Болезни Военный билет Призыв

Объяснение квантовой физики. Значение и влияние. Квантовый Чеширский кот и физика

Услышав слова «квантовая физика» люди обычно отмахиваются: «Это что-то страшно сложное». Между тем, это совершенно не так, и в слове «квантовый» нет ровным счётом ничего страшного. Непонятного – хватает, интересного – очень много, а страшного – нет.

Про книжные полки, лесенки и Ивана Ивановича

Все процессы, явления и величины в окружающем нас мире можно разделить на две группы: непрерывные (по-научному континуальные ) и прерывные (по-научному дискретные или квантованные ).

Представьте себе стол, на который можно положить книгу. Вы можете положить книгу в любое место на столе. Справа, слева, посередине... Куда хотите – туда и положите. В этом случае физики говорят, что положение книги на столе изменяется непрерывно .

А теперь представьте книжные полки. Вы можете поставить книгу на первую полку, на вторую, на третью или на четвёртую – однако не можете поставить книгу «где-то между третьей и четвёртой». В этом случае положение книги изменяется прерывно , дискретно , квантованно (все эти слова обозначают одно и то же).

Окружающий мир полон непрерывных и квантованных величин. Вот две девочки – Катя и Маша. Их рост 135 и 136 сантиметров. Какая это величина? Рост изменяется непрерывно, он может быть и 135 с половиной сантиметров, и 135 сантиметров с четвертью. А вот номер школы, в которой девочки учатся – это величина квантованная! Допустим, Катя учится в школе № 135, а Маша – в школе № 136. Однако никто из них не может учиться в школе № 135 с половиной, правда?

Другой пример квантованной системы – шахматная доска. На шахматной доске 64 клетки, и каждая фигура может занимать только одну клетку. Можем ли мы поставить пешку где-то между клетками или поставить на одну клетку сразу две пешки? Фактически – можем, но по правилам – нет.


Континуальный спуск

А вот горка на детской площадке. Дети скатываются с неё вниз – потому что высота горки изменяется плавно, непрерывно. Теперь представьте себе, что эта горка вдруг (взмах волшебной палочки!) превратилась в лестницу. Скатиться с неё на попе уже не выйдет. Придётся идти ногами – сперва один шаг, потом второй, потом третий. Величина (высота) у нас изменялась непрерывно – а стала изменяться шагами, то есть дискретно, квантованно .

Квантованный спуск

Давайте проверим!

1. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «отдохну где-нибудь по дороге».

2. Сосед по даче Иван Иванович отправился в соседнюю деревню и сказал «поеду каким-нибудь автобусом».

Какая из этих двух ситуаций («систем») может считаться непрерывной, а какая – квантованной?

Ответ:

В первом случае Иван Иванович идёт пешком и может остановиться отдохнуть в абсолютно любой точке. Значит, данная система – непрерывная.

Во втором – Иван Иванович может сесть в подошедший на остановку автобус. Может пропустить и подождать следующего автобуса. Но вот сесть «где-то между» автобусами у него не получится. Значит, данная система – квантованная!

Во всём виновата астрономия

О существовании непрерывных (континуальных) и прерывных (квантованных, разрывных, дискретных) величин прекрасно знали ещё древние греки. В своей книге «Псаммит» («Исчисление песчинок») Архимед даже сделал первую попытку установить математическую связь между непрерывными и квантованными величинами. Тем не менее, никакой квантовой физики в те времена не существовало.

Её не существовало вплоть до самого начала 20 века! Такие великие физики, как Галилей, Декарт, Ньютон, Фарадей, Юнг или Максвелл слыхом не слыхивали ни про какую квантовую физику и прекрасно без неё обходились. Вы можете спросить: зачем же тогда учёные придумали квантовую физику? Что такое особенное в физике приключилось? Представьте себе, приключилось. Только совсем не в физике, а в астрономии!

