Болезни Военный билет Призыв

Оценка качества регулирования. Время регулирования tp. Расчеты скоростной ошибки εСт регулирования

Качество любой системы регулирования в большой степени определяется величиной ошибки регулирования, равной разности между управляющим воздействием и регулируемой величиной Знание мгновенных значений ошибки в течении всего времени работы объекта позволяет наиболее полно судить о свойствах системы регулирования. Однако на этапах проектирования таких знаний недостаточно. Поэтому разработаны другие критерии, позволяющие оценивать показатели качества системы и более того обеспечивать необходимые свойства системе в процессе проектирования.

Все критерии и условно разделены на несколько групп:

К первой группе отнесены критерии, использующие для оценки качества величину статической ошибки в различных типовых режимах.

Ко второй группе относятся критерии, определяющие величину запаса устойчивости . Эти критерии позволяют почувствовать, как далеко от границы устойчивости находится система регулирования. Наиболее опасной для системы является колебательная граница устойчивости, когда пара комплексных корней характеристического уравнения попадает на мнимую ось комплексной плоскости. Это возникает в случае чрезмерного увеличения коэффициента усиления разомкнутой системы;

Третья группа критериев определяет быстродействие систем регулирования. Под быстродействием понимается время реагирования системы на появление внешних воздействий. Быстродействие обычно оценивается по времени затухания переходного процесса в системе. Существуют и др. группы критериев .

8.1. Статическая точность систем регулирования

Статическая точность определяется на установившемся режиме, который наступает при времени t → ∞. Ошибка регулирования в этом случае называется статической и состоит из двух составляющих:

(1.113)

где − часть статической ошибки, определяемая управляющим воздействием g(t);

− часть статической ошибки, определяемая возмущающим воздействием f(t), рис.1.50.



Выполним анализ зависимостей величин статических ошибок для различных режимов изменения управляющего воздействия g(t) при наличии и отсутствия возмущения f(t):

1. В качестве первого типового режима рассмотрим установившееся состояние при постоянных значениях управляющего и возмущающего воздействий.

Пусть управляющее воздействие g(t) = g 0 , а возмущение f(t) = 0. Для расчета ошибки воспользуемся выражением для передаточной функции системы по ошибке

, (1.114)

где − передаточная функция разомкнутой системы.

. (1.115)

Рассмотрим пример. Пусть регулятор и объект управления являются позиционными звеньями и имеют следующие передаточные функции:

, (1.116)

С учетом передаточных функций выражение (1.115) принимает вид

(1.117)

где − коэффициент передачи разомкнутой системы.

Из выражения (1.117) следует, что величина рассматриваемой ошибки зависит от коэффициента передачи . Для уменьшения ошибки необходимо увеличивать этот коэффициент. Однако необходимо помнить, что с увеличением коэффициента система приближается к границе устойчивости.

Если регулятор имеет передаточную функцию интегрирующего типа , (1.118)

то выражение (1.115) примет вид

.

Видно, что ошибка . Аналогичный результат получается и в случае, когда передаточная функция объекта управления представляется интегрирующим звеном.

Теперь рассмотрим случай, когда управляющее воздействие g(t) = 0, а возмущение f(t) = f 0 .

Для расчета ошибки воспользуемся выражением для передаточной функции системы, определяющей связь между ошибкой регулирования и действующим возмущением

. (1.119)

Для установившегося состояния можно записать

(1.120)

Опять рассмотрим пример. Пусть регулятор и объект регулирования имеют передаточные функции, соответствующие выражениям (1.116). С учетом этого выражение (1.120) принимает вид

. (1.121)

Видно, что статическая ошибка больше нуля. Величина ошибки, как и в ранее рассмотренном примере (1.116) зависит в основном от коэффициента передачи разомкнутой системы.

Если применить регулятор интегрирующего типа (1.118), то из выражения (1.121) нетрудно понять, что в этом случае статическая ошибка равна нулю.

Из рассмотренных примеров следует, что статическая ошибка характерна для систем регулирования, у которых регулятор в своем составе не имеет интегрирующих звеньев. Далее можно записать полное выражение для статической ошибки (1.113)

2. В качестве второго типового режима для САР рассмотрим изменение управляющего воздействия с постоянной скоростью

g(t) = v*t, (1.122)

где v − постоянный коэффициент.

Этот режим применяется только в следящих системах и в системах программного регулирования.

Примем, что возмущения в системе отсутствуют, т. е. .

С учетом (1.122) выражение для расчета ошибки (1.115) запишется в виде

.

Применяя изображение Карсона − Хевисайда , можем записать окончательный вид выражения для расчета статической ошибки

Рассмотрим пример. Пусть передаточные функции регулятора и объекта регулирования соответствуют выражениям (1.116). Тогда выражение для составляющей статической ошибки будет иметь вид

Видно, что составляющая ошибки стремится к бесконечности.

Если в качестве регулятора применить интегрирующее звено, то величина статической ошибки будет конечной:

,

где коэффициент называется добротностью системы по скорости.

Видно, что имеет место конечная величина ошибки, равная отношению заданной скорости к добротности системы. Данная ошибка называется скоростной. Системы регулирования, у которых регулятор и объект регулирования представлены позиционными звеньями, называют статическими. Если в качестве регулятора применяются интегрирующие звенья, то САР называют астатическими первого или второго порядка, в зависимости от количества интегрирующих звеньев в регуляторе.

Выполненный анализ показывает, что режим движения с постоянной скоростью не должен применяться к статическим системам, так как в установившемся состоянии величина статической ошибки стремится к бесконечности. Этот режим движения применим только к астатическим системам, которые имеют конечную величину статической ошибки, зависящей от добротности системы по скорости.

Случай, когда , а ранее рассматривался. Было показано, что, если регулятор системы содержит интегрирующее звено, то составляющая статической ошибки . Следовательно, в рассматриваемых астатических САР эта составляющая не формирует статическую ошибку.

3. Третьим типовым режимом, применяемым в САР, является движение по гармоническому закону:

G(t) = g max sin(ω k t),

где g max − максимальная величина управляющего воздействия g(t),

ω к − частота гармонического закона.

В данном анализе возмущающие воздействия могут отсутствовать или иметь постоянные значения. Случай постоянства возмущений приводит, как и в рассмотренных выше первом и втором типовых режимах, к появлению некоторой постоянной составляющей ошибки .

Запишем уже известное выражение для ошибки

В линеаризованной системе при гармоническом управляющем воздействии ошибка в установившемся режиме будет также изменяться по гармоническому закону с частотой ω = ω к, т.е.

Sin(ω k t+ψ).

Поэтому точность САР в этом режиме оценивается по амплитуде ошибки, которая может быть найдена по выражению

.

Так как предполагается, что х max << g max , то >> 1. Следовательно, можно записать, что

(1.123)

где − модуль частотной передаточной функции разомкнутой системы при частоте ω = ω k .

Формула (1.123) позволяет вычислить амплитуду ошибки в установившемся режиме. Для этого необходимо иметь либо аналитическое выражение для передаточной функции разомкнутой системы, либо экспериментальную амплитудно-частотную характеристику.

Выражение (1.123) позволяет сформулировать требования к АЧХ, которые необходимо выполнить при расчете систем регулирования для обеспечения заданной точности. Для этого по заданному значению амплитуды управляющего воздействия g max и допустимой амплитуде ошибки вычисляется требуемое значение А к = . Далее необходимо величину А к отложить на графике АЧХ при частоте ω = ω к. Полученная точка А к называется контрольной точкой. Для того, чтобы амплитуда ошибки в системе не превосходила допустимого значения линия АЧХ должна проходить не ниже контрольной точки А к.

8.2. Оценка запаса устойчивости и быстродействия САР

Оценку запаса устойчивости и быстродействия САР можно выполнить по виду кривой переходного процесса (рис.1.51), возникшего в результате приложения к системе типового внешнего воздействия.

