Болезни Военный билет Призыв

Определение однородного уравнения. Однородные дифференциальные уравнения первого порядка

Стоп! Давай всетаки попытаемся разобраться в этой громоздкой формуле.

На первом месте должна идти первая переменная в степени с некоторым коэффициентом. В нашем случае это

В нашем случае это. Как мы выяснили, значит здесь степень при первой переменной - сходится. И вторая переменная в первой степени - на месте. Коэффициент.

У нас это.

Первая переменная в степени, и вторая переменная в квадрате, с коэффициентом. Это последний член уравнения.

Как видишь, наше уравнение подходит под определение в виде формулы.

Давай рассмотрим вторую (словесную) часть определения.

У нас две неизвестные и. Здесь сходится.

Рассмотрим все слагаемые. В них сумма степеней неизвестных должна быть одинакова.

Сумма степеней равна.

Сумма степеней равна (при и при).

Сумма степеней равна.

Как видишь, все сходится!!!

Теперь давай потренируемся в определении однородных уравнений.

Определи, какие из уравнений - однородные:

Однородные уравнения - уравнения под номерами:

Рассмотрим отдельно уравнение.

Если мы разделим каждое слагаемое на разложим каждое слагаемое, то получим

А это уравнение полностью попадает под определение однородных уравнений.

Как решать однородные уравнения?

Пример 2.

Разделим уравнение на.

У нас по условию y не может быть равен. Поэтому мы можем смело делить на

Произведя замену, мы получим простое квадратное уравнение:

Так как это приведенное квадратное уравнение, воспользуемся теоремой Виета:

Произведя обратную замену, получаем ответ

Ответ:

Пример 3.

Разделим уравнение на (по условию).

Ответ:

Пример 4.

Найдите, если.

Здесь нужно не делить, а умножать. Умножим все уравнение на:

Произведем замену и решим квадратное уравнение:

Произведя обратную замену, получим ответ:

Ответ:

Решение однородных тригонометрических уравнений.

Решение однородных тригонометрических уравнений ничем не отличается от способов решения, описанных выше. Только здесь, помимо прочего, нужно немного знать тригонометрию. И уметь решать тригонометрические уравнения (для этого можешь прочитать раздел ).

Рассмотрим такие уравнения на примерах.

Пример 5.

Решите уравнение.

Мы видим типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Подобные однородные уравнения решаются не сложно, но перед тем, как разделить уравнения на, рассмотрим случай, когда

В этом случае уравнение примет вид: , значит. Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому, и на него можно смело делить:

Так как уравнение приведенное, то по теореме Виета:

Ответ:

Пример 6.

Решите уравнение.

Как и в примере, нужно разделить уравнение на. Рассмотрим случай, когда:

Но синус и косинус не могут одновременно быть равны, ведь по основному тригонометрическому тождеству. Поэтому.

Сделаем замену и решим квадратное уравнение:

Сделаем обратную замену и найдем и:

Ответ:

Решение однородных показательных уравнений.

Однородные уравнения решаются так же, как рассмотренных выше. Если ты забыл, как решать показательные уравнения - посмотри соответствующий раздел ()!

Рассмотрим несколько примеров.

Пример 7.

Решите уравнение

Представим как:

Мы видим типичное однородное уравнение, с двумя переменными и суммой степеней. Разделим уравнение на:

Как можно заметить, произведя замену, мы получим приведенное квадратное уравнение (при этом не нужно опасаться деления на ноль - всегда строго больше нуля):

По теореме Виета:

Ответ: .

Пример 8.

Решите уравнение

Представим как:

Разделим уравнение на:

Произведем замену и решим квадратное уравнение:

Корень не удовлетворяет условию. Произведем обратную замену и найдем:

Ответ:

ОДНОРОДНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Сначала на примере одной задачки напомню что такое однородные уравнения и что из себя представляет решение однородных уравнений.

Решите задачу:

Найдите, если.

Здесь можно заметить любопытную вещь: если поделить каждое слагаемое на, получим:

То есть, теперь нет отдельных и, - теперь переменной в уравнении является искомая величина. И это обычное квадратное уравнение, которое легко решить с помощью теоремы Виета: произведение корней равно, а сумма - это числа и.

