Болезни Военный билет Призыв

Очень темные дела: как объяснить ускоренное расширение Вселенной. Вселенная стивена хокинга

Кембриджский университет предоставил пользователям со всего мира возможность ознакомиться с электронной копией работы Хокинга под названием «Свойства расширяющихся вселенных». Желающих оказалось так много, что вскоре сайт рухнул.

Следующая новость

Кембриджская библиотека открыла доступ к докторской диссертации самого известного ученого современности в понедельник, в 00:01 по местному времени. Как сообщает The Telegraph , в первые 12 часов соответствующую страницу в библиотечной системе Apollo посетили более 60 тысяч человек. Сайт не справляется с наплывом пользователей до сих пор, время от времени выходя из строя.

Когда в 1966 году никому не известный студент-физик защищал свою докторскую диссертацию, он не представлял, что 50 лет спустя тысячи людей будут нуждаться в возможности почитать ее. <…> Теперь его докторская диссертация стала доступна широкой аудитории, и каждый, кто разделяет его страсть к звездам, может следовать за ним

«Диссертация Стивена Хокинга так популярна, что она, кажется, сломала интернет. По крайней мере, его часть», — пишет The Independent . Сам ученый заявил, что его радует информация об интересе читателей, и выразил надежду, что его работа вдохновит новые поколения исследователей на новые научные свершения.

Основные вопросы этого исследования — сущность и последствия непрерывного расширения вселенной. Среди сделанных Хокингом выводов одним из ключевых является тезис о том, что рост и коллапс первоначальных малых возмущений не мог быть причиной формирования галактик.

Предоставляя открытый доступ к моей диссертации, я надеюсь вдохновить людей по всему миру смотреть вверх, на звезды, а не себе под ноги; размышлять о нашем месте во вселенной, пытаться — и суметь постичь смысл космоса. Каждый человек из любой точки мира должен иметь свободный, беспрепятственный доступ не только к моему исследованию, но и к каждой выдающейся и пытливой мысли среди обширного спектра человеческого разума

— Стивен Хокинг.

Хокинг завершил этот труд в 24 года. К тому времени ему уже был поставлен диагноз «боковой амиотрофический склероз». В 1963 году врачи сообщили Хокингу, что ему осталось жить около двух лет, однако спустя три года ученый успешно защитил диссертацию, а спустя еще 22 года опубликовал свою «Краткую историю времени». Очень скоро книга стала бестселлером, она до сих пор занимает важнейшее место среди научно-популярной литературы. В основу знаменитой книги легла, в частности, и диссертация Хокинга — одна из глав «Краткой истории времени» посвящена проблеме расширяющихся вселенных.

В настоящее время Стивену Хокингу 75 лет. Прожив более 50 лет с неизлечимым заболеванием, постепенно угнетающим центральную нервную систему организма, и утратив способность двигаться и говорить, ученый продолжает вести исследовательскую деятельность и популяризировать науку. В прошлом году он поддержал технологический проект The Breakthrough Initiatives, направленный на изучение проблемы существования жизни во вселенной.

Каждое поколение стоит на плечах тех, кто прошел перед ними — и я тоже, будучи юным студентом Кембриджа, вдохновлялся работами Исаака Ньютона, Джеймса Максвелла и Альберта Эйнштейна. Замечательно слышать, сколько людей уже проявили интерес к моей диссертации, скачав ее. Надеюсь, они не будут разочарованы теперь, когда, наконец, получили к ней доступ!

— Стивен Хокинг.

Диссертация «Свойства расширяющихся вселенных» является самой запрашиваемой научной работой библиотеки Кембриджа. По данным BBC , с мая 2016 на ознакомление с ней было оформлено 199 заявок — при этом предполагается, что они были оставлены людьми, не причастными к академической среде. Для сравнения, следующая работа в «топе» самых востребованных кембриджских публикаций была запрошена всего 13 раз.

Руководство Кембриджа надеется, что вслед за Хокингом разрешение на публикацию своих работ в открытом доступе дадут и другие ведущие ученые университета. С момента учреждения Нобелевской премии ее лауреатами стали 98 выпускников и сотрудников этого учебного заведения. О том, почему важно сделать их труды общедоступными, Cambridge News рассказал заместитель начальника отдела научных коммуникаций вуза Артур Смит: «Устранив барьеры между людьми и знанием, мы реализуем прорывы во всех областях науки, медицины и технологий».

С октября 2017 года все аспиранты, окончившие Кембриджский университет, будут обязаны предоставлять электронные копии своих докторских диссертаций для сохранения и дальнейшей публикации в интегрированной библиотечной системе Apollo. На данный момент в ее базе хранится более 200 тысяч цифровых документов — в том числе около 15 тысяч научных статей, 10 тысяч изображений и 2,4 тысячи диссертаций. Электронная библиотека доступна пользователям по всему миру.

Следующая новость

О сложных теориях простым языком.

Сегодня утром умер известный физик и популяризатор науки Стивен Хокинг. Ученый занимался космологией и квантовой гравитацией.

Мы рассказываем простым языком об основных открытиях Хокинга, которые изменили науку.

  1. Излучение Хокинга

    Хокинг разработал теорию о том, что черные дыры «испаряются» за счет особого излучения, которое потом назвали его именем.

    До этого открытия ученые считали, что черные ничего не излучают, а лишь поглощают. Он доказал, что черные дыры не совсем черные, так как излучают остаточную радиацию.

    Также Хокинг делает вывод, что черные дыры существуют не вечно: они излучают все более сильный ветер и, в конце концов, исчезают в результате гигантского взрыва.

    Эйнштейн так и не принял квантовую механику из-за связанного с ней элемента случайности и неопределенности. Он сказал: Бог не играет в кости. Похоже, что Эйнштейн ошибся дважды. Квантовый эффект черной дыры позволяет предположить, что Бог не только играет в кости, но и иногда бросает их туда, где их нельзя увидеть.Стивен Хокинг.
  2. Вселенная создала себя сама

    Эта теория Хокинга посвящена вопросу создания вселенной, у которой, по мнению ученого, не было начала и самого момента творения. Ученый предположил, что есть другое направление движения времени (не только вперед или назад), и выдвинул теорию о воображаемом времени, для которого вообще не существует понятий «начала» или «конец».

