.1-7.3 Параграф 7.5 Параграф 5.1 - Параграф 4.3, 6.2 Параграф 8.1 Параграф 8.1


В учебнике будут рассмотрены лишь некоторые методы, основанные на теоретических положениях, изученных в предыдущих главах.

Гравиметрический метод. Сущность метода заключается в получении труднорастворимого соединения, в которое входит определяемый компонент. Для этого навеску вещества растворяют в том или ином растворителе, обычно в воде, осаждают с помощью реагента, образующего с анализируемым соединением малорастворимое соединение с низким значением ПР (см. параграф 8.3). Затем после фильтрования осадок высушивают, прокаливают и взвешивают. По массе вещества находят массу определяемого компонента и проводят расчет его массовой доли в анализируемой навеске. Некоторые реагенты (групповые и индивидуальные) были рассмотрены в параграфе 16.1.

Имеются разновидности гравиметрического метода. В методе отгонки анализируемый компонент выделяют в виде газа, который взаимодействует с реактивом. По изменению массы реактива судят о содержании определяемого компонента в навеске. Например, содержание карбонатов в породе можно определить путем воздействия на анализируемый образец кислотой, в результате которого выделяется СО2:

СО+2НН2СО3Н2О+СО2

Количество выделившегося СО2 можно определить по изменению массы вещества, например СаО, с которым реагирует СО2.

Одним из основных недостатков гравиметрического метода является его трудоемкость и относительно большая продолжительность. Менее трудоемким является электрогравиметрический метод, при котором определяемый металл, например медь, осаждают на катоде (платиновой сетке)

По разности массы катода до и после электролиза определяют массу металла в анализируемом растворе. Однако этот метод пригоден лишь для анализа металлов, на которых не выделяется водород (медь, серебро, ртуть).

Титриметрический анализ. Сущность метода заключается в измерении объема раствора того или иного реагента, израсходованного на реакцию с анализируемым компонентом. Для этих целей используют так называемые титрованные растворы, концентрация которых (обычно титр раствора) известны. Титром называется масса вещества, содержащегося в 1 мл (1см) титрованного раствора (в г/мл и г/см).Определение проводят способом титрования, т.е. постепенного приливания титрованного раствора к раствору анализируемого вещества, объем которого точно измерен. Титрование прекращается при достижении точки эквивалентности, т.е. достижения эквивалентности реагента титруемого раствора и анализируемого компонента.

Существует несколько разновидностей титриметрического анализа: кислотно-основное титрование, осадительное титрование, комплексонометрическое титрование и окислительно-восстановительное титрование.

В основе кислотно-основного титрования лежит реакция нейтрализации

Метод позволяет определить концентрацию кислоты или катионов, гидролизирующихся с образованием ионов водорода, титрованием раствором щелочи или определить концентрацию оснований, в том числе анионов, гидролизирующихся с образованием гидроксид-ионов титрованием растворами кислот. Точка эквивалентности устанавливается при помощи кислотно-основных индикаторов, изменяющих окраску в определенном интервале рН. Например, методом кислотно-основного титрования можно определить карбонатную жесткость воды, т.е. концентрацию НСОв воде путем титрования ее раствора HCl в присутствии индикатора метилового оранжевого

НСО+ Н= Н2О+ СО2

В точке эквивалентности желтая окраска индикатора переходит в бледно-розовую. Расчет производится по уравнению закона эквивалентов

, (18.2)

где -объемы анализируемого и титрованного растворов;

Нормальная концентрация эквивалентов вещества HCl в титрованном растворе

Определяемая молярная концентрация эквивалентов ионов НСОв анализируемом растворе.

При осадительном титровании анализируемый раствор титруется реагентом, образующим с компонентом титрованного раствора малорастворимое соединение. Точка эквивалентности определяется с помощью индикатора, образующего с реагентом окрашенное соединение, например, красный осадок Ag2CrO4 при взаимодействии индикатора K2CrO4 с избытком ионов Ag при титровании раствора хлорида раствором нитрата серебра.

Комплексонометрическое титрование. При комплексонометрическом титровании определяемый компонент в растворе титруется раствором комплексона, чаще всего этилендиаминотетрауксусной кислоты (ЕДТА, комплексона II) или ее двунатриевой соли (комплексона III или трилона Б). Комплексоны являются лигандами и образуют со многими катионами комплексы. Индикаторами мочки эквивалентности обычно служат лиганды, образующие с анализируемым ионом окрашенное комплексное соединение. Например, индикатор хромоген черный с кальцием и магнием образует комплексы и красного цвета. В результате титрования раствора винно-красного цвета, содержащего ионы кальция, магния и индикатор, раствором комплексона III кальций связывается в более прочный комплекс с комплексоном, в точке эквивалентности анионы индикатора освобождаются и придают раствору синюю окраску. Этот метод комплексонометрического титрования используются, например, для определения общей жесткости воды.

Окислительно-восстановительное титрование. Данный способ заключается в титровании раствора восстановителя титрованным раствором окислителя или в титровании раствора окислителя титрованным раствором восстановителя. В качестве титрованных растворов окислителей нашли применение растворы перманганата калия KMnO4 (перманганатометрия), дихромата калия K2Cr2O7 (дихроматометрия), иода I2 (иодометрия). Из титрованных растворов восстановителей следует отметить растворы гидразина N2H4 (гидразинометрия).

При перманганатометрическом титровании в кислой среде Mn (VII) (малиновая окраска) переходит в Mn (II) (бесцветный раствор). Например, перманганатометрическим титрованием можно определить содержание нитритов в растворе

2KMnO4 + 5KNO2 + 3H2SO4 = 2MnSO4 + K2SO4 + 5KNO3 + 3H2O

При дихроматометрическом титровании индикатором служит дифениламин, окрашивающий раствор в синий цвет при избытке дихромат-ионов. При иодометрическом титровании индикатором служит крахмал. Иодометрическое титрование используется для анализа растворов окислителей, в этом случае титрованный раствор содержит иодид-ион. Например, медь можно определить титрованием ее растворов раствором иодида

2Cu

Затем образующийся раствор титруется титрованным раствором тиосульфата натрия Na2S2O3 c индикатором крахмалом, добавляемым в конце титрования

2Na2S2O3 + I2 = 2NaI + Na2S4O6

Итак, существует большое число разновидностей количественного химического анализа, позволяющих определять разнообразные вещества в широких пределах концентраций. Среди химических методов анализа наиболее распространены титрометрические и гравиметрические методы.