В качестве такого воздействия обычно рассматривается единичный скачок. В этом случае кривую переходного процесса называют переходной характеристикой системы.

Переходная характеристика может строиться для регулируемой величины или для ошибки регулирования .

Склонность системы к колебаниям и запас устойчивости могут быть охарактеризованы величиной перерегулирования

σ % = / y(∞)*100% ,

где у(∞) − установившееся значение регулируемой величины, после завершения переходного процесса.

Считается, что запас устойчивости достаточен, если величина перерегулирования не превышает 10 ¸ 30 %. Быстродействие системы может определяться по длительности переходного процесса .

Рис.1.51. Кривая переходного процесса

Длительность переходного процесса определяется как время, протекающее от момента приложения на вход единичного скачка до момента, после которого имеет место неравенство

| y(t) − y(∞)| £ ∆,

где ∆ − заданная малая постоянная величина, представляющая собой допустимую ошибку, ∆ (.01 ¸ .05) у(∞) .

Иногда в дополнение к величине перерегулирования задается допустимое число колебаний, которое может наблюдаться в течение времени переходного процесса. Количество колебаний должно составлять 1¸3.

Необходимый запас устойчивости, и быстродействие системы достигается в процессе расчета САР. Для расчета широко применяются частотные и корневые критерии и показатели качества регулирования.

Под частотными критериями понимают такие критерии, которые для оценки качества САР не опираются на формы переходных процессов, а используют для этого некоторые частотные свойства системы.

Частотные критерии наиболее разработаны для оценки запаса устойчивости. Запас устойчивости предлагается определять по удалению амплитудно-фазовой частотной характеристики разомкнутой системы (рис.1.52) от точки (− 1, 0). Для этого вводятся понятия запаса устойчивости поамплитуде (модулю) и запаса устойчивости по фазе.

Для общего случая условной устойчивости, изображенного на рис.1.52, запас устойчивости по амплитуде определяется расположением на вещественной оси комплексной плоскости точек и :

20 lg ; = 20 lg .

a

Запас устойчивости по амплитуде тем больше, чем больше и . В хорошо демпфированных системах величины и находятся в диапазоне 6 ¸ 20 дб. В случае абсолютной устойчивости имеет смысл только величина .

Запас устойчивости по фазе (Рис.1.52) характеризует удаление АФЧХ по дуге окружности единичного радиуса от точки с координатами (−1,j,0) и соответствует углу μ между отрицательным направлением действительной оси и лучом, проведенным через начало координат и точку пересечения годографа характеристики с окружностью единичного радиуса. Величина запаса устойчивости по фазе определяется по выражению μ = 180˚ + ψ, где ψ − аргумент (смещение, сдвиг по фазе) частотной передаточной функции разомкнутой системы, соответствующий амплитуде равной единице (точка b на рис.1.52).

В хорошо демпфированных системах запас по фазе составляет 30¸60˚.

Недостатком рассмотренного частотного критерия является то, что для определения запаса устойчивости необходимо задавать два числа: μ и .

Более удобно запас устойчивости определять по показателю колебательности . Показателем колебательности называется максимальное значение ординаты М мах амплитудно - частотной характеристики замкнутой системы (рис.1.53) при начальной ординате, равной единице, т. е. относительная высота резонансного пика.

Чем меньше запас устойчивости, тем больше склонность системы к колебаниям и тем выше резонансный пик. Допустимое значение для показателя колебательности определяется на основании опыта эксплуатации систем регулирования. Считается, что в хорошо демпфированных системах регулирования показатель колебательности не должен быть больше 1.1¸1.5. Однако, в отдельных случаях допускается величина М мах =2¸2.5 .

Корневые критерии качества опираются на существующую связь характера и качества переходных процессов в системе автоматического регулирования от расположения корней характеристического уравнения на комплексной плоскости. Поэтому можно сформулировать требования по запасу устойчивости и быстродействию системы посредством наложения условий на расположение корней характеристического уравнения. Заметим, что влиять на расположение корней можно только через коэффициенты характеристического уравнения:

Решение данного уравнения содержит - корней: Уже известно, что корни могут быть вещественными и комплексными типа = − α ± jb. Колебания в системе будут наблюдаться, если в решении характеристического уравнения будет присутствовать хотя бы один комплексный корень. Склонность системы к колебаниям может характеризоваться отношением мнимой части корня к его вещественной части Это отношение называют колебательностью

μ= . (1.125)

Если в решении характеристического уравнения присутствует несколько комплексных корней, то для определения колебательности системы необходимо брать отношение (1.125) для тех корней, для которых это отношение наибольшее.

Колебательность системы связана с другим корневым показателем запаса устойчивости − затуханием. Рассмотрим эту связь. Комплексные сопряженные корни дают в выражении для переходного процесса, например для ошибки регулирования, член вида

x(t) = Ce – αt sin (bt+ψ).

Найдем затухание амплитуды синусоидального колебания за один период. При некотором времени t = t 1 эта амплитуда равна С 1 = Сe –α t . Через один период Т = 2π/b амплитуда С 2 = Сe – α (t 1 + 2π / b) = C 1 e - 2π α/ b = C 1 e -2π /μ .

Затуханием за период называют величину

x =

Эта величина обычно выражается в процентах. Поставляя значение амплитуды С 2 , получаем x =1 − e −2 π / μ или μ = 2π / ln .

Обычно в системах автоматического регулирования допускается затухание за период не менее чем 90 ¸ 98 %. Так, например, если x = 98 %, то колебательность при этом составит

μ = 2π / ln 50 ≈ π/2 = 1.57.

Если x =90 %, то колебательность μ ≈ 2.72 .

Для оценки быстродействия системы может использоваться показатель, называемый степенью устойчивости. Под степенью устойчивости ή понимается абсолютное значение вещественной части ближайшего к мнимой оси корня (рис.1.54).

Корни характеристического уравнения, расположенные ближе к мнимой оси дают в переходном процессе (1.102) составляющие, которые затухают наиболее медленно, так как эти корни имеют наименьшую по абсолютной величине вещественную часть. В большинстве случаев переходный процесс можно считать завершенным после затухания составляющей, соответствующей ближайшему к мнимой оси корню. Если ближайшим является вещественный корень, то составляющая в переходном процессе, определяемая этим корнем будет иметь вид = C e – t . Приняв в конце переходного процесса = ΔC , где Δ = 0.01 ¸ 0.05, можно получить приближенную зависимость между степенью устойчивостью и временем переходного процесса:

t n ≈ ln Δ −1 . (1.126)

Так, например, если принять Δ = .05, то время переходного процесса t n ≈ ln2 = 3 . (1.127)

Если ближайшими к мнимой оси является пара комплексных корней , то составляющая в переходном процессе, определяемая этими корнями будет = sin(bt + ψ). Несмотря на присутствие в этой составляющей гармонической функции формула, устанавливающая связь между степенью устойчивости и временем переходного процесса практически будет совпадать с выражением (1.127).

Для систем невысокого порядка степень устойчивости можно найти без вычисления корней характеристического уравнения. С этой целью в уравнении (1.124) необходимо перейти к новой переменной . Подставив в уравнение (1.124) , получим так называемое смещенное уравнение

Раскрывая скобки и группируя члены по степеням переменной , получаем

Это уравнение соответствует смещению осей на плоскости корней влево на величину (рис.1.54). В результате один (рис.1.54,а) или два (рис.1.54,б) корня попадают на ось мнимых, что соответствует границе устойчивости.