    Хокинг был убежденным атеистом. Вот его цитата на эту тему:

    Поскольку существует такая сила как гравитация, Вселенная могла и создала себя из ничего. Самопроизвольное создание - причина того, почему существует Вселенная, почему существуем мы. Нет никакой необходимости в Боге для того, чтобы "зажечь" огонь и заставить Вселенную работать.Стивен Хокинг.
  3. Вселенная расширяется

    До 20 века считалось, что Вселенная вечна и неизменна. Хокинг доступным языком доказал, что это не так.

    В свете от далеких галактик происходит смещение в сторону красной части спектра. Это означает, что они удаляются от нас, что Вселенная расширяется.Стивен Хокинг.
  4. Кварки не бывают одиноки

    Кварки - элементарные частицы, из которых состоят протоны и нейтроны. Хокинг доказал, что существуют только группами и никогда - по одному. Сила, которая связывает кварки, увеличивается с увеличением расстояния между ними. Если попытаться оттянуть один кварк от другого, они только с большей силой притянутся.

  5. Теория сжатия Вселенной

    Хокинг думал о том, что произойдет, когда Вселенная перестанет расширяться и начнет сжиматься. Пойдет ли время в другую сторону?

    Мне казалось, что когда начнется сжатие, Вселенная вернется в упорядоченное состояние. В таком случае, с началом сжатия время должно было повернуть вспять. Люди в этой стадии проживали бы жизнь задом наперед и молодели по мере сжатия Вселенной. Стивен Хокинг.

    Этот процесс показан в фильме «Господин Никто» с Джаредом Лето в главной роли.

    Попытки создать математическую модель этой теории провалились, но она остается популярной. У Вселенной только два варианта: или бесконечное расширение, или сжатие.

  6. Существует огромное число Вселенных

    Речь идет об М-теории, которую Хокинг дорабатывал с Леонардом Млодиновым. М-теория - это ответвление теории струн. Согласно этой теории, на самом мельчайшем уровне все частицы состоят из бран - многомерных мембран, свойства которых могут объяснить абсолютно все процессы, происходящие в нашей Вселенной.

    Кстати, эта теория также предполагает существование огромного числа вселенных, в которых действуют физические законы, отличные от наших.

    А этот факт в свою очередь предполагает наличие инопланетян. Хокинг в них верил.

    Во Вселенной со 100 миллиардами галактик, каждая из которых содержит сотни миллионов звезд, маловероятно, что Земля является единственным местом, где развивается жизнь.Стивен Хокинг.

2.2. Расширяется ли Вселенная на самом деле?

Размышляя над всей этой историей, я исходил из предпосылки, что истиной, какой бы невероятной она ни казалась, является то, что останется, если отбросить все невозможное. Не исключено, что это оставшееся допускает несколько объяснений. В таком случае необходимо проанализировать каждый вариант, пока не останется один, достаточно убедительный.

Артур Конан Дойл

Почему все так уверены, что Вселенная действительно расширяется? В научной литературе реальность расширения уже почти не обсуждается, так как профессиональные ученые, знающие проблему во всей ее полноте, в этом практически не сомневаются. Активные обсуждения этого вопроса часто вспыхивают на разного рода интернет-форумах, где представители так называемой «альтернативной науки» (в противовес «ортодоксальной») снова и снова пытаются «изобрести велосипед» и найти другое, не связанное с удалением объектов, объяснение наблюдаемому в спектрах галактик красному смещению. Такие попытки, как правило, основаны на незнании того, что, помимо красного смещения, есть и другие свидетельства в пользу реальности космологического расширения. Строго говоря, стационарность Вселенной была бы гораздо большей проблемой для науки, чем ее расширение!

Современная наука представляет собой плотно сотканную ткань взаимосвязанных результатов или, если угодно, постоянно строящееся здание, из основания которого уже нельзя вытащить ни один из кирпичей без того, чтобы все здание не рухнуло. Расширение Вселенной и созданная на его основе картина строения и эволюции Вселенной и составляющих ее объектов – один из таких базовых результатов современной науки.

Но сначала несколько слов о недоплеровской интерпретации красного смещения. Вскоре после открытия зависимости z от расстояния возникла – и это вполне естественно – идея, что красное смещение может быть связано не с удалением объектов, а с тем, что по пути от далеких галактик часть энергии фотонов теряется и, следовательно, длина волны излучения увеличивается, оно «краснеет». Приверженцами такой точки зрения были, к примеру, один из основоположников астрофизики в России А. А. Белопольский, а также Фриц Цвикки – один из самых нестандартно мыслящих и плодотворных астрономов XX века. К подобному объяснению z время от времени склонялся и сам Хаббл. Вскоре, однако, выяснилось, что подобные процессы потери энергии фотонами должны сопровождаться размыванием изображений источников (чем дальше галактика, тем сильнее размытие), что не наблюдалось. Другой вариант этого сценария, как было показано советским физиком М. П. Бронштейном, предсказывал, что эффект покраснения должен быть разным в разных частях спектра, то есть он должен зависеть от длины волны. К началу 60-х годов XX века развитие радиоастрономии закрыло и эту возможность – для данной галактики величина красного смещения оказалась не зависящей от длины волны. Знаменитый советский астрофизик В. А. Амбарцумян еще в 1957 году резюмировал ситуацию с разными вариантами интерпретации красного смещения таким образом: «Все попытки объяснить красное смещение каким-либо механизмом, отличным от принципа Доплера, окончились неудачей. Эти попытки вызывались не столько логической или научной необходимостью, сколько известным страхом… перед грандиозностью самого явления…».

Рассмотрим теперь несколько наблюдательных тестов, поддерживающих картину глобального космологического расширения Вселенной. Первый из них был предложен еще в 1930 году американским физиком Ричардом Толменом. Толмен обнаружил, что так называемая поверхностная яркость объектов будет вести себя по-разному в стационарной и в расширяющейся Вселенной.

Поверхностная яркость – это просто энергия, излучаемая единицей площади объекта в единицу времени (например, за секунду) в каком-нибудь направлении или, более точно, в единице телесного угла. В стационарной Вселенной, в которой причиной красного смещения является какой-то неизвестный закон природы, приводящий к уменьшению энергии фотонов по пути к наблюдателю («старение» или «усталость» фотонов), поверхностная яркость объекта должна уменьшаться пропорционально величине 1 + z . Это означает, что, если галактика находится на таком расстоянии, что для нее z = 1, то она должна выглядеть в два раза тусклее по сравнению с такими же галактиками вблизи нас, то есть при z = 0.

