Болезни Военный билет Призыв

Периодические колебания: определение, основные характеристики. Причины и условия возникновения. Вынужденные колебания, резонанс

Колебательными называются процессы, при которых параметры, характеризующие состояние колебательной системы, обладают опре­делённой повторяемостью во времени. Такими процессами, например, могут являться суточные и годовые колебания температуры атмо­сферы и поверхности Земли, колебания маятников и т.д.

Если про­межутки времени, через которые состояние системы повторяется, равны между собой, то колебания называются периодическими , а про­межуток времени между двумя последовательными одинаковыми состояниями системы – периодом колебаний .

Для периодических колебаний функция, определяющая состояние колеблющейся системы, повторя­ется через период колебаний:

Среди периодических колебаний особое место занимают коле­бания гармонические , т.е. колебания, при которых характеристики движения системы изменяются по гармоническому закону, например:

Наибольшее внимание, уделяемое в теории колебаний именно часто встречающимся на практике гармоническим процессам, объяс­няется как тем, что для них наиболее хорошо развит аналитический аппарат, так и тем, что любые периодические колебания (и не толь­ко периодические) могут быть рассмотрены в виде определённой комбинации гармонических составляющих. В силу этих причин далее будут рассмотрены преимущественно гармонические колебания. В аналитическом выражении гармонических колебаний ве­личина x отклонения материальной точки от положения равно­весия называется смещением .

Очевидно, что максимальное отклонение точки от положения равновесия равно a, эта величина называется амплитудой колебаний . Физическая величина, равная:

и определяющая состояние колеблющейся системы в данный момент вре­мени, называется фазой колебаний . Значение фазы в момент начала от счёта времени

называется начальной фазой колебаний . Величина w в выражении фазы колебаний, определяющая быстроту колебательного процесса, называется его круговой или циклической частотой колебаний.

Состояние движения при периодических колебаниях должно повторяться через промежутки времени, равные периоду колебаний T. При этом, очевидно, фаза колебаний должна изменятся на 2p (период гармонической функции), т.е.:

Отсюда следует, что период колебаний и циклическая частота связаны между собой соотношением:

Скорость точки, закон движения которой определяется, также изменяется по гармоническому закону

Отметим, что смещение и скорость точки неодновременно обращаются в нуль или принимают максимальные значения, т.е. смешение и скорость отличаются по фазе.

Аналогично получаем, что ускорение точки равно:

Из выражения для ускорения видно, что оно смещено по фазе относительно смещения и скорости. Хотя смешение и ускорение одновременно проходят через нуль, в этот момент времени они имеют противоположные направления, т.е. смещены на p. Графики зависимостей смещения, скорости и ускорения от времени при гармонических колебаниях представлены условном масштабе на рисунке

Из закона гармонического движения, пользуясь формулами тригонометрических преобразований, можно записать:

Собственные колебания.

Основные особенности собственных колебаний рассмотрим на примере механической колебательной системы с одной степенью свободы, т.е. такой системы, положение которой можно в любой момент времени определять только одной координатой. Будем счи­тать, что размеры тела достаточно малы, чтобы его можно было рассматривать как материальную точку. Предположим, что при выводе тела из положения равновесия на него будут действовать силы, пропорциональные смещению и направленные противоположно этому смещению -kx. Как говори­лось выше, трением, сопротивлением среды можно пренебречь. Внутренние же силы, величина и направление которых определя­ются смещением из положения равновесия, могут быть, например, силами упругости или силами другой природы, но изменяющимися так же, как и упругие . Такие силы, независимо от их природы, будем называть "квазиупругими" . С учётом этих сил дифференциальное уравнение движения принимает вид

Решением дифференциального уравнения движения имеет вид гармонической функции

Строгое доказательство этого даёт теория дифференциаль­ных уравнений, мы же легко можем убедиться в справедливости этого утверждения путём подстановки решения в уравнение

Как видно, равенство будет соблюдаться для любого момен­та времени, если:

Действительно, отношение можно представить в виде квадрата некоторой величины, поскольку масса тела, коэффициент упругости и, следовательно, само отношение положительны. Как коэффициент k , так и масса тела являются внутренними парамет­рами колебательной системы, поэтому циклическая частота коле­баний w не зависит от начальных условий. От начальных условий зависит только амплитуда колебаний и начальная фаза, которые можно найти из начальных условий, как это было показано ранее. Скорость и ускорение тела при собственных колебаниях так­же изменяются по гармоническому закону:

Затухающие колебания.