Для вычисления степени устойчивости необходимо применить к смещенному уравнению (1.128) любой критерий устойчивости и определить, при каком значении = получается граница устойчивости. Однако, если характеристическое уравнение имеет порядок выше второго, то задача расчета степени устойчивости оказывается не менее сложной, чем расчет корней характеристического уравнения. Например, если в уравнении (1.128) принять , то смещенное уравнение принимает вид:

Видно, что для вычисления степени устойчивости (как и для вычисления корней исходного характеристического уравнения) необходимо решать алгебраическое уравнение третьей степени. Если характеристическое уравнение будет иметь пятый порядок, то для расчета степени устойчивости необходимо будет решать алгебраическое уравнение пятого порядка и т.д. В связи со сложностью решения алгебраических уравнений применение формулы (1.127) для расчета времени переходного процесса оказывается проблематичным.

Однако, применение степени устойчивости оказывается перспективным в задаче обеспечения требуемого быстродействия, возникающей при проектирования системы.

Пусть смещенное уравнение (1.128) относится к проектируемой системе. Этап проектирования соответствует расчету области устойчивости. Для придания системе требуемого быстродействия необходимо выполнить следующее:

Задать требуемое время переходного процесса и по формуле (1.127) вычислить величину . ;

Изменяя переменные параметры, в плоскости которых строилась область устойчивости, необходимо переместить рабочую точку на границу устойчивости.

После выполнения указанных действий полученная система регулирования будет иметь время переходного процесса равное и соответствующие значения переменных параметров.

Диаграмма Вышнеградского (рис.1.55) позволяет существенно облегчить процесс проектирования систем управления. Несмотря на то, что диаграмма разработана для систем, имеющих характеристическое уравнение третьего порядка, ее применение может существенно облегчить расчет показателей качества и для систем более высокого порядка.

Рассмотрим характеристическое уравнение третьего порядка

Данное уравнение приводится к нормированному виду,

называются параметрами Вышнеградского, а − это новая переменная, введенная в уравнение (1.130), вместо переменной .

Диаграмма расположена в плоскости параметров А и В (рис.1.55) и содержит несколько основных кривых линий. Первая линия − граница устойчивости (колебательная). Уравнение границы: АВ = 1, при А > 0 и В > 0. Это равнобокая гипербола, для которой оси координат служат асимптотами.

Граница устойчивости
2 4 6
А
0
Рис. 1.55. Диаграмма Вышнеградского

Статическая ошибка относится к состоянию покоя системы. Она складывается из ошибки в сель-синной связи, ошибки из-за наличия внутренних моментов сопротивления в сельсине-приемнике и гидроусилителе, от перестановочных усилий, прилагаемых к золотникам и промежуточным усилителям, люфтов и и деформаций рычажной системы передач и внешних моментов сил сопротивлений, связанных с трением в направляющем аппарате турбины.
Статическая ошибка зависит как от коэффициента усиления контура регулирования положения, так и от жесткости статических механических характеристик системы при разомкнутой связи по положению. В рассматриваемой системе, оптимизированной методом последовательной коррекции, жесткость р ам зависит от отношения рГм / йсСтТ, поэтому уменьшение ап, ас и ат снижает статическую ошибку как за счет возрастания коэффициента усиления, так и за счет увеличения жесткости Рзам - В соответствии с (11 - 32) статическая ошибка может быть полностью устранена использованием двукратноинтегри-рующего контура регулирования скорости при ИП-регу-ляторе скорости.
Статическая ошибка - отклонение регулируемого давления от заданного при установившемся режиме, также называют неравномерностью регулирования.
Газоанализатор инфракрасного поглощения ГИГ1 - 7М. Статическая ошибка - разность между истинной величиной регулируемого параметра и показаниями датчика - должна быть не больше допустимой.
Статическая ошибка пропорциональна значению постоянного внешнего воздействия.
Статическая ошибка будет равна нулю, если система будет астатической относительно задающего воздействия и возмущения. А для этого нужно, чтобы регулятор содержал интегрирующее звено.
Статическая ошибка будет равна нулю, если система будет астатической.
Статическая ошибка уменьшается с ростом коэффициента усиления регулятора КР Kj. Формулы (2.2) и (2.3) справедливы для статического объекта с П - или ПД - регулятором.
Пропорциональный регулятор давления прямого действия. [ IMAGE ] - 4. Статическая характеристика П - регулятора. Статическая ошибка у серийных промышленных регуляторов составляет 5 - 15 % и зависит от величины настроечного параметра / Ср. Наличие статической ошибки (остаточной неравномерности) является существенным недостатком пропорциональных регуляторов, который ограничивает область их применения, несмотря на хорошие показатели качества регулирования. На рис. 15 - 5 показаны графики процесса регулирования в АСР давления, состоящей из П - регулятора прямого действия (рис. 15 - 3) и трубопровода, который можно рассматривать как статический объект первого порядка.
Статическая ошибка, вследствие наличия зоны нечувствительности, здесь имеется, несмотря на то, что по отношению к возмущающему воздействию, как видно из уравнения (34.7), система является астатической.
Пропорциональный регулятор. а - структурная схема, б - переходные процессы в замкнутой системе с П - регулятором. Статическая ошибка - отличительная особенность П - регуляторов и главный их недостаток, так как в реальных условиях при частых изменениях нагрузок и других возмущениях система с П - регулятором не выдерживает точно заданной величины.
Интегральный регулятор.
Статическая ошибка является отличительной особенностью П - ре-гуляторов и главным их недостатком, так как в реальных условиях при частых изменениях нагрузок и других возмущениях система с П - регулятором не выдерживает точно заданной величины, хотя и близка к заданному значению.
Статические ошибки, сеточный ток в первом каскаде усилителя, дрейф нуля, неточные величины сопротивлений входной цепи и цепи обратной связи также оказывают существенное влияние на работу усилителя.
Статическая ошибка не превышает 0 013 мм. Устройство управления имеет 250 электронных ламп и 175 электромеханических реле. Для привода рабочих органов станка применены электродвигатели мощностью 0 55 кет.
Статическая ошибка определяется как среднее значение регулируемого параметра за весь цикл.
Статическая ошибка в незамкнутых системах регулирования дозаторов при соответствии фактических характеристик материала и дозатора расчетным может возникать из-за несоответствия Wp (0) и W0, в (0) на большей или меньшей части рабочей характеристики.
Статическая ошибка является отличительной особенностью П - ре-гуляторов и главным их недостатком, так как в реальных условиях при частых изменениях нагрузок и других возмущениях система с П - ре-гулятором не выдерживает точно заданной величины, хотя и близка к заданному значению.
Статические ошибки от неточности изготовления сельсинов обусловлены, также как и у ВТ, асимметрией магнитопровода, наличием короткозамкнутых витков, эксцентриситетом, неравенством параметров фаз обмотки синхронизации.
Статическая ошибка таких систем определяется зоной нечувствительности. Диапазоны изменений параметров настройки систем весьма ограничены. Зона нечувствительности ограничена допустимой статической ошибкой; скорость перемещения регулирующего органа меняется ступенчато и определяется конструктивными параметрами (табл. 2 - 1) исполнительного механизма и регулирующего органа регулятора.
Статическая ошибка слагается из двух составляющих. Основная составляющая - неравномерность регулирования, зависящая от величины нагрузки в статической системе и равная нулю 6 - 1 График, иллюстрирующий в астатической.
Статическая ошибка обусловлена наличием трения в подвижных частях системы и люфтами. Динамическая ошибка Один определяется углом рассогласования при повороте датчика на ограниченный угол или при его вращении. Динамическая ошибка возникает как результат действия сил инерции и в значительной мере зависит от скорости задания входной величины - угла поворота. Чем быстрее изменяется входная величина, тем больше динамическая ошибка.
Переходные функции силы тока, частоты вращения двигателя и приращения длины петли при изменении. Статическая ошибка при ступенчатом изменении скорости секции / (vj и сигнала, задающего скорость линии (v3), равна: 6vl 8V3 0 при ПИ-регуляторе и Svl 8V3 2тп при П - регуляторе.
Эллиптичность в расточке статора.| Влияние ко-роткозамкнутого витка в магнитопроводе на погрешности трансформаторной синхронной передачи. Статические ошибки из-за неточности изготовления сельсинов обусловлены: асимметрией магнитопровода, наличием коротко-замкнутых витков, эксцентриситетом, неравенством параметров фаз обмотки синхронизации.
Статическая ошибка 8ст в реальных системах увеличи вается с ростом статического момента на валу двигател.