В расширяющейся Вселенной зависимость яркости (имеется в виду болометрическая, то есть полная, просуммированная по всему спектру, яркость) от красного смещения становится гораздо сильнее – она спадает как (1 + z )4. В этом случае объект с z = 1 будет выглядеть уже не в 2, а в 16 раз более тусклым. Причиной столь сильного падения яркости является то, что, помимо уменьшения энергии фотонов из-за красного смещения, при реальном удалении галактик начинают работать дополнительные эффекты. Так, каждый новый фотон, испускаемый далекой галактикой, будет добираться до наблюдателя с все большего расстояния и тратить на дорогу все большее время. Интервалы между приходами фотонов возрастут и, значит, за единицу времени на приемник излучения будет попадать меньше энергии и наблюдаемая нами галактика будет казаться слабее. Кроме того, в случае реального расширения зависимость углового размера галактики от z будет другой, чем для стационарной Вселенной, что также приводит к изменению ее наблюдаемой поверхностной яркости.

Тест Толмена выглядит очень простым и наглядным – действительно, достаточно взять два сходных объекта на разных красных смещениях и сравнить их яркости. Однако технические сложности его осуществления таковы, что применить этот тест смогли лишь относительно недавно – в девяностых годах XX века. Сделал это ученик и последователь Хаббла знаменитый американский астроном Алан Сендидж . Совместно с разными коллегами Сендидж опубликовал целую серию статей, в которых он рассмотрел тест Толмена для далеких эллиптических галактик.

Эллиптические галактики примечательны тем, что они относительно просто устроены. В первом приближении их можно представить как гигантские конгломераты родившихся практически одновременно звезд, имеющие сглаженное, без каких-либо особенностей, крупномасштабное распределение яркости (ярчайшие галактики на рис. 16 относятся как раз к этому типу). У эллиптических галактик существует простое эмпирическое соотношение, связывающие воедино их основные наблюдательные характеристики – размер, поверхностную яркость и разброс скоростей звезд вдоль луча зрения. (При определенных допущениях это соотношение является следствием предположения об устойчивости эллиптических галактик.) Разные двумерные проекции этой трехпараметрической зависимости также показывают хорошую корреляцию например, существует зависимость между размером и яркостью галактик. Значит, сравнивая эллиптические галактики одного характерного линейного размера на разных z, можно реализовать тест Толмена.

Примерно так и действовал Сендидж. Он рассмотрел несколько скоплений галактик на z ~ 1 и сравнил поверхностные яркости наблюдаемых в них эллиптических галактик с данными для подобных галактик вблизи нас. Для корректности сравнения Сендиджу пришлось учесть ожидаемую эволюцию яркостей галактик за счет «пассивной» эволюции составляющих их звезд, однако эта поправка в настоящее время определяется вполне надежно. Результаты оказались однозначными – поверхностная яркость галактик изменяется пропорционально 1/(1 + z )4 и, следовательно, Вселенная расширяется. Модель стационарной Вселенной со «стареющими» фотонами не удовлетворяет наблюдениям.

Еще один интересный тест был также предложен очень давно, а реализован лишь относительно недавно. Фундаментальным свойством расширяющейся Вселенной является кажущееся замедление времени у далеких объектов. Чем дальше от нас в расширяющейся Вселенной находятся часы, тем медленнее, как нам кажется, они идут – на больших z длительность всех процессов кажется растянутой в (1 + z ) раз (рис 22). (Этот эффект подобен релятивистскому замедлению времени в специальной теории относительности.) Поэтому, если найти такие «часы», которые можно наблюдать на больших расстояниях, то можно непосредственно проверить реальность расширения Вселенной.

Рис. 22. Импульсы, испущенные далеким объектом на красном смещении z с интервалом в 1 секунду, доберутся до нас с интервалами 1 + z секунд.

В 1939 году американский астроном Олин Вилсон опубликовал заметку, в которой он отметил удивительное постоянство формы кривых блеска сверхновых звезд (см. пример кривой блеска сверхновой Тихо Браге на рис. 4, а также рис. 23) и предложил использовать эти кривые в качестве «космологических часов». Вспышка сверхновой – это один из самых мощных катастрофических процессов во Вселенной. В ходе такой вспышки звезда со скоростью ~ 104 км/с сбрасывает оболочку с массой, сравнимой с массой Солнца. При этом звезда становится ярче в десятки миллионов раз, и в максимуме блеска она способна затмить всю галактику, в которой она вспыхнула. Столь яркий объект, естественно, виден на очень больших, космологических расстояниях. Как можно использовать кривые блеска сверхновых в качестве «часов»? (Их можно использовать и в качестве «стандартной свечи», но об этом я расскажу чуть позже.) Во-первых, не все сверхновые одинаковы по своим наблюдательным проявлениям и по кривым блеска. Их делят на два типа (I и II), а те в свою очередь подразделяют на несколько подтипов. В дальнейшем мы будем обсуждать только кривые блеска сверхновых типа Ia. Во-вторых, даже у этого типа звезд кривые блеска на первый взгляд выглядят очень разнообразными и совсем не очевидно, что с ними можно сделать. Например, на рисунке 23 показаны наблюдаемые кривые блеска нескольких близких сверхновых типа Ia. Эти кривые довольно сильно отличаются: например, светимости показанных на рисунке звезд в максимуме блеска различаются почти в три раза.