Выясним теперь характер колебаний рассмотренной системы при наличии трения. При этом будем полагать, что силы трения пропорциональны скорости тела и противоположно ей направлены. Такими силами, например, являются силы вязкого трения при до­статочно малых скоростях движения тела. Если тело выведено из положения равновесия на величину x и при этом имеет скорость , то на него будут действовать квазиупругая сила F=-kx и сила сопротивления движению , где, m - коэффициент сопротивления. По второму закону динамики напишем дифференциаль­ное уравнение движения

Введём обозначения и . C учётом этих обозначений дифференциальное уравнение принимает вид

Исходя из сказанного, решение уравнения будем искать в виде

Если выражение

действительно является решением урав­нения, то после подстановки в мы должны получить тождество:

Очевидно, тождество будет выполняться для любого произ­вольного момента времени, если будут выполняться следующие условия

Из условия получаем дифференциальное уравнение для определения амплитуды колебаний

Разделяя переменные, получаем уравнение, удобное для ин­тегрирования

Решением этого уравнения является функция ,

где А 0 - постоянная интегрирования, которую можно определить из начальных условий.

частота колебаний действительно отличается от частоты собственных колебаний и равна

Колебания периодические

"...периодические колебания - колебания, при которых каждое значение колеблющейся величины повторяется через равные интервалы времени..."

Источник:

" ГОСТ 24346-80 (СТ СЭВ 1926-79). Государственный Союза ССР. . Термины и определения"

(утв. и введен в действие Постановлением Госстандарта СССР от 31.07.1980 N 3942)


Официальная терминология . Академик.ру . 2012 .

Смотреть что такое "Колебания периодические" в других словарях:

    периодические колебания (вибрация) - Колебания (вибрация), при которых каждое значение колеблющейся величины (характеризующей вибрацию) повторяется через равные интервалы времени. Пояснения Термины и определения для близких понятий, различающиеся лишь отдельными словами, совмещены,… …

    КОЛЕБАНИЯ - движения или процессы, обладающие той или иной степенью повторяемости во времени. К. свойственны всем явлениям природы: пульсирует излучение звёзд, внутри к рых происходят циклич. яд. реакции; с высокой степенью периодичности вращаются планеты… … Физическая энциклопедия

    КОЛЕБАНИЯ ВЕКОВЫЕ - периодические и долгопериодические колебания: ур. м., суши (в результате эпейрогенических движений), климата, ур. озер, концов ледников. Термин устарел, так как периодические колебания интенсивности проявления тех или иных процессов могут быть… … Геологическая энциклопедия

    периодические колебания - Механические колебания, при которых состояние механической системы повторяется через равные промежутки времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук СССР. Комитет научно технической терминологии. 1987 … Справочник технического переводчика

    КОЛЕБАНИЯ КЛИМАТИЧЕСКИЕ - устанавливаются как периодические с разл. ритмами колебаний. В основном они синхронные, так как прослеживаются на больших пространствах, лишь местами отклоняясь, в зависимости как от общих (географических и т. п.), так и местных (особенности геол … Геологическая энциклопедия

    КОЛЕБАНИЯ УРОВНЯ МОРЯ ПЕРИОДИЧЕСКИЕ - 1. Колебания ур. м. в виде приливов и отливов. 2. Сезонные понижения и повышения ур. м., а также годовые, многолетние и вековые, обусловливаемые климатическими причинами. Амплитуда сезонных колебаний не превышает 28 см. Во внутренних морях она… … Геологическая энциклопедия

    Периодические колебания (вибрация) - – колебания (вибрация), при которых каждое значение колеблющейся величины (характеризующей вибрацию) повторяется через равные интервалы времени. [ГОСТ 24346 80] Рубрика термина: Виды вибрации Рубрики энциклопедии: Абразивное оборудование,… … Энциклопедия терминов, определений и пояснений строительных материалов