Загадочный спутник

В 1844 году немецкий астроном Фридрих Бессель наблюдал самую яркую звезду нашего ночного неба – Сириус. К тому времени астрономы уже знали, что звёзды в нашем небе не являются неподвижными – они движутся, только очень-очень медленно. При этом каждая звезда – это важно! – движется по прямой линии. Так вот, при наблюдениях Сириуса оказалось, что он движется совсем не по прямой. Звезду как бы «шатало» то в одну сторону, то в другую. Путь Сириуса в небе был похож на извилистую линию, которую математики называют «синусоида».


Звезда Сириус и её спутник - Сириус Б

Было понятно, что сама по себе звезда так двигаться не может. Чтобы превратить движение по прямой линии в движение по синусоиде, нужна некая «возмущающая сила». Поэтому Бессель предположил, что вокруг Сириуса вращается тяжёлый спутник – это было самое естественное и разумное объяснение.

Однако расчёты показывали, что масса этого спутника должна быть приблизительно как у нашего с вами Солнца. Тогда почему же мы не видим этот спутник с Земли? Сириус расположен от солнечной системы недалеко – каких-то два с половиной парсека, и объект размером с Солнце должен быть виден очень хорошо...

Трудная получалась задачка. Одни учёные говорили, что этот спутник представляет собой холодную, остывшую звезду – поэтому она абсолютно чёрная и невидима с нашей планеты. Другие говорили, что этот спутник не чёрный, а прозрачный, – потому мы его и не видим. Астрономы всего мира смотрели на Сириус в телескопы и пытались «поймать» загадочный невидимый спутник, а он как будто издевался над ними. Было от чего удивиться, сами понимаете...

Нам нужен чудо-телескоп!

В такой телескоп люди впервые увидели спутник Сириуса

В середине 19-го века в США жил и работал выдающийся конструктор телескопов Элвин Кларк. По первой профессии он был художником, но волей случая превратился в первоклассного инженера, стеклодела и астронома. До сих пор никто не сумел превзойти его потрясающие линзовые телескопы! Один из объективов работы Элвина Кларка (диаметром 76 сантиметров) можно увидеть в Санкт-Петербурге, в музее Пулковской обсерватории...

Однако мы отвлеклись. Итак, в 1867 году Элвин Кларк построил новый телескоп – с объективом диаметром 47 сантиметров; это был самый большой телескоп в США на тот момент. В качестве первого небесного объекта для наблюдений на испытаниях был выбран именно загадочный Сириус. И надежды астрономов блестяще оправдались – в первую же ночь неуловимый спутник Сириуса, предсказанный Бесселем, был обнаружен.

Из огня да в полымя...

Однако, получив данные наблюдений Кларка, астрономы радовались совсем недолго. Ведь, согласно расчётам, масса спутника должна быть приблизительно такая же, как у нашего Солнца (в 333 000 раз больше массы Земли). Но вместо огромного чёрного (или прозрачного) небесного светила астрономы увидели... крохотную белую звёздочку! Эта звёздочка была очень горячей (25 000 градусов, сравните с 5 500 градусами нашего Солнышка) и одновременно крохотной (по космическим меркам), размерами не больше Земли (впоследствии такие звёзды назвали «белыми карликами»). Получалось, что у этой звёздочки совершенно невообразимая плотность. Из какого же она тогда состоит вещества?!

На Земле мы знаем материалы с высокой плотностью – скажем, это свинец (кубик со стороной в сантиметр, сделанный из этого металла, весит 11.3 грамма) или золото (19.3 грамма на кубический сантиметр). Плотность вещества спутника Сириуса (его назвали «Сириус Б») составляет миллион (!!!) граммов на кубический сантиметр – оно в 52 тысячи раз тяжелее золота!

Возьмём, например, обычный спичечный коробок. Его объём – 28 кубических сантиметров. Значит, спичечный коробок, наполненный веществом спутника Сириуса, будет весить... 28 тонн! Попробуйте представить – на одной чашке весов спичечный коробок, а на второй – танк!