Рис. 23. Кривые блеска SN Ia: на верхнем рисунке показаны наблюдаемые кривые, на нижнем они сведены в одну с учетом корреляции между формой кривой блеска и светимостью сверхновой в максимуме. По горизонтальной оси отложены дни после максимума блеска, по вертикальной – абсолютная звездная величина (мера светимости). По данным проекта Calan-Tololo Supernova Survey

Ситуацию спасает то, что разнообразие форм наблюдаемых кривых блеска подчиняется четкой корреляции: чем ярче SN в максимуме, тем более плавно затем спадает ее яркость. Эта зависимость была открыта советским астрономом Юрием Псковским еще в 1970-х годах и позднее – уже в 1990-х – была подробно изучена другими исследователями. Оказалось, что с учетом этой корреляции кривые блеска SN Ia удивительно однородны (см. рис. 23) – например, разброс светимостей SN Ia в максимуме блеска составляет лишь около 10 %! Следовательно, изменение блеска у SN Ia может рассматриваться как стандартный процесс, длительность которого в локальной системе отсчета хорошо известна. Использование этих «часов» показало, что у далеких сверхновых (сейчас обнаружено уже несколько десятков SN с z > 1) изменения видимого блеска и спектра замедлены на множитель (1 + z ). Это является непосредственным и очень сильным аргументом в пользу реальности космологического расширения. Еще одним аргументом является согласие возраста Вселенной, получаемого в рамках модели расширяющейся Вселенной, с возрастом реально наблюдаемых объектов. Расширение означает, что с течением времени расстояния между галактиками увеличиваются. Мысленно обратив этот процесс вспять, мы приходим к выводу, что это глобальное расширение должно было когда-то начаться. Зная текущий темп расширения Вселенной (он определяется значением постоянной Хаббла) и баланс плотностей составляющих ее подсистем (обычное вещество, темная материя, темная энергия), можно найти, что расширение началось примерно 14 миллиардов лет назад. Значит, мы не должны наблюдать в нашей Вселенной объекты с возрастом, превышающим эту оценку.

Но как можно найти возраст космических объектов? По-разному. Например, с помощью радиоактивных «часов» – методами ядерной космохронологии, которые позволяют оценивать возраст объектов путем анализа относительной распространенности изотопов с большими периодами полураспада. Изучение содержания изотопов в метеоритах, в земных и лунных породах показало, что возраст Солнечной системы близок к 5 млрд лет. Возраст Галактики, в которой находится наша Солнечная система, конечно, больше. Его можно оценить по времени, которое необходимо для образования наблюдаемого в Солнечной системе количества тяжёлых элементов. Расчеты показывают, что синтез этих элементов должен был продолжаться в течение ~ 5 млрд лет до образования Солнечной системы. Следовательно, возраст окружающих нас областей Млечного Пути близок к 10 млрд лет.

Другой способ датирования Млечного Пути основан на оценке возраста составляющих его старейших звезд и звездных скоплений. Этот метод основан на теории звездной эволюции, хорошо подтвержденной разнообразными наблюдениями. Результат этого подхода – возраст различных объектов Галактики (звезд, шаровых скоплений, белых карликов и пр.) не превышает ~10–15 млрд лет, что согласуется с современными представлениями о времени начала космологического расширения.

Возраст других галактик определить, конечно, сложнее, чем возраст Млечного Пути. У далеких объектов мы не видим отдельные звезды и вынуждены изучать лишь интегральные характеристики галактик – спектры, распределение яркости и пр. Эти интегральные характеристики складываются из вкладов огромного числа составляющих галактики звезд. Кроме того, наблюдаемые характеристики галактик сильно зависят от наличия и распределения в них межзвездной среды – газа и пыли. Все эти трудности преодолимы и современные астрономы научились восстанавливать истории звездообразования, которые должны были привести к наблюдаемым в настоящее время интегральным характеристикам галактик. У галактик разных типов эти истории различны (например, эллиптические галактики возникли в ходе мощной одиночной вспышки звездообразования много миллиардов лет назад, в спиральных галактиках звезды рождаются и в настоящее время), однако не обнаружено галактик, начало звездообразования в которых превышало бы возраст Вселенной. Кроме того, наблюдается вполне определенный, ожидаемый для реально расширяющейся Вселенной, тренд – чем дальше по z мы забираемся во Вселенную, то есть переходим к все более ранним этапам ее эволюции, тем, в среднем, более молодые объекты мы наблюдаем.

Важными аргументами, поддерживающими расширение Вселенной, являются также существование реликтового излучения, наблюдаемое увеличение его температуры с ростом красного смещения, а также содержание элементов во Вселенной, но об этом я расскажу чуть позже. Закончить же свой рассказ я хочу, быть может, самым наглядным свидетельством расширения Вселенной – изображениями далеких галактик (см. пример на рис. 24).

Одними из самых эффектных результатов работы космического телескопа «Хаббл» (Hubble Space Telescope), несомненно, являются замечательные картинки разнообразных космических объектов – туманностей, звездных скоплений, галактик и пр. Наблюдениям из космоса не мешает земная атмосфера, размывающая изображения, и поэтому снимки HST примерно в десять раз более четкие, чем наземные. На этих очень четких снимках (их угловое разрешение составляет около 0.""1) в 1990-х годах впервые удалось детально рассмотреть структуру далеких галактик. Как оказалось, далекие галактики не похожи на те, что мы наблюдаем около нас. С ростом красного смещения увеличивается доля асимметричных и неправильных галактик, а также галактик в составе взаимодействующих и сливающихся систем: если при z = 0 к таким объектам можно отнести лишь несколько процентов галактик, то к z = 1 их доля возрастает до ~ 30-40 %.

Рис. 24. Фрагмент Сверхглубокого поля космического телескопа «Хаббл» (размер изображения 30"" x 30"")· Большинство видимых на рисунке галактик имеют z ~ 0.5: 1, то есть они относятся к эпохе, когда Вселенная была примерно вдвое моложе.

Почему это происходит? Простейшее объяснение связано с расширением Вселенной – в более ранние эпохи взаимные расстояния между галактиками были меньше (при z = 1 они были в два раза меньше) и, следовательно, галактики должны были чаще возмущать друг друга близкими прохождениями и чаще сливаться. Этот аргумент не является столь однозначным, как упомянутые раньше, однако он наглядно свидетельствует о вполне определенной, соответствующей картине расширяющейся Вселенной, эволюции свойств галактик со временем. Итак, расширение Вселенной подтверждается разнообразными, совершенно не связанными друг с другом, независимыми наблюдательными тестами. Кроме того, нестационарность Вселенной неизбежно возникает и при теоретических исследованиях ее структуры и эволюции. Все это позволило знаменитому советскому физику-теоретику Якову Зельдовичу еще в начале 1980-х годов заключить, что теория Большого взрыва, основой которой является расширение Вселенной, «столь же надежно установлена и верна, сколь верно, что Земля вращается вокруг Солнца. Обе теории занимали центральное место в картине мироздания своего времени, и обе имели много противников, утверждавших, что новые идеи, заложенные в них, абсурдны и противоречат здравому смыслу. Но подобные выступления не в состоянии препятствовать успеху новых теорий».


| |

И.Гордеев. А.Горелов. КСЕ. Лекция 4. 1

Лекция 4. Расширяющаяся Вселенная

1/ Происхождение Вселенной

2/ Модель расширяющейся Вселенной

3/ Эволюция и строение галактик

4/ Астрономия и космонавтика

1 Происхождение Вселенной

Во все времена люди хотели знать, откуда и каким образом произо­шел мир. Когда в культуре господствовали мифологические пред­ставления, происхождение мира объяснялось, как, скажем, в «Ве­дах» распадом первочеловека Пуруши. То, что это была общая ми­фологическая схема, подтверждается и русскими апокрифами, например, «Голубиной книгой». Победа христианства утвердила представления о сотворении Богом мира из ничего.