Ответ:

Уравнения вида

называется однородным. То есть, это уравнение с двумя неизвестными, в каждом слагаемом которого одинаковая сумма степеней этих неизвестных. Например, в примере выше эта сумма равна. Решение однородных уравнений осуществляется делением на одну из неизвестных в этой степени:

И последующей заменой переменных: . Таким образом получаем уравнение степени с одной неизвестной:

Чаще всего нам будут встречаться уравнения второй степени (то есть квадратные), а их решать мы умеем:

Отметим, что делить (и умножать) все уравнение на переменную можно только если мы убеждены, что эта переменная не может быть равна нулю! Например, если нас просят найти, сразу понимаем, что, поскольку на делить нельзя. В случаях, когда это не так очевидно, необходимо отдельно проверять случай когда эта переменная равна нулю. Например:

Решите уравнение.

Решение:

Видим здесь типичное однородное уравнение: и - это неизвестные, а сумма их степеней в каждом слагаемом равна.

Но, прежде чем разделить на и получить квадратное уравнение относительно, мы должны рассмотреть случай, когда. В этом случае уравнение примет вид: , значит, . Но синус и косинус не могут быть одновременно равны нулю, ведь по основному тригонометрическому тождеству: . Поэтому, и на него можно смело делить:

Надеюсь, это решение полностью понятно? Если нет, прочитай раздел . Если же непонятно, откуда взялось, тебе нужно вернуться еще раньше - к разделу .

Реши сам:

  1. Найдите, если.
  2. Найдите, если.
  3. Решите уравнение.

Здесь я кратко напишу непосредственно решение однородных уравнений:

Решения:

    Ответ: .

    А здесь надо не делить, а умножать:

    Ответ:

    Если тригонометрические уравнения ты еще не проходил, этот пример можно пропустить.

    Так как здесь нам нужно делить на, убедимся сперва, сто он не равен нулю:

    А это невозможно.

    Ответ: .

ОДНОРОДНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Решение всех однородных уравнений сводится к делению на одну из неизвестных в степени и дальнейшей заменой переменных.

Алгоритм:

Функция f(x,y) называется однородной функцией своих аргументов измерения n , если справедливо тождество f(tx,ty) \equiv t^nf(x,y) .

Например, функция f(x,y)=x^2+y^2-xy есть однородная функция второго измерения, так как

F(tx,ty)=(tx)^2+(ty)^2-(tx)(ty)=t^2(x^2+y^2-xy)=t^2f(x,y).

При n=0 имеем функцию нулевого измерения. Например, \frac{x^2-y^2}{x^2+y^2} есть однородная функция нулевого измерения, так как

{f(tx,ty)=\frac{(tx)^2-(ty)^2}{(tx)^2+(ty)^2}=\frac{t^2(x^2-y^2)}{t^2(x^2+y^2)}=\frac{x^2-y^2}{x^2+y^2}=f(x,y).}

Дифференциальное уравнение вида \frac{dy}{dx}=f(x,y) называется однородным относительно x и y , если f(x,y) есть однородная функция своих аргументов нулевого измерения. Однородное уравнение всегда можно представить в виде

\frac{dy}{dx}=\varphi\!\left(\frac{y}{x}\right).

Вводя новую искомую функцию u=\frac{y}{x} , уравнение (1) можно привести к уравнению с разделяющими переменными:

X\frac{du}{dx}=\varphi(u)-u.

Если u=u_0 есть корень уравнения \varphi(u)-u=0 , то решение однородного уравнения будет u=u_0 или y=u_0x (прямая, проходящая через начало координат).

Замечание. При решении однородных уравнений необязательно приводить их к виду (1). Можно сразу делать подстановку y=ux .

Пример 1. Решить однородное уравнение xy"=\sqrt{x^2-y^2}+y .

Решение. Запишем уравнение в виде y"=\sqrt{1-{\left(\frac{y}{x}\right)\!}^2}+\frac{y}{x} так что данное уравнение оказывается однородным относительно x и y . Положим u=\frac{y}{x} , или y=ux . Тогда y"=xu"+u . Подставляя в уравнение выражения для y и y" , получаем x\frac{du}{dx}=\sqrt{1-u^2} . Разделяем переменные: \frac{du}{1-u^2}=\frac{dx}{x} . Отсюда интегрированием находим

\arcsin{u}=\ln|x|+\ln{C_1}~(C_1>0) , или \arcsin{u}=\ln{C_1|x|} .