Была ещё одна проблема. В физике есть закон, который называется законом Шарля. Он утверждает, что в одном и том же объёме давление вещества тем выше, чем выше температура этого вещества. Вспомните, как срывает давлением горячего пара крышку с закипевшего чайника – и сразу поймёте, о чём речь. Так вот, температура вещества спутника Сириуса этот самый закон Шарля нарушала самым бессовестным образом! Давление было невообразимым, а температура – относительно низкой. В итоге получались «неправильные» физические законы и вообще «неправильная» физика. Как у Винни-Пуха – «неправильные пчёлы и неправильный мёд».

Совсем голова кругом...

Чтобы «спасти» физику, в начале 20 века учёным пришлось признать, что в мире существует сразу ДВЕ физики – одна «классическая», известная уже две тысячи лет. А вторая – необычная, квантовая . Учёные предположили, что на обычном, «макроскопическом» уровне нашего мира работают законы классической физики. А вот на самом маленьком, «микроскопическом» уровне вещество и энергия подчиняются совершенно другим законам – квантовым.

Представьте себе нашу планету Земля. Вокруг неё сейчас вращается больше 15 000 самых разных искусственных объектов, каждый по своей орбите. Причём эту орбиту при желании можно поменять (скорректировать) – скажем, периодически корректируется орбита у Международной космической станции (МКС). Это макроскопический уровень, здесь работают законы классической физики (например, законы Ньютона).


А теперь перенесёмся на микроскопический уровень. Представьте себе ядро атома. Вокруг него, подобно спутникам, вращаются электроны – однако их не может быть сколь угодно много (скажем, у атома гелия – не больше двух). И орбиты у электронов будут уже не произвольные, а квантованные, «ступенчатые». Такие орбиты физики ещё называют «разрешёнными энергетическими уровнями». Электрон не может «плавно» перейти с одного разрешённого уровня на другой, он может только мгновенно «перепрыгнуть» с уровня на уровень. Только что был «там», и мгновенно оказался «тут». Он не может оказаться где-то между «там» и «тут». Он меняет местоположение мгновенно.


Удивительно? Удивительно! Но это ещё не всё. Дело в том, что, по законам квантовой физики, два одинаковых электрона не могут занимать один и тот же энергетический уровень. Никогда. Учёные называют это явление «запрет Паули» (почему этот «запрет» действует, они пока объяснить не могут). Больше всего этот «запрет» напоминает шахматную доску, которую мы приводили в качестве примера квантовой системы, – если на клетке доски стоит пешка, другую пешку на эту клетку уже не поставить. В точности то же самое происходит с электронами!

Решение задачи

Каким же образом – спросите вы – квантовая физика позволяет объяснять такие необычные явления, как нарушение закона Шарля внутри Сириуса Б? А вот каким.

Представьте себе городской парк, в котором есть танцевальная площадка. На улице гуляет много людей, они заходят на танцплощадку потанцевать. Пусть количество людей на улице обозначает давление, а количество людей на дискотеке – температуру. На танцплощадку может зайти огромное количество народу, – чем больше людей гуляет в парке, тем больше людей танцует на танцплощадке, то есть чем выше давление, тем выше температура. Так работают законы классической физики – в том числе закон Шарля. Такое вещество учёные называют «идеальным газом».


Люди на танцплощадке – «идеальный газ»

Однако на микроскопическом уровне законы классической физики не работают. Там начинают действовать квантовые законы, и это коренным образом меняет ситуацию.

Представим себе, что на месте танцплощадки в парке открыли кафе. В чём разница? Да в том, что в кафе, в отличие от дискотеки, «сколько угодно» людей не войдёт. Как только будут заняты все места за столиками, охрана прекратит пропускать людей внутрь. И пока кто-то из гостей не освободит столик, охрана никого не впустит! В парке гуляет всё больше и больше народу – а в кафе сколько людей было, столько и осталось. Получается, давление увеличивается, а температура «стоит на месте».


Люди в кафе – «квантовый газ»

Внутри Сириуса Б, само собой, никаких людей, танцплощадок и кафе нет. Но принцип остаётся всё тот же: электроны заполняют все разрешенные энергетические уровни (как посетители – столики в кафе), и дальше никого «пустить» уже не могут – в точности согласно запрету Паули. В итоге внутри звезды получается невообразимо огромное давление, а вот температура при этом – высокая, но для звёзд вполне себе обыкновенная. Такое вещество в физике называется «вырожденным квантовым газом».