С появлением науки в ее современном понимании на смену мифо­логическим и религиозным приходят научные представления о проис­хождении Вселенной. Следует разделять три близких термина: бытие, универсум и Вселенная. Первый является философским и обозначает все существующее, бытующее. Второй употребляется и в философии, и в науке, не имея специфической философской нагрузки (в плане проти­вопоставления бытия и сознания), и обозначает все как таковое.

Значение термина Вселенная более узкое и приобрело специ­фически научное звучание. Вселенная - место вселения человека, доступное эмпирическому наблюдению. Постепенное сужение науч­ного значения термина Вселенная вполне понятно, так как естество­знание, в отличие от философии, имеет дело только с тем, что эмпи­рически проверяемо современными научными методами.

Вселенную в целом изучает наука, называемая космологией, т. е. наукой о космосе. Слово это тоже не случайно. Хотя сейчас кос­мосом называют все находящееся за пределами атмосферы Земли, не так было в Древней Греции. Космос тогда принимался как «поря­док», «гармония», в противоположность «хаосу» - «беспорядку». Таким образом, космология, в основе своей, как и подобает науке, открывает упорядоченность нашего мира и нацелена на поиск зако­нов его функционирования. Открытие этих законов и представляет собой цель изучения Вселенной как единого упорядоченного целого.

Это изучение зиждется на нескольких предпосылках.

Во-пер­вых, формулируемые физикой универсальные законы функциони­рования мира считаются действующими во всей Вселенной.

Во-вторых, производимые астрономами наблюдения тоже признаются распространяемыми на всю Вселенную. И, в-третьих, истинными признаются только те выводы, которые не противоречат возможнос­ти существования самого наблюдателя, т. е. человека (так называе­мый антропный принцип).

Выводы космологии называются моделями происхождения и развития Вселенной. Почему моделями? Дело в том, что одним из ос­новных принципов современного естествознания является пред­ставление о возможности проведения в любое время управляемого и воспроизводимого эксперимента над изучаемым объектом. Только если можно провести бесконечное, в принципе, количество экспери­ментов и все они приводят к одному результату, на основе этих экс­периментов делают заключение о наличии закона, которому подчи­няется функционирование данного объекта. Лишь в этом случае ре­зультат считается вполне достоверным с научной точки зрения,

Ко Вселенной это методологическое правило остается непри­менимым. Наука формулирует универсальные законы, а Вселенная уникальна. Это противоречие, которое требует считать все заключе­ния о происхождении и развитии Вселенной не законами, а лишь мо­делями, т. е. возможными вариантами объяснения. Строго говоря, все законы и научные теории являются моделями, поскольку они могут быть заменены в процессе развития науки другими концепциями, но модели Вселенной как бы в большей степени модели, чем многие иные научные утверждения.

2.Модель расширяющейся Вселенной

Наиболее общепринятой в космологии является модель однородной изотропной нестационарной горячей расширяющейся Вселенной, построенная на основе общей теории относительности и релятивист­ской теории тяготения, созданной Альбертом Эйнштейномв 1916 го­ду.

В основе модели однородной изотропной нестационарной горячей расширяющейся Вселенной лежат два предположения:

1) свойства Все­ленной одинаковы во всех ее точках (однородность) и направлениях (изотропность);

2) наилучшим известным описанием гравитацион­ного поля являются уравнения Эйнштейна. Из этого следует так на­зываемая кривизна пространства и связь кривизны с плотностью массы (энергии). Космология, основанная на этих постулатах, - ре­лятивистская.

Важным пунктом данной модели является ее нестационар­ность. Это определяется двумя постулатами теории относительнос­ти: 1) принципом относительности, гласящим, что во всех инерцион­ных системах все законы сохраняются вне зависимости от того, с ка­кими скоростями, равномерно и прямолинейно движутся эти системы друг относительно друга; 2J экспериментально подтверж­денным постоянством скорости света.

Из принятия теории относительности вытекало в качестве следствия (первым это Заметил петроградский физик и математик Александр Александрович Фридман в 1922 году), что искривленное пространство не может быть стационарным: оно должно или расши* ряться, или сжиматься. На этот вывод не было обращено внимания вплоть до открытий американским астрономом Эдвином Хабблом в 1929 году так называемого «красного смещения».

Красное смещение - это понижение частот электромагнит­ного изЛучёнияТЁГ1идимой части спектра линии смещаются к его красному концу. Обнаруженный ранее эффект Доплера гласил, что при удалении от нас какого-либо источника колебаний, восприни­маемая нами частота колебаний уменьшается, а длина волны соот­ветственно увеличивается. При излучении происходит «покрасне­ние», т. е. линии спектра сдвигаются в сторону более длинных крас­ных волн.

Так вот, для всех далеких источников света красное смещение было зафиксировано, причем чем дальше находился источник, тем в большей степени. Красное смещение оказалось пропорционально расстоянию до источника, что и подтверждало гипотезу об удалении их, т. е. о расширении Метагалактики-видимой части Вселенной.

Красное смещение надежно подтверждает теоретический вы­вод о нестационарности области нашей Вселенной с линейными разме­рами порядка нескольких миллиардов парсек на протяжении по мень­шей мере нескольких миллиардов лет. В то же время кривизна прост­ранства не может быть измерена, оставаясь теоретической гипотезой.