Так как C_1|x|=\pm{C_1x} , то, обозначая \pm{C_1}=C , получаем \arcsin{u}=\ln{Cx} , где |\ln{Cx}|\leqslant\frac{\pi}{2} или e^{-\pi/2}\leqslant{Cx}\leqslant{e^{\pi/2}} . Заменяя u на \frac{y}{x} , будем иметь общий интеграл \arcsin{y}{x}=\ln{Cx} .

Отсюда общее решение: y=x\sin\ln{Cx} .

При разделении переменных мы делили обе части уравнения на произведение x\sqrt{1-u^2} , поэтому могли потерять решение, которые обращают в ноль это произведение.

Положим теперь x=0 и \sqrt{1-u^2}=0 . Но x\ne0 в силу подстановки u=\frac{y}{x} , а из соотношения \sqrt{1-u^2}=0 получаем, что 1-\frac{y^2}{x^2}=0 , откуда y=\pm{x} . Непосредственной проверкой убеждаемся, что функции y=-x и y=x также являются решениями данного уравнения.


Пример 2. Рассмотреть семейство интегральных кривых C_\alpha однородного уравнения y"=\varphi\!\left(\frac{y}{x}\right) . Показать, что касательные в соответственных точках к кривым, определяемым этим однородным дифференциальным уравнением, параллельны между собой.

Примечание: Будем называть соответственными те точки на кривых C_\alpha , которые лежат на одном луче, выходящем из начала координат.

Решение. По определению соответственных точек имеем \frac{y}{x}=\frac{y_1}{x_1} , так что в силу самого уравнения y"=y"_1 , где y" и y"_1 - угловые коэффициенты касательных к интегральным кривым C_\alpha и C_{\alpha_1} , в точках M и M_1 соответственно (рис. 12).

Уравнения, приводящиеся к однородным

А. Рассмотрим дифференциальное уравнение вида

\frac{dy}{dx}=f\!\left(\frac{ax+by+c}{a_1x+b_1y+c_1}\right).

где a,b,c,a_1,b_1,c_1 - постоянные, а f(u) - непрерывная функция своего аргумента u .

Если c=c_1=0 , то уравнение (3) является однородным и оно интегрируется, как указано выше.

Если хотя бы одно из чисел c,c_1 отлично от нуля, то следует различать два случая.

1) Определитель \Delta=\begin{vmatrix}a&b\\a_1&b_1\end{vmatrix}\ne0 . Вводя новые переменные \xi и \eta по формулам x=\xi+h,~y=\eta+k , где h и k - пока неопределенные постоянные, приведем уравнение (3) к виду

\frac{d\eta}{d\xi}=f\!\left(\frac{a\xi+b\eta+ah+bk+c}{a_1\xi+b_2\eta+a_1h+b_1k+c_1}\right).

Выбирая h и k как решение системы линейных уравнений

\begin{cases}ah+bk+c=0,\\a_1h+b_1k+c_1=0\end{cases}~(\Delta\ne0),

получаем однородное уравнение \frac{d\eta}{d\xi}=f\!\left(\frac{a\xi+b\eta}{a_1\xi+b_1\eta}\right) . Найдя его общий интеграл и заменив в нем \xi на x-h , a \eta на y-k , получаем общий интеграл уравнения (3).

2) Определитель \Delta=\begin{vmatrix}a&b\\a_1&b_1\end{vmatrix}=0 . Система (4) в общем случае не имеет решений и изложенный выше метод неприменим; в этом случае \frac{a_1}{a}=\frac{b_1}{b}=\lambda , и, следовательно, уравнение (3) имеет вид \frac{dy}{dx}=f\!\left(\frac{ax+by+c}{\lambda(ax+by)+c_1}\right) . Подстановка z=ax+by приводит его к уравнению с разделяющимися переменными.

Пример 3. Решить уравнение (x+y-2)\,dx+(x-y+4)\,dy=0 .