Статическая ошибка, равная AU, характеризует чувствительность блока сравнения. Оценка динамических свойств блока сравнения зависит от режима его работы.
Статическая ошибка ест х - ууст, где х - входная величина. Время достижения первого максимума tM определяется по графику. Время tp соответствует последней точке пересечения y (t) с данной границей. То есть время, когда колебания регулируемой величины перестают превышать допустимого отклонения от установившегося значения. Обычно допустимое отклонение принимается равным 5 % от установившегося значения: А 5 % ууст.
Статическая ошибка равна статизму только при номинальной нагрузке.
Статическая ошибка САР с И-регулятором теоретически равна нулю. Использование их в объектах без самовыравнивания приводит к структурно неустойчивым системам.
Статическая ошибка едоо О, если система обладает астатиз-мом 1-го порядка (у 1) относительно задающего воздействия.
Статическая ошибка привода, возникающая при отказе канала, не превышает текущего рассогласования между каналами.
Статическая ошибка сельсинов может быть разложена на несколько пространственных гармоник. Она вызывается главным образом эллиптичностью статора. Другой общей гармоникой магнитного потока в пространстве является шестая гармоника, обусловливаемая распределением трех фаз обмоток - неравными полными сопротивлениями обмоток и проводов, соединяющих сельсины. Следующая имеющаяся гармоника равна числу пазов в роторе или в статоре, или двойному числу пазов, и вызывается несинусоидальным распределением потока вследствие неравномерности магнитного сопротивления пазов, а также изменяющегося активного или магнитного сопротивлений самих обмоток.
Зависимости AcoiM. lKC. Здесь статическая ошибка равна нулю, но максимум динамической ошибки, отнесенной к статической ошибке в однократнопнтегрпрующей системе, оказывается постоянно близким к единице.
Статическая ошибка следящей системы складывается из двух составляющих, обусловленных действием iWCT и Д1 / с. Каждая из этих составляющих должна равняться такой величине ошибки, при которой достигается компенсация соответствующего внешнего воздействия.
Аксиально-поршневой насос с регулятором мощности прямого действия.| Автоматический регулятор мощности насоса непрямого действия 284. Статическая ошибка регулятора прямого действия существенно зависит от силы, возникающей со стороны регулирующего органа насоса, в частности, наклонной шайбы. Сила трения на регулирующем органе нассса приводит к петлевой статической характеристике регулятора прямого действия. Снизить влияние нагрузки на регулятор можно, увеличив эффективную площадь плунжера и соответственно жесткость пружинного блока. Однако из-за этого во многих случаях габаритные размеры регулятора мощности прямого действия значительно увеличиваются.
Статическую ошибку при постоянном возмущении у получают, предполагая, что на линейную систему при нулевых начальных условиях действует возмущающий момент в виде единичного скачка.
Статической ошибкой называется отклонение заданного значения регулируемой величины в установившемся режиме в связи с изменением величины нагрузки. Регуляторы, не устраняющие такой ошибки, называются статическими.
Статической ошибкой называют угол рассогласования оси ротора нагруженного ЩД в режиме фиксированного останова под током по отношению к направлению вектора МДС, который может быть в пределе равен отрицательной части зоны Эсу.

Статической ошибкой САР называется значение отклонения регулируемой величины (или ее среднего значения) от заданного значения в установившемся режиме.
Характеристика астатического регулирования.| Характеристика статического регулирования. Абсолютной статической ошибкой называют разность между каким-либо установившимся значением регулируемой величины и ее номинальным значением.
Чтобы статическая ошибка была равна нулю при действии возмущения, регулятор должен включать одно интегрирующее звено.
Термин статическая ошибка, применявшийся в начале для следящих систем по положению, был затем распространен на более широкий класс систем управления.
Хотя статическая ошибка имеет главенствующее значение, следует учитывать и динамические ошибки сельсинов. Они вызываются тем, что магнитные потоки, создающиеся в сельсинах, пересекаются обмоткой ротора. Если соединить сельсин-датчик с сельсин-трансформатором при нулевом положении и возбудить сельсин-датчик от источника переменного тока обычным образом, то выходная величина сельсин-трансформатора будет равна нулю, при отсутствии статической ошибки и остаточного напряжения в машинах. Это будет справедливо для любого углового положения соединенных валов.
Если статическая ошибка Дл: 0 во всей зоне регулирования, то такие регуляторы называются астатическими, если Д О, то статическими. Следовательно, астатическими регуляторами называются такие, у которых при различных постоянных значениях внешнего воздействия на объект (например, изменение нагрузки) отклонение регулируемой величины от заданного значения по окончании процесса регулирования становится равным нулю.
Если статическая ошибка САР в состоянии покоя равна пулю для любых внешних возмущений, то система называется астатической. К астатическим системам мы также отнесем системы, в которых статическая ошибка меньше некоторой наперед заданной величины зоны нечувствительности и не зависит от величин приложенных возмущений. Если статическая погрешность САР в состоянии покоя отлична от нуля и зависит от величины внешних воздействий, то система называется статической.
Когда статическая ошибка магнитного компаса заведомо велика, азимутальную коррекцию по магнитной стрелке целесообразно отключать. Например, при использовании прибора на самолете азимутальную коррекцию при длительных виражах самолета отключают и определяют курс непосредственно по гироскопу направления. В качестве магнитного компаса в авиационных гиромагнитных компасах широко применяются феррозондовые датчики магнитного поля, рассмотренные выше.
Форма регулирующего периодического. Если статическая ошибка исследуемых цепей САР равна нулю, то регулируемые величины р2 и фз (рис. 4 - 5 а) будут совершать колебания около тех уровней, которые регуляторы 2 и 3 стремятся поддерживать при отсутствии гармонических колебаний. Это облегчает стабилизацию системы и в случае объектов без самовыравнивания позволяет построить частотные характеристики без нарушения технологического процесса.
Ввиду статической ошибки и наличия ограничений теряет смысл выбор параметров настроек П - регулято-ра с точки зрения минимальной среднеквадратичной ошибки, получения переходного процесса заданной формы или минимального времени регулирования.
Величина статической ошибки зависит как от настройки регулятора, так и от характеристики и режима работы объекта.
Снятие статической ошибки, имеющей место в процессе регулирования пропорциональными регуляторами, достигается механизмом изодрома, который сообщает регулирующему органу дополнительное перемещение во времени.

Главная задача систем регулирования состоит в том, чтобы стабилизировать параметры процесса на заданном уровне при воздействии внешних возмущающих воздействий, действующих на объект управления. Этим занимаются системы автоматической стабилизации. Другой не менее важной задачей является задача обеспечения программного перехода на новые режимы работы. Решение этой проблемы осуществляется с помощью той же системы стабилизации, задание которой изменяется от программного задатчика.

Структурная схема одноконтурной системы АР объектом управления приведена на рис.1. Основными элементами ее являются: АР - автоматический регулятор, УМ - усилитель мощности, ИМ - исполнительный механизм, РО - регулируемый орган, СОУ - собственно объект управления, Д - датчик, НП - нормирующий преобразователь, ЗД - задатчик, ЭС - элемент сравнения.

Переменные: Yз - задающий сигнал, e - ошибка регулирования, U P - выходной сигнал регулятора, U y - управляющее напряжение, h - перемещение регулирующего органа, Q r - расход вещества или энергии, F - возмущающее воздействие, T - регулируемый параметр, Y ОС - сигнал обратной связи (выходное напряжение или ток преобразователя).