    Периодические колебания уровня - изменения уровня воды в зависимости от приливно отливных явлений, выпадения осадков, изменения атмосферного давления и направления действия ветров в данном районе. Периодичность изменений, как правило, бывает полусуточной, сезонной, годовой.… … Морской словарь

    колебания - Движения или процессы, обладающие той или иной степенью повторяемости во времени [Терминологический словарь по строительству на 12 языках (ВНИИИС Госстроя СССР)] колебания Элемент временного ряда, отражающий происходящие в экономике периодические … Справочник технического переводчика

    Колебания - элемент временного ряда, отражающий происходящие в экономике периодические изменения, например, подъемы и спады производства продукции и потребления тех или иных товаров. В экономико математических моделях для приближенного… … Экономико-математический словарь

Книги

  • Нелинейные колебания и волны , П. С. Ланда. В настоящей книге представлено современное состояние теории нелинейных колебаний и волн. С единой точки зрения рассматриваются колебательные и волновые процессы, как периодические, так и…

Колебания. Типы колебаний. Характеристики

Колебания и волны

Колебаниями называются процессы, в той или иной мере повторяющиеся во времени. Колебания бывают механические, электромагнитные, численности животных и т.д. Здесь важно отметить, что независимо от типа колебаний, все они описываются одинаковым образом с математической точки зрения, т.е., одинаковыми уравнениями. Поэтому колеблющуюся величину мы будем часто называть колебательной системой .

Иногда колебания играют отрицательную роль в технике – например, вибрация (что означает колебания со звуковой частотой) корпуса автомобиля, корабля, самолёта…. В других случаях колебания не просто играют положительную роль, но на колебаниях основаны самые различные отрасли техники – например радиовещание, телевидение да и вообще вся инфраструктура передачи информации.

В зависимости от характера внешнего воздействия на колебательную систему различают свободные и вынужденные колебания.

Свободными, или собственными называются колебания системы, выведенной из положения устойчивого равновесия внешней силой и затем предоставленной самой себе. Колебания при этом совершаются за счёт внутренних сил системы.

Вынужденными называются колебания, происходящие под действием периодически изменяющегося внешнего воздействия на систему.

Периодическими называются такие колебания, при которых значения физических величин (например, некоторой величины S ), характеризующих колебательную систему, повторяются через равные промежутки времени, наименьший из которых называется периодом колебаний:

S(t+T)=S(t) . (4.1)

Частотой колебаний называется число полных колебаний в единицу времени: . Размерность частоты – герц: Гц = 1/с. Циклической , или круговой, частотой называется число полных колебаний за 2p секунд:

Чрезвычайно важными в теории колебаний являются гармонические колебания – это такие колебания, которые происходят по закону синуса или косинуса:

(4.3)

Во-первых, очень многие колебания, особенно малые, в технике имеют гармонический вид (4.3). Во-вторых, любые периодические процессы, которые не являются гармоническими, могут, тем не менее, быть представлены как наложение простых гармонических колебаний. Часто систему, совершающую гармонические колебания, называют гармоническим осциллятором.

В системе (4.3) A º S max – максимальное значение колеблющейся величины, называется амплитудой колебаний. Аргумент синуса или косинуса называется фазой колебаний:

(4.4)

а значение фазы в начальный момент времени называется начальной фазой. Отметим, что с изменением начала отсчёта времени изменяется и начальная фаза. Так как функции (4.3) являются периодическими с периодом 2p , то всегда можно выбрать начальную фазу по модулю меньшей p .


Хотя функции синуса и косинуса являются взаимно дополняющими друг друга, по ряду причин чаще для представления гармонических колебаний используют функцию косинуса. Например, математические выражения чаще оказываются более простыми, если представлять гармоническое колебание в комплексном виде.

В колебательной системе происходит периодический переход одного вида энергии в другой, когда потенциальная энергия (энергия, зависящая от положения системы) переходит в кинетическую энергию (энергию движения) и наоборот.

Наглядное представление колебательного процесса можно получить, если построить график колебаний отдельной массы в координатах t (время) и y (перемещение).

Если в колебательную систему будет поступать внешняя энергия, колебания будут нарастающими (рис. 16.6 а). Если к консервативной системе внешняя энергия не поступает, колебания будут незатухающими (рис.16.6 б). Если энергия системы уменьшается (например, за счет трения в диссипативной системе), колебания будут затухающими (рис. 16.6 в).