Составной частью модели расширяющейся Вселенной явля­ется представление о Большом Взрыве, происшедшем где-то при­мерно 12 -18 млрд. лет назад. «Вначале был взрыв. Не такой взрыв, который знаком вам на Земле и который начинается из определенно­го центра и затем распространяется, захватывая все больше и боль­ше пространства, а взрыв, который произошел одновременно везде, заполнив с самого начала"все пространство, причем каждая частица материи устремилась прочь от любой другой частицы» (Вейнберг С. Первые три минуты. Современный взгляд на происхождение Все­ленной.- М., 1981.- С. 30).

Начальное состояние Вселенной (так называемая сингуляр­ная точка): бесконечная плотность массы* бесконечная кривизна пространства и взрывное, замедляющееся со временем расширение при высокой темдературе, при которой могла существовать только смесь элементарных частиц (включая фотоны и нейтрино). Горячесть начального состояния подтверждена открытием в 1965 году реликтового излучения фотонов и нейтрино, образовавшихся на ранней стадии расширения Вселенной.

Возникает интересный вопрос: из чего же образовалась Все­ленная? Чем было то, из чего она возникла. В Библии утверждается, что Бог создал все из ничего. Зная, что в классической науке сформулированы законы сохранения материи и энергии, религиозные фи­лософы спорили о том, что значит библейское «ничего», и некоторые в угоду науке полагали, что под ничем имеется в виду первоначаль­ный материальный хаос, упорядоченный Богом.

Как это ни удивительно, современная наука допускает (именно. допускает, но не утверждает),-что все могло создаться из ничего. «Ни­чего» в научной терминологии на§ы§дщ:сялакуумом. Вакуум, кото­рый физика XIX века считала пустотой, по современным научным представлениям является своеобразной формой материи, способной при определенных условиях «рождать» вещественные частицы.

Современная квантовая механика допускает (это не противо­речит теории), что вакуум может приходить в «возбужденное состо­яние», вследствие чего в нем может образоваться поле, а из него (что подтверждается современными физическими экспериментами) - вещество.

Рождение Вселенной «из ничего» означает с современной на­учной точки зрения ее самопроизвольное возникновение из вакуума, когда в отсутствии частиц происходит случайная флуктуация. Бели число фотонов равно нулю, то напряженность поля не имеет опреде­ленного значения (По «принципу неопределенности» Гейзенберга): поле постоянно испытывает флуктуации, хотя среднее (наблюдае­мое) значение напряженности равно нулю.

Флуктуация представляет собой появление виртуальных час­тиц, которые непрерывно рождаются и сразу же уничтожаются, но так же участвуют во взаимодействиях, как и реальные частицы. Благодаря флуктуациям, вакуум приобретает особые свойства, про­являющиеся в наблюдаемых эффектах.

Итак, Вселенная могла образоваться из «ничего», т. е. из «воз­бужденного вакуума». Такая гипотеза, конечно, не является решаю­щим подтверждением существования Бога. Ведь все это могло про­изойти в соответствии с законами физики естественным путем без вмешательства извне каких-либо идеальных сущностей. И в этом случае научные гипотезы не подтверждают и не опровергают рели­гиозные догмы, которые лежат по ту сторону эмпирически под­тверждаемого и опровергаемого естествознания.

На этом удивительное в современной физике не кончается. Отвечая на просьбу журналиста изложить суть теории относитель­ности в одной фразе, Эйнштейн сказал: «Раньше полагали, что если бы из Вселенной исчезла вся материя, то пространство и время со­хранились бы; теория относительности утверждает, что вместе с материей исчезли бы также пространство и время». Перенеся этот вывод на модель расширяющейся Вселенной, можно заключить, что др образования Вселенной не было ни пространства, ни времени.

Отметим, что теория относительности соответствует двум разновидностям модели расширяющейся Вселенной. В первой из них кривизна пространства-времени отрицательна или в пределе равна нулю; в этом варианте все расстояния со временем неограни­ченно возрастают. Во второй разновидности модели кривизна поло­жительна, пространство конечно, и в этом случае расширение со временем заменяется сжатием. В обоих вариантах теория относи­тельности согласуется с нынешним эмпирически подтвержденным расширением Вселенной.

Досужий ум неизбежно задается вопросами: что же было тог­да, когда не было ничего, и что находится за пределами расшире­ния. Первый вопрос, очевидно, противоречив сам по себе, второй выходит за рамки конкретной науки. Астроном может сказать, что как ученый он не вправе отвечать на такие вопросы. Но поскольку они все же возникают, формулируются и возможные обоснования ответов, которые являются не только научными, сколько натур­философскими.

Так, проводится различие между терминами «бесконечный» и «безграничный». Примером бесконечности, которая не безгранична, служит поверхность Земли: мы можем идти по ней бесконечно долго, но тем не менее она ограничена атмосферой сверху и земной корой снизу. Вселенная также может быть бесконечной, но ограниченной. С другой стороны, известна точка зрения, в соответствии с которой в материальном мире не может быть ничего бесконечного, потому что он развивается в виде конечных систем с петлями обратной связи, которыми эти системы создаются в процессе преобразования среды.

Но оставим эти соображения области натурфилософии, по­тому что в естествознании в конечном счете критерием истины яв­ляются не абстрактные соображения, а эмпирическая проверки гипотез.

Что же было после Большого Взрыва? Образовался сгусток плазмы-состояния, в котором находятся элементарные частицы-- нечто среднее между твердым и жидким состоянием, который и на­чал расширяться все больше и больше под действием взрывной вод­ны. Через 0,01 сек после начала Большого Взрыва во Вселенной по* явилась смесь легких ядер (2/3 водорода и 1/3 гелия). Как образова­лись все остальные химические элементы?

3.Эволюция и строения галактик

Поэт спрашивал: «Послушайте! Ведь, если звезды зажигают-значит - это кому-нибудь нужно? Мы знаем, что звезды нужны, что­бы светить, и наше Солнце дает необходимую для нашего существо­вания энергию. А зачем нужны галактики? Оказывается и галактики нужны, и Солнце не только обеспечивает нас энергией. Астрономи­ческие наблюдения показывают, что из ядер галактик происходит непрерывное истечение водорода. Таким образом, ядра галактик яв­ляются фабриками по производству основного строительного мате­риала Вселенной-водорода.

Водород, атом которого состоит из одного протона в ядре и од­ного электрона на его орбите, является самым простым «кирпичи­ком», из которого в недрах звезд образуются в процессе атомных ре­акций более сложные атомы. Причем оказывается, что звезды совер­шенно не случайно имеют различную величину. Чем больше масса звезды, тем более сложные атомы синтезируются в ее недрах.