Нормирующий преобразователь выполняет следующие функции:

  • преобразует нестандартный сигнал датчика в стандартный выходной сигнал;
  • осуществляет фильтрацию сигнала;
  • осуществляет линеаризацию статической характеристики датчика с целью получения линейного диапазона.

Для расчетных целей исходную схему упрощают до схемы, показанной на рис.2, где АР - регулятор, ОУ - объект управления.

Выбор канала регулирования

Одним и тем ж выходным параметром объекта можно управлять по разным входным каналам.

При выборе нужного канала управления исходят из следующих соображений:

  • Из всех возможных регулирующих воздействий выбирают такой поток вещества или энергии, подаваемый в объект или отводимый из него, минимальное изменение которого вызывает максимальное изменение регулируемой величины, то есть коэффициент усиления по выбранному каналу должен быть, по возможности, максимальным. Тогда, по данному каналу можно обеспечить наиболее точное регулирование.
  • Диапазон допустимого изменения управляющего сигнала должен быть достаточен для полной компенсации максимально возможных возмущений, возникающих в данном процессе, то есть должен быть обеспечен запас по мощности управления в данном канале.
  • Выбранный канал должен иметь благоприятные динамические свойства, то есть запаздывание t 0 и отношение t 0 /T 0 , где T 0 - постоянная времени объекта, должны быть как можно меньшими. Кроме того, изменение статических и динамических параметров объекта по выбранному каналу при изменении нагрузки или во времени должны быть незначительными.

Основные показатели качества регулирования

К автоматическим системам регулирования предъявляются требования не только по устойчивости процессов регулирования во всем диапазоне нагрузок на объект, но и по обеспечению определенных качественных показателей процесса автоматического регулирования.Ими являются:

  • Ошибка регулирования (статистическая или среднеквадратическая составляющие).
  • Время регулирования.
  • Перерегулирование.
  • Показатель колебательности.

Динамический коэффициент регулирования R d , который определяется из формулы

где смысл величин Y 0 и Y 1 ясен из рис.3.

Величина R d характеризует степень воздействия регулятора на процесс, то есть степень снижения динамического отклонения в системе с регулятором и без него.

Величина перерегулирования зависит от вида отрабатываемого сигнала. При отработке ступенчатого воздействия по сигналу задания величина перерегулирования определяется по формуле

где значения величин X m и X y показаны на рис.4.

При отработке возмущающего воздействия величина перерегулирования определяется из соотношения

где значения величин X m и X y показаны на рис.5

.

Время регулирования - это время, за которое регулируемая величина в переходном процессе начинает отличаться от установившегося значения менее, чем на заранее заданное значение b , гдеb - точность регулирования. Настройки регулятора выбираются так, чтобы обеспечить либо минимально возможное значение общего времени регулирования, либо минимальное значение первой полуволны переходного процесса.

В некоторых системах АР наблюдается ошибка, которая не исчезает даж по истечении длительного интервала времени - это статическая ошибка регулирования -e с.

У регуляторов с интегральной составляющей ошибки в установившемся состоянии теоретически равны нулю, но практически незначительные ошибки могут существовать из-за наличия зон нечувствительности в элементах системы.

Показатель колебательности M характеризует величину максимума модуля частотной передаточной функции замкнутой системы (на частоте резонанса)и, тем самым, характеризует колебательные свойства системы. Показатель колебательности наглядно иллюстрируется на графике рис.6.

Условно считается,что значение М=1,5ё 1,6 является оптимальным для промышленных систем, так как в этом случае s обеспечивается в пределах от 20 до 40%. При увеличении M колебательность в системе возрастает.

В некоторых случаях нормируется полоса пропускания системы w п, которая соответствует уровню усиления в замкнутой системе 0,05. Чем больше полоса пропускания, тем больше быстродействие замкнутой системы. Однако при этом повышается чувствительность системы к шумам в канале измерения и возрастает дисперсия ошибки регулирования.

При настройке регуляторов можно получить достаточно большое число переходных процессов, удовлетворяющих заданным требованиям. Таким образом, появляется некоторая неопределенность в выборе конкретных значений параметров настройки регулятора. С целью ликвидации этой неопределенности и облегчения расчета настроек вводится понятие оптимальных типовых процессов регулирования.

Выделяют три типовых процесса:

где e - ошибка регулирования.

К достоинствам этого процесса можно отнести высокое быстродействие (1-й полуволны) при довольно значительной колебательности. Кроме этого, оптимизация этого критерия по параметрам настройки регулятора может быть выполнена аналитически, численно или путем моделирования (на АВМ).

Типовая структурная схема регулятора

Автоматический регулятор (рис.10) состоит из: ЗУ - задающего устройства, СУ - сравнивающего устройства, УПУ - усилительно-преобразующего устройства, БН - блока настроек.

Задающее устройство должно вырабатывать высокостабильный сигнал задания (установку регулятора) либо изменять его по определенной программе. Сравнивающее устройство позволяет сопоставлять сигнал задания с сигналом обратной связи и тем самым сформировать величину ошибки регулирования e p . Усилительно-преобразующее устройство состоит из блока формирования алгоритма регулирования, блока настройки параметров этого алгоритма и усилителя мощности.

Классиффикация регуляторов

Автоматические регуляторы классифицируются по назначению, принципу действия, конструктивным особенностям, виду используемой энергии, характеру изменения регулирующего воздействия и т.п.

По принципу действия они подразделяются на регуляторы прямого и непрямого действия. Регуляторы прямого действия не используют внешнюю энергию для процессов управления, а используют энергию самого объекта управления (регулируемой среды). Примером таких регуляторов являются регуляторы давления. В автоматических регуляторах непрямого действия для его работы требуется внешний источник энергии.

По роду действия регуляторы делятся на непрерывные и дискретные. Дискретные регуляторы, в свою очередь, подразделяются на релейные, цифровые и импульсные.

По виду используемой энергии они подразделяются на электронные, пневматические, гидравлические, механические и комбинированные. Выбор регулятора по виду используемой энергии определяется характером объекта регулирования и особенностями автоматической системы.

По закону регулирования они делятся на двух-и трехпозиционные регуляторы, типовые регуляторы (интегральные, пропорциональные, пропорционально-дифференциальные, пропорционально- интегральные и пропорционально- интегрально- дифференциальные регуляторы - сокращенно И, П, ПД, ПИ и ПИД-регуляторы), регуляторы с переменной структурой, адаптивные (самонастраивающиеся) и оптимальные регуляторы. Двухпозиционные регуляторы нашли широкое распространение благодаря своей простоте и малой стоимости.

По виду выполняемых функций регуляторы подразделяются на регуляторы автоматической стабилизации, программные, корректирующие, регуляторы соотношения параметров и другие.

Выбор типа регулятора

Задача проектировщика состоит в выборе такого типа регулятора, который при минимальной стоимости и максимальной надёжности обеспечивал бы заданное качество регулирования.

Для того чтобы выбрать тип регулятора и определить его настройки, необходимо знать:

  • Статические и динамические характеристики объекта управления.
  • Требования к качеству процесса регулирования.
  • Показатели качества регулирования для серийных регуляторов.
  • Характер возмущений,действующих на процесс регулирования.

Выбор типа регулятора обычно начинается с простейших двухпозиционных регуляторов и может заканчиваться самонастраивающимися микропроцессорными регуляторами.

Рассмотрим показатели качества серийных регуляторов. В качестве серийных предполагаются непрерывные регуляторы, реализующие законы управления И, П, ПИ и ПИД.