Решение. Рассмотрим систему линейных алгебраических уравнений \begin{cases}x+y-2=0,\\x-y+4=0.\end{cases}

Определитель этой системы \Delta=\begin{vmatrix}\hfill1&\hfill1\\\hfill1&\hfill-1\end{vmatrix}=-2\ne0 .

Система имеет единственное решение x_0=-1,~y_0=3 . Делаем замену x=\xi-1,~y=\eta+3 . Тогда уравнение (5) примет вид

(\xi+\eta)\,d\xi+(\xi-\eta)\,d\eta=0.

Это уравнение является однородным уравнением. Полагая \eta=u\xi , получаем

(\xi+\xi{u})\,d\xi+(\xi-\xi{u})(\xi\,du+u\,d\xi)=0 , откуда (1+2u-u^2)\,d\xi+\xi(1-u)\,du=0 .

Разделяем переменные \frac{d\xi}{\xi}+\frac{1-u}{1+2u-u^2}\,du=0.

Интегрируя, найдем \ln|\xi|+\frac{1}{2}\ln|1+2u-u^2|=\ln{C} или \xi^2(1+2u-u^2)=C .

Возвращаемся к переменным x,~y :

(x+1)^2\left=C_1 или x^2+2xy-y^2-4x+8y=C~~(C=C_1+14).

Пример 4. Решить уравнение (x+y+1)\,dx+(2x+2y-1)\,dy=0 .

Решение. Система линейных алгебраических уравнений \begin{cases}x+y+1=0,\\2x+2y-1=0\end{cases} несовместна. В этом случае метод, примененный в предыдущем примере, не подходит. Для интегрирования уравнения применяем подстановку x+y=z , dy=dz-dx . Уравнение примет вид

(2-z)\,dx+(2z-1)\,dz=0.

Разделяя переменные, получаем

Dx-\frac{2z-1}{z-2}\,dz=0 отсюда x-2z-3\ln|z-2|=C.

Возвращаясь к переменным x,~y , получаем общий интеграл данного уравнения

X+2y+3\ln|x+y-2|=C.

Б. Иногда уравнение можно привести к однородному заменой переменного y=z^\alpha . Это имеет место в том случае, когда в уравнении все члены оказываются одинакового измерения, если переменному x приписать измерение 1, переменному y - измерение \alpha и производной \frac{dy}{dx} - измерение \alpha-1 .

Пример 5. Решить уравнение (x^2y^2-1)\,dy+2xy^3\,dx=0 .

Решение. Делаем подстановку y=z^\alpha,~dy=\alpha{z^{\alpha-1}}\,dz , где \alpha пока произвольное число, которое мы выберем позже. Подставляя в уравнение выражения для y и dy , получим

\alpha(x^2x^{2\alpha}-1)z^{\alpha-1}\,dz+2xz^{3\alpha}\,dx=0 или \alpha(x^2z^{3\alpha-1}-z^{\alpha-1})\,dz+2xz^{3\alpha}\,dx=0,

Заметим, что x^2z^{3\alpha-1} имеет измерение 2+3\alpha-1=3\alpha+1, z^{\alpha-1} имеет измерение \alpha-1 , xz^{3\alpha} имеет измерение 1+3\alpha . Полученное уравнение будет однородным, если измерения всех членов одинаковы, т.е. если выполняется условие 3\alpha+1=\alpha-1 , или \alpha-1 .

Положим y=\frac{1}{z} ; исходное уравнение принимает вид

\left(\frac{1}{z^2}-\frac{x^2}{z^4}\right)dz+\frac{2x}{z^3}\,dx=0 или (z^2-x^2)\,dz+2xz\,dx=0.

Положим теперь z=ux,~dz=u\,dx+x\,du . Тогда это уравнение примет вид (u^2-1)(u\,dx+x\,du)+2u\,dx=0 , откуда u(u^2+1)\,dx+x(u^2-1)\,du=0 .

Разделяем переменные в этом уравнении \frac{dx}{x}+\frac{u^2-1}{u^3+u}\,du=0 . Интегрируя, найдем

\ln|x|+\ln(u^2+1)-\ln|u|=\ln{C} или \frac{x(u^2+1)}{u}=C.

Заменяя u через \frac{1}{xy} , получаем общий интеграл данного уравнения 1+x^2y^2=Cy.