Наше Солнце как обычная звезда производит только гелий из водорода (который дают ядра галактик), очень массивные звез­ды производят углерод - главный «кирпичик» живого вещества. Вот для чего нужны галактики и звезды. А для чего нужна Земля? Она производит все необходимые вещества для существования жизни человека. А для чего существует человек? На этот вопрос не может ответить наука, но она может заставить нас еще раз заду­маться над ним.

Если «зажигание» звезд кому-то нужно, то может и человек кому-то нужен? Научные данные помогают нам сформулировать представление о нашем предназначении, о смысле нашей жизни. Обращаться при ответе на эти вопросы к эволюции Вселенной - это значит мыслить космически. Естествознание учит мыслить космически, в то же время не отрываясь от реальности нашего бытия.

Вопрос об образовании и строении галактик - следующий важный вопрос происхождения Вселенной. Его изучает не только космология как наука о Вселенной - едином целом, но также и ко­смогония (греч. «гонейа» означает рождение) - область науки, в которой изучается происхождение и развитие космических тел и их систем (различают планетную, звездную, галактическую кос­могонию).

Галактика представляет собой гигантские скопления звезд и их систем, имеющие свой центр (ядро) и различную, не только сфе­рическую, но часто спиралевидную, эллиптическую, сплюснутую или вообще неправильную форму. Галактик - миллиарды, и в каждой из них насчитываются миллиарды звезд.

Наша галактика называется Млечный Путь и состоит из 150 млрд, звезд. Она состоит из ядра и нескольких спиральных ветвей. Ее Размеры -100 тыс. световых лет. Большая часть звезд нашей галак­тики сосредоточена в гигантском «диске» толщиной около 1500 све­товых лет. На расстоянии около 30 тыс. световых лет от центра галак­тики расположено Солнце.

Ближайшая к нашей галактика (до которой световой луч бежит 2 млн. лет) - «туманность Андромеды». Она названа так потому, что именно в созвездии Андромеды в 1917 году был открыт первый внегалактический объект. Его принадлежность к другой галактике была доказана в 1923 году Э. Хабблом, нашедшим путем спектраль­ного анализа в этом объекте звезды. Позже были обнаружены звезды и в других туманностях.

А в 1 963 году были открыты квазары (квазизвездные радиоис­точники) - самые мощные источники радиоизлучения во Вселенной со светимостью в сотни раз большей светимости галактик и размера­ми в десятки раз меньшими их. Было предположено, что квазары представляют собой ядра новых галактик и стало быть процесс обра­зования галактик продолжается и поныне.

4. Астрономия и космонавтика

Звезды изучает астрономия (от греч. «астрой» - звезда и «номос» - закон) - наука о строении и развитии космических тел и их систем. Эта классическая наука переживает в XX веке свою вторую моло­дость в связи с бурным развитием техники наблюдений - основного своего метода исследований: телескопов-рефлекторов, приемников излучения (антенн) и т. п. В СССР в 1974 году вступил в действие в Ставропольском крае рефлектор с диаметром зеркала 6 м., собираю­щий света в миллионы раз больше, чем человеческий глаз.

В астрономии исследуются радиоволны, свет, инфракрасное, ультрафиолетовое, рентгеновское излучения и гамма-лучи. Астро­номия делится на небесную механику, радиоастрономию, астрофи­зику и другие дисциплины.

Особое значение приобретает в настоящее время астрофизика - часть астрономии, изучающая физические и химические явле­ния, происходящие в небесных телах, их системах и в космическом пространстве. В отличие от физики, в основе которой лежит экспе­римент, астрофизика основывается главным образом на наблюдени­ях. Но во многих случаях условия, в которых находится вещество в небесных телах и системах отличается от доступных современным лабораториям (сверхвысокие и сверхнизкие плотности, высокая температура и т. д.). Благодаря этому астрофизические исследова­ния приводят к открытию новых физических закономерностей.

Собственное значение астрофизики определяется тем, что в настоящее время основное внимание в релятивистской космологии переносится на физику Вселенной - состояние вещества и физиче­ские процессы, идущие на разных стадиях расширения Вселенной, включая наиболее ранние стадии.

Один из основных методов астрофизики - спектральный ана­лиз. Если пропустить луч белого солнечного света через узкую щель, а затем сквозь стеклянную трехгранную призму, то он распадается на составляющие цвета, и на экране появится радужная цветовая полоска с постепенным переходом от красного к фиолетовому - не-прерывный спектр. Красный конец спектра образован лучами, наи­менее отклоняющимися при прохождении через призму, фиолето­вый - наиболее отклоняемыми. Каждому химическому элементу соответствуют вполне определенные спектральные линии, что и позволяет использовать данный метод для изучения веществ.

К сожалению, коротковолновые излучения - ультрафиоле­товые, рентгеновские и гамма-лучи - не проходят сквозь атмосфе­ру Земли, и здесь на помощь астрономам приходит наука, которая до недавнего времени рассматривалась как прежде всего техническая -космонавтика (от греч. «наутике»-искусство кораблевождения), обеспечивающая освоение космоса для нужд человечества с исполь­зованием летательных аппаратов.

Космонавтика изучает проблемы: теории космических поле­тов - расчеты траекторий и т. д.; научно-технические - конструи­рование космических ракет, двигателей, бортовых систем управле­ния, пусковых сооружений, автоматических станций и пилотируе­мых кораблей, научных приборов, наземных систем управления полетами, служб траекторных измерений, телеметрии, организация и снабжение орбитальных станций и др.; медико-биологические - создание бортовых систем жизнеобеспечения, компенсация небла­гоприятных явлений в человеческом организме, связанных с пере- ; грузкой, невесомостью, радиацией и др.

История космонавтики начинается с теоретических расчетов выхода человека в неземное пространство, которые дал К. Э. Циол­ковский в труде «Исследование мировых пространств реактивными (Приборами» (1903 г,)- Работы в области ракетной техники начаты в СССР в 1921 году. Первые запуски ракет на жидком топливе осуще­ствлены в США в 1926 году.

Основными вехами в истории космонавтики стали запуск первого искусственного спутника Земли 4 октября 1957 года, пер­вый полет человека в космос 12 апреля 1961 года, лунная экспеди­ция в 1969 году, создание орбитальных пилотируемых станций на околоземной орбите, запуск космического корабля многоразового использования.