Теоретически, с усложнением закона регулирования качество работы системы улучшается. Известно, что на динамику регулирования наибольшее влияние оказывает величина отношения запаздывания к постоянной времени объекта с. Эффективность компенсации ступенчатого возмущения регулятором достаточно точно может характеризоваться величиной динамического коэффициента регулирования R d , а быстродействие - величиной времени регулирования. Теоретически, в системе с запаздыванием минимальное время регулирования t pvin =2/.

Минимально возможное время регулирования для различных типов регуляторов при оптимальной их настройке определяется таблицей 1.

Таблица 1

Руководствуясь таблицей, можно утверждать, что наибольшее быстродействие обеспечивает закон управления П. Однако, если коэффициент усиления П-регулятора KP мал (чаще всего это наблюдается в системах с запаздыванием), то такой регулятор не обеспечивает высокой точности регулирования, так как в этом случае велика величина статической ошибки. Если KP имеет величину равную 10 и более, то П-регулятор приемлем, а если KP<10 то требуется введение в закон управления интегральной составляющей.

Наиболее распространенным на практик является ПИ-регулятор, который обладает следующими достоинствами:

  1. Обеспечивает нулевую статическую ошибку регулирования.
  2. Достаточно прост в настройке, так как настраиваются только два параметра, а именно коэффициент усиления K P и постоянная интегрирования T i . В таком регуляторе имеется возможность оптимизации K p /T i >max, что обеспечивает управление с минимально возможной среднеквадратичной ошибкой регулирования.
  3. Обладает малой чувствительностью к шумам в канале измерения (в отличие от ПИД-регулятора).

Для наиболее ответственных контуров можно рекомендовать использование ПИД-регулятора, обеспечивающего наиболее высокое быстродействие в системе. Однако следует учитывать, что это условие выполняется только при его оптимальных настройках (настраиваются три параметра). С увеличением запаздывания в системе резко возрастают отрицательные фазовые сдвиги, что снижает эффект действия дифференциальной составляющей регулятора. Поэтому качество работы ПИД-регулятора для систем с большим запаздыванием становится сравнимо с качеством работы ПИ-регулятора. Кроме этого, наличие шумов в канале измерения в системе с ПИД-регулятором приводит к значительным случайным колебаниям управляющего сигнала регулятора,что увеличивает дисперсию ошибки регулирования. Таким образом, ПИД-регулятор следует выбирать для систем регулирования с относительно малым уровнем шумов и величиной запаздывания в объекте управления. Примерами таких систем являются системы регулирования температуры.

При выборе типа регулятора рекомендуется ориентироваться на величину отношения запаздывания к постоянной времени в объекте t /T. Если t /T< 0,2, то можно выбрать релейный, непрерывный или цифровой регуляторы. Если 0,2 < t /T< 1, то должен быть выбран непрерывный или цифровой, ПИ или ПИД-регулятор. Если t /T >1, то выбирают специальный цифровой регулятор с упредителем, который компенсирует запаздывание в контуре управления. Однако этот ж регулятор рекомендуется применять и при меньших отношениях t /T.

Формульный метод определения настроек регулятора

Метод используется для быстрой приближенной оценки значений параметров настройки регулятора для трех видов оптимальных типовых процессов регулирования.

Метод применим как для статических объектов с самовыравниванием (таблица 2), так и для объектов без самовыравнивания (таблица 3).

Примечание:T,t ,K оу - постоянная времени, запаздывание и коэффициент усиления объекта.

В этих формулах предполагается, что настраивается регулятор с зависимыми настройками, передаточная функция которого имеет вид:

где: K p - коэффициент усиления регулятора; T i -время изодрома (постоянная интегрирования регулятора); T d -время предварения (постоянная дифференцирования).

Расчёт настроек по частотным характеристикам объекта

Существует специальная аппаратура для экспериментального определения амплитуднофазовой характеристики (АФХ) объекта управления: Эту характеристику можно использовать для расчета настроек ПИ-регулятора, гд главным критерием является обеспечение заданных запасов устойчивости в системе.

Запасы устойчивости удобно характеризовать показателем колебательности системы M, величина которого в системе с ПИ-регулятором совпадает с максимумом амплитудно-частотной характеристики замкнутой системы. Для того чтобы этот максимум не превышал заданной величины, АФХ разомкнутой системы не должна заходить внутрь окружности с центром P 0 и радиусом R, где

Можно доказать, что оптимальными по минимуму среднеквадратичной ошибки регулирования настройками будут такие, при которых система с показателем колебательности MЈ M 1 будет иметь наибольший коэффициент при интегральной составляющей, чему соответствует условие K p /T i >min.

В связи с этим расчет оптимальных настроек состоит из двух этапов:

  1. Нахождение в плоскости параметров K p и T i , границы области, в которой система обладает заданным показателем колебательности M 1 .
  2. Определением на границе области точки, удовлетворяющей требованию K p /T i .

Расчёт настроек по частотным характеристикам объекта. Методика расчёта настроек ПИ регулятора по АФХ объекта

Экспериментальные методы настройки регулятора

Для значительного числа промышленных объектов управления отсутствуют достаточно точные математические модели, описывающие их статические и динамические характеристики. В то ж время проведение экспериментов по снятию этих характеристик весьма дорого и трудоемко.

Экспериментальный метод настройки регуляторов не требуют знания математической модели объекта. Однако предполагается, что система смонтирована и может быть запущена в работу, а также существует возможность изменения настроек регулятора. Таким образом, можно проводить некоторые эксперименты по анализу влияния изменения настроек на динамику системы. В конечном итоге гарантируется получение хороших настроек для данной системы регулирования.

Существуют два метода настройки - метод незатухающих колебаний и метод затухающих колебаний.

Метод незатухающих колебаний

В работающей системе выключаются интегральная и дифференциальная составляющие регулятора (T i =Ґ ,T d =0), то есть система переводится в закон регулирования П.

Путем последовательного увеличения K p с одновременной подачей небольшого скачкообразного сигнала задания добиваются возникновения в системе незатухающих колебаний с периодом T kp . Это соответствует выведению системы на границу колебательной устойчивости. При возникновении данного режима работы фиксируются значения критического коэффициента усиления регулятора K kp и периода критических колебаний в системе T kp . При появлении критических колебаний ни одна переменная системы не должна выходить на уровень ограничения.

По значениям T kp и K kp рассчитываются параметры настройки регулятора:

  • П-регулятор: K p =0,55 K kp ;
  • ПИ-регулятор: K p =0,45 K kp ; T i =T kp /1,2;
  • ПИД-регулятор: K p =0,6 K kp ; T i =T kp /2; T d =T kp /8.

Расчет настроек регулятора можно производить по критической частоте собственно объекта управления w п. Учитывая, что собственная частота Ґ п ОУ совпадает с критической частотой колебаний замкнутой системы с П-регулятором, величины T kp и K kp могут быть определены по амплитуд и периоду критических колебаний собственно объекта управления.

При выведении замкнутой системы на границу колебательной устойчивости, амплитуда колебаний может превысить допустимое значение, что в свою очередь приведет к возникновению аварийной ситуации на объекте или к выпуску бракованной продукции. Поэтому не все системы управления промышленными объектами могут выводиться на критический режим работы.

Метод затухающих колебаний

Применение этого метода позволяет настраивать регуляторы без выведения системы на критические режимы работы. Так же, как и в предыдущем методе, для замкнутой системы с П-регулятором путем последовательного увеличения KP добиваются переходного процесса отработки прямоугольного импульса по сигналу задания или возмущения с декрементом затухания D=1/4. Далее определяется период этих колебаний T k и значения постоянных интегрирования и дифференцирования регуляторов T i ,T d .

  • Для ПИ-регулятора:T i =T k /6;
  • Для ПИД-регулятора:T i =T k /6;T d =T k /1,5.