Важной характеристикой колебательного процесса является форма колебаний. Форма колебаний – это кривая, показывающая положение точек колебательной системы относительно положения равновесия в фиксированный момент времени. Простейшие формы колебаний можно и наблюдать. Например, хорошо видны формы колебаний провода, висящего между двумя столбами, или струны гитары.

Колебания, происходящие при отсутствии внешней нагрузки, называются свободными колебаниями . Свободные колебания диссипативной системы являются затухающими, потому что ее полная энергия убывает. Энергия консервативной системы остается постоянной, и ее свободные колебания будут незатухающими. Однако в природе консервативных систем не существует, поэтому их колебания изучаются только теоретически. Свободные колебания консервативных систем называются собственными колебаниями .

Периодические колебания – это колебания, удовлетворяющие условию y(t)=y(t+T) . Здесь T – период колебаний, т.е. время одного колебания. Периодические колебания имеют и другие важные характеристики. Например, амплитуда a – это половина размаха колебания: a=(y max – y min )/2 , круговая частота – число колебаний за 2 секунды, техническая частота f – число колебаний за одну секунду. Обе эти частоты и период взаимосвязаны:

(Гц),(рад/с).

Гармонические колебания – это колебания, изменяющиеся по закону илиЗдесь фаза колебаний , начальная фаза .

Вынужденные колебания возникают под воздействием внешних сил.

Вибрация – это вынужденные колебания, происходящие с относительно малой амплитудой и не слишком малой частотой.

4. Виды динамических нагрузок

Колебания сооружения возникают от динамических нагрузок. В отличие от статических, динамические нагрузки изменяются с течением времени по величине, направлению или положению. Они сообщают массам системы ускорения, вызывают инерционные силы, что может привести к резкому возрастанию колебаний, и в итоге – к разрушению всего сооружения или его частей.

Рассмотрим основные виды динамических нагрузок.

– это нагрузка, прикладываемая к сооружению через определенный период. Источниками периодических нагрузок являются различные машины и механизмы: электродвигатели, металлообрабатывающие станки, вентиляторы, центрифуги и др. Если их вращающиеся части не уравновешены, то они при работе вызывают гармоническую нагрузку (нагрузку, изменяющуюся по закону синуса или косинуса). Такая нагрузка называется вибрационной нагрузкой . Поршневые компрессоры и насосы, штамповочные машины, дробилки, копры и др. создают негармоническую нагрузку .

Общая характеристика колебаний

Ритмические процессы любой природы, характеризующиеся повторяемостью во времени, называются колебаниями.

Колебание – процесс, характеризующийся повторяемостью во времени параметров, его описывающих. Единство закономерностей ритмических процессов позволило разработать единый математический аппарат для их описания – теорию колебаний. Существуют множество признаков, по которым могут быть классифицированы колебания.

По физической природе колеблющейся системы различают механические и электромагнитные колебания.

Колебания называются периодическими, если величина, характеризующая состояние системы, повторяется через равные промежутки времени – период колебания.

Период (T ) - минимальное время, через которое повторяется состояние колебательной системы, т.е. время одного полного колебания.

Для таких колебаний

x(t)=x(t+T) ;(3. 1)

Периодическими являются колебания маятника часов, переменный ток, биение сердца, а колебания деревьев под порывом ветра, курсов иностранных валют – не периодические.

Кроме периода в случае периодических колебаний определена их частота.

Частота ()т.е. число колебаний в единицу времени.

Частота -величина, обратная периоду колебания,

Единицей измерения частоты являетсяГерц: 1 Гц = 1 с -1 , частота соответствующая одному колебанию в секунду. При описании периодических колебаний также используется циклическая частота – число колебаний за 2π секунд:

При периодических колебаниях эти параметры постоянны, а при других колебаниях могут изменяться.

Закон колебаний – зависимость колеблющейся величины от времени x(t) - может быть может быть разной. Наиболее простыми являются гармонические колебания (рис3.1), для которых колеблющаяся величина меняется по закону синуса или косинуса, что позволяет использовать одну функцию для описания процесса во времени:

Здесь: x (t) – значение колеблющейся величины в данный момент времени t , А амплитуда – наибольшее отклонение колеблющейся величины от среднего значения., ω – циклическая частота, (ωt+φ ) – фаза колебания , φ – начальная фаза.