Продолжим?..

Аномально высокая плотность белых карликов – далеко не единственное явление в физике, требующее использования квантовых законов. Если эта тема вас заинтересовала, в следующих номерах «Лучика» мы можем поговорить и о других, не менее интересных, квантовых явлениях. Пишите! А пока давайте запомним главное:

1. В нашем с вами мире (Вселенной) на макроскопическом (т. е. «большом») уровне действуют законы классической физики. Они описывают свойства обычных жидкостей и газов, движения звёзд и планет и многое другое. Именно эту физику вы изучаете (или будете изучать) в школе.

2. Однако на микроскопическом (то есть невероятно маленьком, в миллионы раз меньше самых мелких бактерий) уровне действуют совершенно другие законы – законы квантовой физики. Законы эти описываются очень сложными математическими формулами, и в школе их не изучают. Однако только квантовая физика позволяет относительно внятно объяснить строение таких удивительных космических объектов, как белые карлики (вроде Сириуса Б), нейтронные звёзды, чёрные дыры и так далее.

  • Перевод

По словам Оуэна Маруни, работающего физиком в Оксфордском университете, с момента появления квантовой теории в 1900-х годах все говорили о странности этой теории. Как она позволяет частицам и атомам двигаться в нескольких направлениях одновременно, или одновременно вращаться по часовой и против часовой стрелки. Но словами ничего не докажешь. «Если мы рассказываем общественности, что квантовая теория очень странная, нам необходимо проверить это утверждение экспериментально,- говорит Маруни. – А иначе мы не наукой занимаемся, а рассказываем про всякие закорючки на доске».

Именно это навело Маруни сотоварищи на мысль разработать новую серию экспериментов для раскрытия сути волновой функции – загадочной сущности, лежащей в основе квантовых странностей. На бумаге, волновая функция – просто математический объект, обозначаемый буквой пси (Ψ) (одна из тех самых закорючек), и используется для описания квантового поведения частиц. В зависимости от эксперимента, волновая функция позволяет учёным вычислять вероятность наблюдения электрона в каком-то конкретном месте, или шансы того, что его спин ориентирован вверх или вниз. Но математика не говорит о том, что на самом деле такое волновая функция. Это нечто физическое? Или просто вычислительный инструмент, позволяющий работать с невежественностью наблюдателя касательно реального мира?

Использованные для ответа на вопрос тесты очень тонкие, и им всё ещё предстоит выдать однозначный ответ. Но исследователи оптимистичны в том, что развязка близка. И им, наконец, удастся ответить на вопросы, мучавшие всех десятки лет. Может ли частица реально быть во многих местах одновременно? Делится ли Вселенная постоянно на параллельные миры, в каждом из которых существует наша альтернативная версия? Существует ли вообще нечто под названием «объективная реальность»?

«Такие вопросы рано или поздно появляются у любого»,- говорит Алессандро Федриччи, физик из Квинслендского университета (Австралия). «Что на самом деле реально?»

Споры о существе реальности начались ещё тогда, когда физики выяснили, что волна и частица – лишь две стороны одной медали. Классический пример – эксперимент с двумя щелями, где отдельные электроны выстреливаются в барьер, имеющий две щели: электрон ведёт себя так, будто проходит через две щели одновременно, создавая полосатый рисунок интерференции с другой её стороны. В 1926 году австрийский физик Эрвин Шрёдингер придумал волновую функцию для описания этого поведения и вывел уравнение, позволявшее вычислять её для любой ситуации. Но ни он, ни кто либо ещё, не мог ничего рассказать о природе этой функции.

Благодать в невежестве

С практической точки зрения её природа не важна. Копенгагенская интерпретация квантовой теории, созданная в 1920-х годах Нильсом Бором и Вернером Гейзенбергом, использует волновую функцию просто как инструмент для предсказания результатов наблюдений, позволяя не думать о том, что происходит при этом в реальности. «Нельзя винить физиков в такой модели поведения, „заткнись и считай“, поскольку она привела к значительным прорывам в ядерной и атомной физике, физике твёрдого тела и физике элементарных частиц»,- говорит Джин Брикмонт, специалист по статистической физике Католического университета в Бельгии. «Поэтому люди советуют не волноваться относительно фундаментальных вопросов».