После установки вычисленных значений T i и T d на регуляторе необходимо экспериментально уточнить величину K P для получения декремента затухания D=1/4. С этой целью производится дополнительная подстройка K P для выбранного закона регулирования, что обычно приводит к уменьшению K P на 20 –30%. Большинство промышленных систем регулирования считаются качественно настроенными, если их декремент затухания D равен 1/4 или 1/5.

Регулирование при наличии шумов

Наличие высокочастотных шумовых составляющих в измерительном сигнале приводит к случайным колебаниям исполнительного механизма системы, что увеличивает дисперсию ошибки регулирования и снижает точность регулирования. В некоторых случаях сильные шумовые составляющие могут привести систему к неустойчивому режиму работы (стохастическая неустойчивость).

В промышленных системах в измерительных цепях часто присутствуют шумы, связанные с частотой питающей сети. В связи с этим важной задачей является правильная фильтрация измерительного сигнала, а также выбор нужного алгоритма и параметров работы регулятора. Для этого используются фильтры низкой частоты высокого порядка (5 –7), имеющие большую крутизну спада. Их иногда встраивают в нормирующие преобразователи.

Таким образом, главной задачей регулятора является компенсация низкочастотных возмущений. При этом, с целью получения минимальной дисперсии ошибки регулирования, высокочастотные помехи должны быть отфильтрованы. Однако, в общем случае, эта задача противоречивая, так как спектры возмущения и шума могут накладываться друг на друга. Это противоречие разрешается с помощью теории оптимального стохастического управления, которая позволяет добиться хорошего быстрод йствия в системе при минимально возможной дисперсии ошибки регулирования. Для уменьшения влияния помех в практических ситуациях применяются два способа, основанных на:

  • уменьшении коэффициента усиления регулятора K p , то есть, фактически, переход на интегральный закон регулирования, который малочувствителен к шумам;
  • фильтрации измеряемого сигнала.

Методы настройки двухсвязных систем регулирования

Из общего числа систем регулирования около 15% составляют двухсвязные системы регулирования (рис.11). В таких системах даже при наличии устойчивой автономной работы двух регуляторов вся система может стать неустойчивой за счет действия перекрестной связи в объекте управления.

Объект управления в двухсвязной системе представлен в Р-канонической форме. Удобство такого представления заключается в том, что путем активного эксперимента можно определить все передаточные функции по соответствующим каналам. Промежуточные сигналы x 1 , x 2 , x 3 , x 4 обычно недоступны для измерения, поэтому управление ведется по вектору выхода Y:

На практике довольно большое число систем являются двухсвязными. Для объективной настройки регуляторов двухсвязных систем формируется критерий качества вида:

где y 1 и y 2 - коэффициенты веса (штрафа), J1 и J 2 - критерии качества первого и второго контуров.

Путем перераспределения коэффициентов веса y 1 и y 2 можно выделить более важный контур, качество процессов управления в котором должно быть более высоким. Например, если первый контур должен обеспечивать более высокую точность работы, то y 1 требуется увеличить.

Задача настройки регулятора состоит в том, чтобы при заданных y 1 и y 2 обеспечить минимальное значение J 0 системы, где

Рассмотрим различные методы настройки регуляторов в двухсвязных системах.

Метод автономной настройки регуляторов

В этом случае настройка регуляторов Р 1 и Р 2 производится последовательно, без учета взаимных влияний контуров. Процедура настройки осуществляется следующим образом:

  • регулятор Р 2 переводится в ручной режим работы;
  • настраивается регулятор Р 1 так, чтобы критерий J 1 был минимален;
  • отключается настроенный регулятор Р 1 и включается регулятор Р 2 ;
  • настраивается Р 2 , обеспечивая минимум J 2 ;
  • оба регулятора включаются в работу.
  • наблюдается малое взаимное влияние контуров;
  • быстродействие одного контура значительно выше другого (контуры разнесены по частотам);
  • в перекрестных связях одна из передаточных функций имеет коэффициент передачи значительно меньше, чем другая, то есть наблюдается одностороннее влияние.

Метод итеративной настройки регуляторов

Этот метода аналогичен предыдущему, но здесь осуществляется многократная настройка регуляторов Р 1 и Р 2 (последовательная подстройка) с целью обеспечения минимального значения критерия качества J 0 всей системы.

Следует учитывать, что только метод итеративной настройки регуляторов обеспечивает качественную работу двухсвязной системы даж при наличии сильных перекрестных связей. Это объясняется тем, что оптимизация критерия качества J 0 системы происходит при включенных Р 1 и Р 2 .

Данный метод часто применяется при аналоговом и цифровом моделировании двухсвязных систем, так как в реальных условиях он весьма трудоемок.

Метод аналитического конструирования регуляторов

Этот метод позволяет синтезировать многомерный регулятор, учитывающий в своей структуре взаимосвязь переменных в объекте управления. Синтез ведется с помощью методов теории оптимального или модального управления при описании объекта в пространстве состояний.

Структурная схема оптимального регулятора состояния, содержащего наблюдающее устройство, приведена на рис.12. Схема содержит следующие элементы: Н - наблюдатель, ОУ - объект управления, МОУ - модуль объекта управления, ОРС - оптимальный регулятор состояния, Е Н - ошибка наблюдения, X М - вектор состояния модели, X зад.- вектор задания, U - вектор входа ОУ, Y - вектор выхода ОУ, Y М - вектор выхода модели.

Оптимальный регулятор состояния, являясь наиболее совершенным типом регулятора, требует измерения всех компонентов вектора состояния объекта. Для получения их оценок (x) используется динамическая модель объекта (цифровая или аналоговая), подключенная параллельно исходному ОУ. Для обеспечения равенства движений в реальном объекте и модели используется наблюдатель, который, сравнивая движения векторов Y и Y М, обеспечивает их равенство (E H >0). Параметры регулятора состояния рассчитываются методамианалитического конструирования регуляторов путем минимизации интегрального квадратичного критерия качества

где Q и R - матрицы штрафов (весов) на компоненты вектора состояния и вектора управления.

За основу публикации взят курс лекций, читаемый профессоромВ.М.Мазуровым на каферде АТМ Тульского государственного университета

Точность регулирования

Точность в установившемся режиме

Качество работы любой системы регулирования в конечном счете определяется величиной ошибки, равной разности между требуемым (заданным) и действительным (фактическим) значениями регулируемой величины. В следящих системах, в частности, совпадает с командой . Величина мгновенного значения ошибки в течение всего времени работы системы позволяет наиболее полно судить о свойствах системы регулирования. Ошибки регулирования можно разделить на статические и динамические, т.е. соответствующие установившемуся (статическому) и переходному (динамическому) режимам. В данном разделе речь пойдет об ошибке установившегося режима.

Теорема о конечном значении оригинала

Для определения величины ошибки в установившемся режиме можно воспользоваться теоремой о конечном значении оригинала:

Согласно этой теореме установившемуся режиму () по Лапласу соответствует , а по Фурье - круговая частота .

Пример 2.8.1. Оценим величину ошибок от управляющего и возмущающих воздействий, приложенных в различных точках схемы рис.2.8.1. На схеме - передаточная функция регулятора; - передаточная функция объекта; - возмущение, приложенное к объекту; - возмущение, приложенное к регулятору.

Любому чувствительному элементу присущи свои ошибки. Ошибку чувствительного элемента можно рассматривать как некоторое возмущающее воздействие, которое отнесем к . Воспользовавшись принципом суперпозиции (наложения), изображение реакции найдем как сумму реакций на все входные сигналы. В результате для изображения ошибки получим

Здесь - изображение ошибки от команды;

Изображение ошибки от помехи на входе регулятора;

Изображение ошибки от помехи на входе объекта.

Передаточные функции для ошибок равны

; ;.