Гармоническому закону подчиняются многие известные колебательные процессы. в т.ч. упомянутые выше, но наиболее существенно что с помощью метода Фурье любая периодическая функция раскладывающаяся на гармонические составляющие (гармоники ) с кратными частотами:

f (t )= А + А 1 cos( t + )+ А cos (2 t+ )+…; (3.5)

Здесь основная частота определяется периодом процесса: .

Каждая гармоника характеризуется частотой () и амплитудой (А ). Совокупность гармоник называется спектром . Спектры периодических колебаний дискретные (линейчатые) (рис.3.1а), а не периодических непрерывные (рис.3.1б) .

Рис. 3.1 Дискретные (а) и непрерывные (б) спектры сложных колебательных

Виды колебаний

Колебательная система обладает определенной энергией, за счет которой совершаются колебания. Энергия зависит от амплитуды и частоты колебаний.

Колебания подразделяются на следующие виды: свободные или собственные, затухающие, вынужденные, автоколебания.

Свободные колебания совершаются в системе, однократно выведенной из положения равновесия и в дальнейшем предоставленной самой себе. При этом колебания происходят с собственной частотой (), которая не зависит от их амплитуды, т.е. определяется свойствами самой системы.

В реальных условиях колебания всегда являются затухающими , т.е. со временем происходит уменьшение энергии за счет ее диссипации и как следствие уменьшается амплитуда колебаний. Диссипация – необратимый переход части энергии упорядоченных процессов («энергии порядка») в энергию беспорядочных процессов («энергию хаоса»). Диссипация происходит в любой колеблющейся открытой системе.

Для создания незатухающих колебаний в реальных системах необходимо периодическое внешнее воздействие – периодическое пополнение энергии, теряемой за счет диссипации. Гармонические колебания, происходящие за счет внешнего периодического воздействия («вынуждающей силы»), называются вынужденными . Их частота совпадает с частотой вынуждающей силы (), а амплитуда оказывается зависящей от соотношения между частотой силы и собственной частотой системы. Важнейшим эффектом, осуществляющимся при вынужденных колебаниях, является резонанс – резкое возрастание амплитуды при приближении частоты вынужденных колебаний к собственной частоте колебательной системы. Резонансная частота тем ближе к собственной, а максимум амплитуды тем больше, чем меньше диссипация.

Автоколебания – незатухающие колебания, происходящие за счет источника энергии, вид и работа которого определяется самой колебательной системой. При автоколебаниях основные характеристики – амплитуда, частота – определяются самой системой. Это отличает данные колебания как от вынужденных, при которых эти параметры зависят от внешнего воздействия, так и от собственных, при которых внешнее воздействие задает амплитуду колебания. Простейшая автоколебательная система включает в себя:

колебательную систему (с затуханием),

усилитель колебаний (источник энергии),

нелинейный ограничитель (клапан),

звено обратной связи

При автоколебаниях для их установления важна нелинейность, управляющая поступлениями и тратами энергии источника, и позволяющая установить колебания определенной амплитуды. Примерами автоколебательных систем являются: механической - маятниковые часы, термодинамической – тепловой двигатель, электромагнитной – ламповый генератор, оптической – лазер (оптический квантовый генератор). Схема лазера представлена на рис.4.5. Здесь колебательная система – оптически активная среда, заполняющая оптический резонатор, имеется внешний источник энергии, обеспечивающий процесс «накачки», клапан и обратная связь – полупрозрачное зеркало на выходе оптического резонатора, нелинейность определяется условиями вынужденного излучения.

Во всех автоколебательных системах обратная связь регулирует включение внешнего источника и поступление в колебательную систему энергии: пока поступление энергии (вклад) выше потери, происходит самовозбуждение (раскачка), колебания в системе усиливаются; когда потеря энергии становится равной ее поступлению, клапан закрывается. Система колеблется в стационарном режиме с постоянной амплитудой; при возрастании потери амплитуда уменьшается, и вновь открывается клапан, возрастает вклад, амплитуда восстанавливается, клапан закрывается.