Но некоторые всё равно волнуются. К 1930-м годам Эйнштейн отверг копенгагенскую интерпретацию, не в последнюю очередь потому, что она позволяла двум частицам спутывать свои волновые функции, что приводило к ситуации, в которой измерения одной из них могли мгновенно дать состояние другой, даже если они при этом разделены огромными расстояниями. Чтобы не смиряться с этим «пугающим взаимодействием на расстоянии», Эйнштейн предпочитал верить, что волновые функции частиц были неполны. Он говорил, что возможно, у частиц есть некие скрытые переменные, определяющие результат измерения, которые не были замечены квантовой теорией.

Эксперименты с тех пор продемонстрировали работоспособность пугающего взаимодействия на расстоянии, что отвергает концепцию скрытых переменных. но это не остановило остальных физиков интерпретировать их по-своему. Эти интерпретации делятся на два лагеря. Одни соглашаются с Эйнштейном в том, что волновая функция отражает наше невежество. Это то, что философы зовут пси-эпистемическими моделями. А другие рассматривают волновую функцию как реальную вещь – пси-онтические модели.

Чтобы понять разницу, представим себе мысленный эксперимент Шрёдингера, описанный им в 1935 году в письме Эйнштейну. Кот находится в стальной коробке. Коробка содержит образец радиоактивного материала, у которого есть 50% шанс испустить продукт распада за один час, и аппарат, отравляющий кота в случае, если этот продукт будет обнаружен. Поскольку радиоактивный распад – событие квантового уровня, пишет Шрёдингер, правила квантовой теории говорят, что в конце часа волновая функция внутренностей коробки должна быть смесью из мёртвого и живого кота.

«Грубо говоря,- мягко выражается Федриччи,- в пси-эпистемической модели кот в коробке либо жив, либо мёртв, и мы просто не знаем этого из-за того, что коробка закрыта». А в большинстве пси-онтических моделей существует согласие с копенгагенской интерпретацией: пока наблюдатель не откроет коробку, кот одновременно будет и жив и мёртв.

Но тут спор заходит в тупик. Какая из интерпретаций истинна? На этот вопрос сложно ответить экспериментально, поскольку разница между моделями очень тонка. Они по сути должны предсказать то же квантовое явление, что и очень успешная копенгагенская интерпретация. Эндрю Уайт, физик из Квинслендского университета, говорит, что за его 20-летнюю карьеру в квантовых технологиях «эта задача была как огромная гладкая гора без уступов, к которой нельзя было подступиться».

Всё поменялось в 2011 году, с опубликованием теоремы о квантовых измерениях, которая вроде бы устранила подход «волновая функция как невежество». Но по ближайшему рассмотрению оказалось, что эта теорема оставляет достаточно место для их манёвра. Тем не менее, она вдохновила физиков серьёзно задуматься о способах решения спора путём тестирования реальности волновой функции. Маруни уже разработал эксперимент, который в принципе работоспособен, и он с коллегами вскоре нашёл способ заставить его работать на практике. Эксперимент был проведён в прошлом году Федриччи, Уайтом и другими.

Для понимания идеи теста представьте две колоды карт. В одной есть только красные, в другой – только тузы. «Вам дают карту и просят определить, из какой она колоды»,- говорит Мартин Рингбауэр, физик из того же университета. Если это красный туз, «случается пересечение, и вы не сможете сказать этого определённо». Но если вы знаете, сколько карт в каждой колоде, можно подсчитать, как часто будет возникать такая двусмысленная ситуация.