Работы велись параллельно в СССР и США, но в последние годы наметилось объединение усилий в области исследования космического пространства. В 1995 году осуществлен совместный проект«Мир» - «Шаттл», в котором американские корабли «Шаттл» использовались для.доставки космонавтов на российскую орбиталь­ную станцию «Мир».

Возможность изучать на орбитальных станциях космическое излучение, которое задерживается атмосферой Земли, способству­ем ет существенному прогрессу в области астрофизики.

Многие из нас не осознают, что судьба Вселенной, управляемая законами Общей теории относительности, и начавшаяся с Большого взрыва 13,8 млрд лет назад, была предопределена с самого её рождения. Начальные условия – это гонка между первичным расширением, работающим на разбрасывание материи и энергии в стороны, и гравитацией, работающей на стягивание всего вместе, замедление расширения и, по возможности, сжатия Вселенной в коллапсе. Если мы знаем, как расширяется Вселенная, и как это происходило в прошлом, мы можем рассчитать, из чего она состоит и какова будет её судьба – но только, если мы способны точно измерить прошлое.


На этой неделе я получил огромное количество вопросов по поводу новости , сообщающей, что Вселенная расширяется быстрее, чем предполагалось. Проблема в следующем: если судьба Вселенной зависит от скорости расширения, текущей и прошлой, и мы измерили её неправильно, могут ли наши выводы о Вселенной также быть неправильными? Может ли в ней не быть тёмной энергии? Может ли статься, что Вселенная вовсе не ускоряется от нас? Может ли скорость расширения замедляться и в будущем превратиться в Большое сжатие? Чтобы ответить на эти вопросы, необходимо обратиться к научной основе происходящего.

Простейший способ измерить расширение Вселенной – наблюдать за хорошо известными нам объектами. Это отдельные звёзды, вращающиеся галактики, сверхновые, и т.п. Мы можем измерять их видимую яркость и красное смещение. Если мы знаем реальную яркость объекта – а для хорошо изученных объектов мы это знаем – и измерим его видимую яркость, мы можем рассчитать, как далеко он находится, точно так же, как мы можем выяснить расстояние до 60-ваттной лампы, измерив её видимую яркость. Астрономы зовут такие объекты «стандартные свечи», поскольку эта идея родилась задолго до лампочек. Поскольку Вселенная расширяется, измерение красного смещения и расстояния позволяет нам наблюдать, как пространство расширяется сегодня. А работая со всё большими и большими расстояниями, мы можем наблюдать, как изменялась скорость расширения со временем.

Концепция работает для множества разных объектов: переменных звёзд-цефеид, флуктуаций на поверхности спиральных галактик, эволюционирующих красных гигантов, вращающихся спиральных галактик и сверхновых типа Ia – последние можно находить на самых больших расстояниях. Комбинация этих методов использовалась в 90-х и 2000-х для определения хаббловской скорости расширения Вселенной с невероятной точностью: 72 ± 7 км/с/Мпк. Это был прорыв по сравнению с предыдущими оценками, варьировавшимися от 50 до 100. Космический телескоп Хаббла, сделавший эти измерения, и был назван так из-за намерения измерить константу Хаббла!

Но с того времени мы ещё больше уточнили измерения и уменьшили погрешности, что привело к новой проблеме: разные измерения дают разные величины скорости расширения.

Один способ измерить историю расширения Вселенной – обратиться к реликтовому излучению, остаточному свечению Большого взрыва. Его флуктуации и некоторые общие свойства позволяют нам вычислить скорость расширения. Спутник Планк выдаёт нам значение в 67 ± 2 км/с/Мпк , что совпадает с предыдущими измерениями, увеличивая точность. Из скопления галактик на крупнейших масштабах (барионные акустические осцилляции), измеренных в проекте Sloan Digital Sky Survey и других, мы получаем величину в 68 ± 1 км/с/Мпк . И два этих измерения выдают нам значения, соответствующие как предыдущим измерениям, так и друг другу. Но если мы обратимся к данным по цефеидам и сверхновым, когда в одной и той же галактике мы изучаем цефеиды и сверхновые типа Ia, мы получим настолько же точную величину, которая, однако, не совпадает с другими: 73 ± 2 км/с/Мпк .

Вот из-за этого и идёт весь сыр-бор. Некоторые начали предлагать экзотические альтернативные теории, типа эволюционирующей тёмной энергии , а другие уже ставят под сомнение основы космологии. Но вполне возможно, и даже вероятно, что проблемы вообще не существует. В эти ошибки не включены систематические погрешности, или неопределённости, присущие процессу измерений. Данные по цефеидам и сверхновым позволяют нам воссоздавать лестницу космических расстояний, у которой каждая ступенька расширяющейся Вселенной строится на более близкой предыдущей. Если сделать ошибку на раннем этапе:

В измерении параллакса ближайших цефеид,
в стандартности этих объектов,
в отношении яркости и расстояния любой из ступенек,
в предполагаемой реальной яркости стандартных свечей,
по поводу окружения обнаруженных явлений,

То эта ошибка распространится на все последующие построения. Несмотря на малую неопределённость этой лестницы расстояний, необходимо отметить, что существует четыре независимых способа калибровки постоянной Хаббла, и каждый из них выдаёт разное значение, от 71,82 до 75,91, а погрешность каждого примерно равна 3.

Есть надежда, что планируемые измерения параллакса улучшат эти неопределённости и помогут понять систематические ошибки, проходящие через эти различия. Очень интересно рассуждать на необычные темы, но, скорее всего, эти новые признаки неопределённости в постоянной Хаббла указывают на возможность лучше понять астрофизические явления, благодаря которым мы получаем эти значения, и, возможно, в результате сойтись на единственном значении скорости расширения, одной для всех методик. Изменится ли значение на 73, останется ли около 70 или прыгнет до 67, результат изменит наши параметры на несколько процентов, но не наши выводы. Возможно, Вселенной не 13,8 млрд лет, а 13,5 млрд; возможно, она на 65%, а не на 70% состоит из тёмной энергии; возможно, через 40 млрд лет сможет произойти Большой разрыв. Но основная картинка Вселенной останется неизменной. Ключ, как всегда, в том, чтобы открыть основы явлений и научиться тому, чему нас учит Вселенная.