Уравнение имеет еще очевидное решение y=0 , которое получается из общего интеграла при C\to\infty , если интеграл записать в виде y=\frac{1+x^2y^2}{C} , а затем перейти к пределу при C\to\infty . Таким образом, функция y=0 является частным решением исходного уравнения.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Чтобы решить однородное дифференциальное уравнение 1-го порядка, используют подстановку u=y/x, то есть u — новая неизвестная функция, зависящая от икса. Отсюда y=ux. Производную y’ находим с помощью правила дифференцирования произведения:y’=(ux)’=u’x+x’u=u’x+u (так как x’=1). Для другой формы записи: dy=udx+xdu.После подстановки уравнение упрощаем и приходим к уравнению с разделяющимися переменными.

Примеры решения однородных дифференциальных уравнений 1-го порядка.

1) Решить уравнение

Проверяем, что это уравнение является однородным (см. Как определить однородное уравнение). Убедившись, делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем: u’x+u=u(1+ln(ux)-lnx). Так как логарифм произведения равен сумме логарифмов, ln(ux)=lnu+lnx. Отсюда

u’x+u=u(1+lnu+lnx-lnx). После приведения подобных слагаемых: u’x+u=u(1+lnu). Теперь раскрываем скобки

u’x+u=u+u·lnu. В обеих частях стоит u, отсюда u’x=u·lnu. Поскольку u — функция от икса, u’=du/dx. Подставляем,

Получили уравнение с разделяющимися переменными. Разделяем переменные, для чего обе части умножаем на dx и делим на x·u·lnu, при условии, что произведение x·u·lnu≠0

Интегрируем:

В левой части — табличный интеграл. В правой — делаем замену t=lnu, откуда dt=(lnu)’du=du/u

ln│t│=ln│x│+C. Но мы уже обсуждали, что в таких уравнениях вместо С удобнее взять ln│C│. Тогда

ln│t│=ln│x│+ln│C│. По свойству логарифмов: ln│t│=ln│Сx│. Отсюда t=Cx. (по условию, x>0). Пора делать обратную замену: lnu=Cx. И еще одна обратная замена:

По свойству логарифмов:

Это — общий интеграл уравнения.

Вспоминаем условие произведение x·u·lnu≠0 (а значит, x≠0,u≠0, lnu≠0, откуда u≠1). Но x≠0 из условия, остается u≠1, откуда x≠y. Очевидно, что y=x (x>0) входят в общее решение.

2) Найти частный интеграл уравнения y’=x/y+y/x, удовлетворяющий начальным условиям y(1)=2.

Сначала проверяем, что это уравнение является однородным (хотя наличие слагаемых y/x и x/y уже косвенно указывает на это). Затем делаем замену u=y/x, откуда y=ux, y’=(ux)’=u’x+x’u=u’x+u. Подставляем полученные выражения в уравнение:

u’x+u=1/u+u. Упрощаем:

u’x=1/u. Так как u — функция от икса, u’=du/dx:

Получили уравнение с разделяющимися переменными. Чтобы разделить переменные, умножаем обе части на dx и u и делим на x (x≠0 по условию, отсюда u≠0 тоже, значит, потери решений при этом не происходит).

Интегрируем:

и поскольку в обеих частях стоят табличные интегралы, сразу же получаем

Выполняем обратную замену:

Это — общий интеграл уравнения. Используем начальное условие y(1)=2, то есть подставляем в полученное решение y=2, x=1:

3) Найти общий интеграл однородного уравнения:

(x²-y²)dy-2xydx=0.

Замена u=y/x, откуда y=ux, dy=xdu+udx. Подставляем:

(x²-(ux)²)(xdu+udx)-2ux²dx=0. Выносим x² за скобки и делим на него обе части (при условии x≠0):

x²(1-u²)(xdu+udx)-2ux²dx=0

(1-u²)(xdu+udx)-2udx=0. Раскрываем скобки и упрощаем:

xdu-u²xdu+udx-u³dx-2udx=0,

xdu-u²xdu-u³dx-udx=0. Группируем слагаемые с du и dx:

(x-u²x)du-(u³+u)dx=0. Выносим общие множители за скобки:

x(1-u²)du-u(u²+1)dx=0. Разделяем переменные:

x(1-u²)du=u(u²+1)dx. Для этого обе части уравнения делим на xu(u²+1)≠0 (соответственно, добавляем требования x≠0 (уже отметили), u≠0):

Интегрируем:

В правой части уравнения — табличный интеграл, рациональную дробь в левой части раскладываем на простые множители:

(или во втором интеграле можно было вместо подведения под знак дифференциала сделать замену t=1+u², dt=2udu — кому какой способ больше нравится). Получаем:

По свойствам логарифмов:

Обратная замена

Вспоминаем условие u≠0. Отсюда y≠0. При С=0 y=0, значит, потери решений не происходит, и y=0 входит в общий интеграл.

Замечание

Можно получить запись решения в другом виде, если слева оставить слагаемое с x:

Геометрический смысл интегральной кривой в этом случае — семейство окружностей с центрами на оси Oy и проходящих через начало координат.

Задания для самопроверки:

1) (x²+y²)dx-xydy=0

1) Проверяем, что уравнение является однородным, после чего делаем замену u=y/x, откуда y=ux, dy=xdu+udx. Подставляем в условие: (x²+x²u²)dx-x²u(xdu+udx)=0. Разделив обе части уравнения на x²≠0, получаем: (1+u²)dx-u(xdu+udx)=0. Отсюда dx+u²dx-xudu-u²dx=0. Упростив, имеем: dx-xudu=0. Отсюда xudu=dx, udu=dx/x. Интегрируем обе части:

Например, функция
- однородная функция первого измерения, так как

- однородная функция третьего измерения, так как

- однородная функция нулевого измерения, так как

, т.е.
.

Определение 2. Дифференциальное уравнение первого порядкаy " = f (x , y ) называется однородным, если функцияf (x , y ) есть однородная функция нулевого измерения относительноx иy , или, как говорят,f (x , y ) – однородная функция степени нуль.

Его можно представить в виде

что позволяет определить однородное уравнение как такое дифференциальное, которое можно преобразовать к виду (3.3).

Замена
приводит однородное уравнение к уравнению с разделяющимися переменными. Действительно, после подстановкиу = xz получим
,
Разделяя переменные и интегрируя, найдем:


,

Пример 1.Решить уравнение.

Δ Полагаем у = zx ,
Подставляем эти выраженияy иdy в данное уравнение:
или
Разделяем переменные:
и интегрируем:
,

Заменяя z на, получим
.

Пример 2. Найти общее решение уравнения.

Δ В данном уравнении P (x ,y ) =x 2 -2y 2 ,Q (x ,y ) =2xy – однородные функции второго измерения, следовательно, данное уравнение является однородным. Его можно представить в виде
и решать так же, как и представленное выше. Но используем другую форму записи. Положимy = zx , откудаdy = zdx + xdz . Подставляя эти выражения в исходное уравнение, будем иметь

dx +2 zxdz = 0 .

Разделяем переменные, считая

.

Интегрируем почленно это уравнение

, откуда

то есть
. Возвращаясь к прежней функции
находим общее решение

Пример 3 . Найти общее решение уравнения
.

Δ Цепочка преобразований: ,y = zx ,
,
,
,
,
,
,
,
, ,
.

Лекция 8.

4. Линейные дифференциальные уравнения первого порядка Линейное дифференциальное уравнение первого порядка имеет вид

Здесь – свободный член, называемый также правой частью уравнения. В этом виде будем рассматривать линейное уравнение в дальнейшем.

Если
0, то уравнение (4.1а) называется линейным неоднородным. Если же
0, то уравнение принимает вид

и называется линейным однородным.

Название уравнения (4.1а) объясняется тем, что неизвестная функция y и её производнаявходят в него линейно, т.е. в первой степени.

В линейном однородном уравнении переменные разделяются. Переписав его в виде
откуда
и интегрируя, получаем:
,т.е.


При делении на теряем решение
. Однако оно может быть включено в найденное семейство решений (4.3), если считать, чтоС может принимать и значение 0.

Существует несколько методов решения уравнения (4.1а). Согласно методу Бернулли , решение ищется в виде произведения двух функций отх :

Одна из этих функций может быть выбрана произвольно, так как лишь произведение uv должно удовлетворять исходному уравнению, другая определяется на основании уравнения (4.1а).