Физика в опасности

Такая же двусмысленность случается и в квантовых системах. Не всегда можно одним измерением узнать, например, как поляризован фотон. «В реально жизни просто отличить запад от направления чуть южнее запада, но в квантовых системах это не так просто»,- говорит Уайт. Согласно стандартной копенгагенской интерпретации, нет смысла спрашивать о поляризации, поскольку у вопроса нет ответа – пока ещё одно измерение не определит ответ в точности. Но согласно модели «волновая функция как невежество», вопрос имеет смысл – просто в эксперименте, как и в том, с колодами карт, не хватает информации. Как и с картами, возможно предсказать, сколько двусмысленных ситуаций можно объяснить таким невежеством, и сравнить с большим количеством двусмысленных ситуаций, разрешённых стандартной теорией.

Именно это и проверяли Федриччи с командой. Группа измеряла поляризацию и другие свойства в луче фотонов, и находила уровень пересечений, который нельзя объяснить моделями «невежества». Результат поддерживает альтернативную теорию – если объективная реальность существует, то существует и волновая функция. «Впечатляет, что команда смогла решить такую сложную задачу таким простым экспериментом»,- говорит Андреа Альберти, физик из Университета Бонна (Германия).

Вывод ещё не высечен в граните: поскольку детекторы улавливали лишь пятую часть использованных в тесте фотонов, приходится предполагать, что утерянные фотоны вели себя точно так же. Это сильное предположение, и сейчас группа работает над тем, чтобы уменьшить потери и выдать более определённый результат. В это время команда МАруни в Оксфорде работает с Университетом Нового Южного Уэльса (Австралия), чтобы повторить такой опыт с ионами, которых проще отслеживать. «В ближайшие шесть месяцев у нас будет неоспоримая версия этого эксперимента»,- говорит Маруни.

Но даже если их ждёт успех и победят модели «волновая функция как реальность», то и у этих моделей есть разные варианты. Экспериментаторам придётся выбирать один из них.

Одна из самых ранних интерпретаций была сделана в 1920-х годах французом Луи де Бройлем, и расширена в 1950-х американцем Дэвидом Бомом. Согласно моделям Бройля-Бома, у частиц есть определённое местоположение и свойства, но их ведёт некая «пилотная волна», которая и определяется как волновая функция. Это объясняет эксперимент с двумя щелями, поскольку пилотная волна может пройти через обе щели и выдать картину интерференции, хотя сам электрон, влекомый ею, проходит только через одну щель из двух.

В 2005 году эта модель получила неожиданную поддержку. Физики Эммануэль Форт, сейчас работающий в Институте Лангевина в Париже, и Ив Кодье из Университета Париж Дидро задали студентам простую, по их мнению, задачку: поставить эксперимент, в котором капли масла, падающие на поднос, будут сливаться из-за вибраций подноса. К удивлению всех вокруг капель начали образовываться волны, когда поднос вибрировал с определённой частотой. «Капли начали передвигаться самостоятельно по своим собственным волнам»,- говорит Форт. «Это был дуальный объект – частица, влекомая волной».

С тех пор форт и Кодье показали, что такие волны могут провести свои частицы в эксперименте с двумя щелями точно как предсказывает теория пилотной волны, и могут воспроизводить другие квантовые эффекты. Но это не доказывает существование пилотных волн в квантовом мире. «Нам говорили, что такие эффекты в классической физике невозможны,- говорит Форт. – И тут мы показали, что возможны».

Ещё один набор моделей, основанных на реальности, разработанный в 1980-х, пытается объяснить сильную разницу свойств у больших и малых объектов. «Почему электроны и атомы могут быть в двух местах одновременно, а столы, стулья, люди и коты – не могут»,-говорит Анджело Баси, физик Триестского университета (Италия). Известные как «коллапсные модели», эти теории говорят, что волновые функции отдельных частиц реальны, но могут терять свои квантовые свойства и приводить частицу в определённое положение в пространстве. Модели построены так, что шансы такого коллапса чрезвычайно малы для отдельной частицы, так что на атомном уровне доминируют квантовые эффекты. Но вероятность коллапса быстро растёт при объединении частиц, и макроскопические объекты полностью теряют свои квантовые свойства и ведут себя согласно законам классической физики.