Таким образом, общая ошибка является суммой составляющих ошибки от команды и помех. При этом в случае статического регулятора и объекта с коэффициентами усиления , и постоянных входных воздействиях , и по теореме о конечном значении оригинала (2.8.1) получим

– статическая ошибка от входного сигнала;

- статическая ошибка от погрешности чувствительного элемента (или возмущения на входе регулятора);

- статическая ошибка от возмущающего воздействия на входе объекта регулирования (выходе регулятора).

Чтобы ошибка от команды была маленькой, надо взять . В этом случае ; . То есть помеха на входе системы переходит в ошибку (с противоположным знаком), помеха на входе объекта уменьшается в раз. Очевидно, что нельзя уменьшить за счет выбора коэффициента усиления (методами теории автоматического регулирования). Для уменьшения ошибки надо уменьшить величину возмущающего воздействия. Ошибку можно уменьшить за счет увеличения коэффициента усиления регулятора, т.е. части схемы до точки приложения возмущения.

Коэффициенты ошибок

Метод может применяться как для управляющего, так и для возмущающих воздействий. В конкретном случае необходимо использовать передаточную функцию по соответствующему воздействию. Поэтому ограничимся только случаем управляющего воздействия.

Если функция времени имеет произвольную форму, но достаточно плавную, так что вдали от начальной точки существенное значение имеет только конечное число производных ; ;…; , то ошибку системы можно определить следующим образом. Пусть

Разложим передаточную функцию по ошибке в ряд Тейлора (по возрастающим степеням комплексной величины) в окрестности . Тогда

Степенной ряд сходится при малых значениях, т.е. при достаточно больших значениях времени , что согласно теореме о конечном значении оригинала соответствует установившемуся режиму. Коэффициенты ряда Тейлора можно определить по формуле . (2.8.5)

Переходя от (2.8.4) к оригиналу, получаем формулу для установившейся ошибки . (2.8.6)

Таким образом, ошибка установившегося режима выражена через входной сигнал и его производные, а также через коэффициенты , которые в связи с этим называются коэффициентами ошибок .

Так как передаточная функция по ошибке представляет собой дробно-рациональную функцию, то производные для (2.8.4) вычислять сложно и коэффициенты ошибок более просто получить делением числителя на знаменатель младшими степенями вперед и сравнением получающегося ряда с выражением в (2.8.3).

Пример 2.8.2 . Найти ошибку установившегося режима от команды для системы рис.2.8.1, у которой .

Имеем передаточную функцию для ошибки .

Делим числитель на знаменатель, начиная с младших степеней переменной :

Теперь сравниваем результат деления с рядом в общем виде. В результате деления нет свободного члена и поэтому . Имеем также ; и т.д.

Пусть . Тогда по (2.7.4) найдем

Пусть , т.е. команда изменяется по линейному закону (с постоянной скоростью). Тогда по (2.8.4) найдем

Порядок астатизма системы

Обобщая предыдущий пример, можно заметить, что в системе с астатизмом порядка первые коэффициентов ошибок равны нулю. Если сигнал является полиномом степени , то первые слагаемых в (2.8.6) обращаются в нуль за счет нулевых коэффициентов ошибок, а следующие – за счет нулевых производных. Если сигнал представляет собой полином степени , то ()-е слагаемое не равно нулю.

В последнем примере имели систему с астатизмом первого порядка. В случае сигнала – полинома нулевой степени (константа) ошибка была равна нулю. В случае сигнала – полинома первой степени ошибка не равна нулю.

Не трудно заметить, что порядок астатизма связан с количеством интегрирующих звеньев в системе. Если бы их было , то младший член числителя передаточной функции по ошибке содержал бы и при делении числителя передаточной функции на знаменатель младший член результата также содержал

Соответственно первые коэффициентов ошибок были бы равны нулю.

Таким образом, для повышения точности желательно увеличивать порядок астатизма, т.е. количество интегрирующих звеньев в системе. Однако это трудно сделать по двум причинам. Во-первых, набор аналоговых интегрирующих звеньев ограничен. Это двигатели (электрические, гидравлические и т.д.). Включать в систему несколько двигателей несуразно. Во-вторых, интегрирующее звено вносит отставание по фазе (- на всех частотах), что приводит к потере устойчивости. Поэтому одновременно приходится вводить корректирующие звенья. Этого можно избежать за счет включения интегрирующего звена параллельно основному тракту прохождения сигнала. В этом случае передаточная функция равна , где регулирования характеризует быстродействие системы. Рис. 1 2. Величина...

  • Регулирование давления в рабочем пространстве дуговой сталеплавильной печи ДСП-25Н

    Курсовая работа >> Промышленность, производство

    Заданном уровне. Так как регулирование режима ДСП осуществляется в основном... CO2/CO позволяет повысить точность регулирования окислительно – восстановительного потенциала рабочего... от входной величины y в установившемся состоянии. Входной величиной является...

  • Регулирование энергетических установок

    Реферат >> Физика

    Следовательно, возможный режим установившейся работы ГТУ. Возможно... Автоматическое регулирование холодильной машины позволяет обеспечить точность поддержания... предупредить аварийные режимы . 4.2 Способы регулирования холодопроизводительности Установление...

  • Линейные автоматические системы регулирования

    Курсовая работа >> Экономика

    В таблицу 5. Таблица 5 – Динамическая характеристика объекта регулирования i 1 2 3 4 5 6 7 8 9 t 0 1 2 3 4 5 6 7 9 Y 0 0,1 0,5 0,7 0,82 0,91 0,975 ... регулируемого параметра от заданного в установившемся режиме (точность системы); . Если в числителе...

  • К системам автоматического регулирования (САР) предъявляются требования не только
    устойчивости процессов регулирования. Для работоспособности системы не менее необходимо, чтобы процесс автоматического регулирования осуществлялся при обеспечении определенных показателей качества процесса управления .

    Если исследуемая САР является устойчивой, возникает вопрос о том, насколько качественно происходит регулирование в этой системе и удовлетворяет ли оно технологическим требованиям обьекта управления.На практике качество регулирования определяется визуально по графику . Однако, имеются точные но более сложные математические методы, дающие конкретные числовые значения (которые не рассматриваются в данной методике).

    Классификация показателей качества состоит из нескольких групп:

    • прямые - определяемые непосредственно по процесса,
    • корневые - определяемые по корням характеристического полинома,
    • частотные - по частотным характеристикам,
    • интегральные - получаемые путем интегрирования функций.

    Прямыми показателями качества процесса управления, определяемые непосредственно по
    являются:

    1. Yуст ,
    2. Степень затухания ? ,
    3. Время достижения первого максимума tmax ,
    4. Ошибка регулирования Ест (статистическая или среднеквадратическая составляющие),
    5. Динамический коэффициент регулирования Rd ,

    Например, переходная характеристика, снятая на объекте управления при отработке ступенчатого воздействия, имеет колебательный вид и представлена на рис.1.

    Рисунок 1 - Определение показателей качества по переходной характеристике

    Установившееся значение выходной величины Yуст

    Установившееся значение выходной величины Yуст определяется по переходной характеристике,представленной на рис.1.

    Степень затухания ?

    Степень затухания ? определяется по формуле:

    где А1 и А3 - соответственно 1-я и 3-я амплитуды переходной характеристики рис.1.

    Время достижения первого максимума tmax

    Время достижения первого максимума tmax определяется по переходной характеристике,представленной на рис.1.

    Время регулирования tp

    Условно считается, что значение М=1,5-1,6 является оптимальным для промышленных САР, т.к. вэтом случае у обеспечивается в районе от 20% до 40%. При увеличении значения M колебательность всистеме возрастает.

    В некоторых случаях нормируется полоса пропускания системы щп, которая соответствует уровню усиления в замкнутой системе 0,05. Чем больше полоса пропускания, тем больше быстродействие замкнутой системы. Однако при этом повышается чувствительность системы к шумам в канале измерения и возрастает дисперсия ошибки регулирования.