Дифференцируя обе части равенства (4.4), находим
.

Подставляя полученное выражение производной , а также значениеу в уравнение (4.1а), получаем
, или

т.е. в качестве функции v возьмём решение однородного линейного уравнения (4.6):

(Здесь C писать обязательно, иначе получится не общее, а частное решение).

Таким образом, видим, что в результате используемой подстановки (4.4) уравнение (4.1а) сводится к двум уравнениям с разделяющимися переменными (4.6) и (4.7).

Подставляя
иv (x) в формулу (4.4), окончательно получаем

,

.

Пример 1. Найти общее решение уравнения

 Положим
, тогда
. Подставляя выраженияив исходное уравнение, получим
или
(*)

Приравняем нулю коэффициент при :

Разделяя переменные в полученном уравнении, имеем


(произвольную постояннуюC не пишем), отсюдаv = x . Найденное значениеv подставляем в уравнение (*):

,
,
.

Следовательно,
общее решение исходного уравнения.

Отметим, что уравнение (*) можно было записать в эквивалентном виде:

.

Произвольно выбирая функцию u , а неv , мы могли полагать
. Этот путь решения отличается от рассмотренного только заменойv наu (и, следовательно,u наv ), так что окончательное значениеу оказывается тем же самым.

На основании изложенного выше получаем алгоритм решения линейного дифференциального уравнения первого порядка.


Отметим далее, что иногда уравнение первого порядка становится линейным, если у считать независимой переменной, аx – зависимой, т.е. поменять ролиx иy . Это можно сделать при условии, чтоx иdx входят в уравнение линейно.

Пример 2 . Решить уравнение
.

    По виду это уравнение не является линейным относительно функции у .

Однако если рассматривать x как функцию оту , то, учитывая, что
,его можно привести к виду

(4.1 б )

Заменив на,получим
или
. Разделив обе части последнего уравнения на произведениеydy , приведем его к виду

, или
. (**)

Здесь P(y)=,
. Это линейное уравнение относительноx . Полагаем
,
. Подставляя эти выражения в (**), получаем

или
.

Выберем vтак, чтобы
,
, откуда
;
. Далее имеем
,
,
.

Т.к.
, то приходим к общему решению данного уравнения в виде

.

Отметим, что в уравнение (4.1а) P (x ) иQ (x ) могут входить не только в виде функций от x , но и констант:P = a ,Q = b . Линейное уравнение

можно решать и с помощью подстановки y=uv и разделением переменных:

;
.

Отсюда
;
;
; где
. Освобождаясь от логарифма, получаем общее решение уравнения

(здесь
).

При b = 0 приходим к решению уравнения

(см. уравнение показательного роста (2.4) при
).

Сначала интегрируем соответствующее однородное уравнение (4.2). Как указано выше, его решение имеет вид (4.3). Будем считать сомножитель С в (4.3) функцией отх , т.е. по существу делаем замену переменной

откуда, интегрируя, находим

Отметим, что согласно (4.14) (см. также (4.9)), общее решение неоднородного линейного уравнения равно сумме общего решения соответствующего однородного уравнения (4.3) и частного решения неоднородного уравнения, определяемого вторым слагаемым, входящим в (4.14) (и в (4.9)).

При решении конкретных уравнений следует повторять приведённые выше выкладки, а не использовать громоздкую формулу (4.14).

Применим метод Лагранжа к уравнению, рассмотренному в примере 1 :

.

Интегрируем соответствующее однородное уравнение
.

Разделяя переменные, получаем
и далее
. Решение выражения формулойy = Cx . Решение исходного уравнения ищем в видеy = C (x )x . Подставив это выражение в заданное уравнение, получим
;
;
,
. Общее решение исходного уравнения имеет вид

.

В заключение отметим, что к линейному уравнению приводится уравнение Бернулли

, (
)

которое можно записать в виде

.

Заменой
оно приводится к линейному уравнению:

,
,
.

Уравнения Бернулли также решаются изложенными выше методами.

Пример 3 . Найти общее решения уравнения
.

 Цепочка преобразований:
,
,,
,
,
,
,
,
,
,
,
,
,
,