Один из способов это проверить – искать квантовые эффекты у больших объектов. Если верна стандартная квантовая теория, то ограничений на размер нет. И физики уже провели эксперимент с двумя щелями при помощи больших молекул. Но если верны модели коллапса, то квантовые эффекты не будут видны при превышении определённой массы. Разные группы планируют искать эту массу, используя холодные атомы, молекулы, металлические кластеры и наночастицы. Они надеются обнаружить результаты в ближайшие десять лет. «Что классно с этими экспериментами, так это то, что мы будем подвергать квантовую теорию точным тестам там, где её ещё не проверяли»,- говорит Маруни.

Параллельные миры

Одна модель «волновая функция как реальность» уже известна и любима писателями-фантастами. Это многомировая интерпретация, выработанная в 1950-х Хью Эвереттом, который в то время был студентом Принстонского университета в Нью-Джерси. В этой модели волновая функция так сильно определяет развитие реальности, что при каждом квантовом измерении Вселенная расщепляется на параллельные миры. Иными словами, открывая коробку с котом, мы порождаем две Вселенные – одна с мёртвым котом, а другая – с живым.

Сложно разделить эту интерпретацию и стандартную квантовую теорию, поскольку их предсказания совпадают. Но в прошлом году Говард Вайзман из Гриффитского университета в Брисбейне с коллегами предложил модель мультивёрса, которую можно проверить. В их модели нет волновой функции – частицы подчиняются классической физике, законам Ньютона. А странные эффекты квантового мира появляются потому, что между частицами и их клонами в параллельных вселенных есть отталкивающие силы. «Отталкивающая сила между ними порождает волны, распространяющиеся по всем параллельным мирам»,- говорит Вайзман.

Используя компьютерную симуляцию, в которой взаимодействовали 41 вселенная, они показали, что модель грубо воспроизводит несколько квантовых эффектов, включая траектории частиц в эксперименте с двумя щелями. При увеличении количества миров рисунок интерференции стремится к реальному. Поскольку предсказания теории разнятся в зависимости от количества миров, говорит Вайзман, можно проверить, права ли модель мультивёрса – то есть, что никакой волновой функции нет, а реальность работает по классическим законам.

Поскольку в этой модели волновая функция не нужна, она останется жизнеспособной, даже если будущие эксперименты исключат модели с «невежеством». Кроме неё выживут другие модели, например, копенгагенская интерпретация, которые утверждают, что нет объективной реальности, а есть лишь вычисления.

Но тогда, как говорит Уайт, этот вопрос и станет объектом изучения. И хотя пока никто не знает, как это сделать, «что было бы реально интересным, так это разработать тест, проверяющий, есть ли у нас вообще объективная реальность».

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.



Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.

Тут у меня днями разговор состоялся на тему delayed choice quantum erasure , даже не столько дискуссия, сколько терпеливое объяснение мне моим замечательным френдом dr_tambowsky основ квантовой физики. Поскольку я физику в школе плохо учила, а на старости лет потянуло, то впитываю, как губка. Объяснения решила собрать в одном месте, может кому еще .

Для начала рекомендую посмотреть мультфильм для детей про интерференцию и обратить внимание на «глаз». Потому что фактически в нем вся загвоздка.

Затем можно начинать читать текст от dr_tambowsky , который я привожу ниже целиком или, кто умный и подкованный, может сразу читать это . А лучше и то, и другое.

Что такое интерференция.
Тут действительно много всяких терминов и понятий и они сильно перепутаны. Давай по порядку. Во-первых — интерференция как таковая. Примерам интерференции несть числа и разных интерферометров очень много. Конкретный эксперимент, который постоянно склоняют и часто используют в этой науке про erasure (в основном, потому что он простой и удобный) — это две щели, прорезанные рядышком, параллельно друг другу в непрозрачном экране. Для начала посветим на такую двойную прорезь светом. Свет — это же ж волна, правда? И интерференцию света мы наблюдаем постоянно. Прими на веру, что если посветить на эти две прорези, а с другой стороны поставить экран (или просто стенку), то на этом втором экране мы тоже увидим интерференционную картину — вместо двух ярких пятен света «прошедшего через прорези» на втором экране (стенке) будет забор из чередующихся ярких и тёмных полос. Отметим ещё раз, что это чисто волновое свойство: если мы будем швырять камешки, то те из них, которые попадут в прорези будут и дальше лететь прямо и будут ударять в стенку каждый за своей прорезью, то есть, мы увидим две независимых кучи камней (если они к стенке прилипнут, конечно 🙂), никакой интерференции.

Далее, помнишь, в школе учили про «корпускулярно-волновой дуализм»? Что когда всё очень маленькое и очень квантовое, то объекты — одновременно и частицы и волны? В одном из знаменитых экспериментов (эксперимент Штерна-Герлаха) в 20е годы прошлого века использовали такую же установку как описано выше, но вместо света светили… электронами. Ну, то есть, электроны ведь частицы, правда? То есть если их «кидать» на двойную прорезь, как камушки, то на стенке за прорезями мы увидим что? Ответ — не два отдельных пятна, а опять интерефенционную картину!! То есть электроны тоже могут интерферировать.

С другой стороны, выясняется, что и свет не совсем волна, но немножко и частица — фотон. То есть мы теперь такие умные, что понимаем — два эксперимента, описанных выше — суть одно и тоже. Мы швыряем на прорези (квантовые) частицы, и частицы на этих прорезях интерферируют — на стенке видны чередующиеся полосы («видны» — в смысле чем мы там фотоны или электроны регистрируем, собственно глаза для этого необязательны 🙂).

Теперь, вооружённые этой универсальной картиной, зададим следующий, более тонкий вопрос (внимание, очень важно!!):
Когда мы светим на прорези нашими фотонами/электронами/частицами — мы видим с другой стороны интерференционную картину. Прекрасно. Но что происходит с отдельным фотоном/электроном/пи-мезоном? [и давай с этого момента говорить — исключительно для удобства — только о фотонах]. Возможен ведь такой вариант: каждый фотон летит, как камушек, через свою прорезь, то есть обладает вполне определённой траекторией. Вот этот фотон летит через левую прорезь. А вон тот — через правую. Когда эти фотоны-камушки, проследовав по своим определённым траекториям, достигают стенки позади прорезей, они как то там друг с другом взаимодействуют, и в результате этого взаимодействия, уже на самой стенке, возникает интерференционная картина. Пока что ничто в наших экспериментах такой интерпретации не противоречит — ведь когда мы светим на прорезь ярким светом мы посылаем сразу много фотонов. Пёс их знает, что они там делают.

На этот важный вопрос у нас имеется ответ. Мы умеем бросать по одному фотону. Бросили. Подождали. Бросили следующий. Пристально глядим на стенку и замечаем, куда эти фотоны прилетают. Один-единственный фотон, конечно, не может создать наблюдаемую интерференционную картину в принципе — он один, и когда мы его регистрируем, мы можем его увидеть только в каком-то определённом месте, а не везде сразу. Однако, вернёмся к аналогии с камушками. Вот пролетел один камушек. Стукнулся о стенку позади одной прорези (той, через которую он пролетел, естественно). Вот другой — опять стукнулся позади прорези. Сидим. Считаем. Через какое-то время и бросив достаточно камушков, мы наберём распределение — мы увидим, что много камушков стукнулось о стенку позади одной прорези и много позади другой. И больше нигде. Делаем то же самое с фотонами — бросаем их по одному и считаем потихоньку, сколько же фотонов прилетело в каждое место на стенке. Медленно сходим с ума, потому что получившееся распределение частот ударов фотонов — вовсе не два пятна под соответствующими прорезями. Распределение это в точности повторяет интерференционную картину, которую мы видели, когда светили ярким светом. Но фотоны-то теперь прилетали по одному! Один — сегодня. Следующий — завтра. Они не могли взаимодействовать друг с другом на стенке. То есть, в полном соответствии с квантовой механикой, один, отдельный фотон одновременно является волной и ничто волновое ему не чуждо. У фотона в нашем эксперименте нет определённой траектории — каждый отдельный фотон проходит через обе щели сразу и как бы интерферирует сам с собой. Можем повторить эксперимент, оставив открытой только одну щель — тогда фотоны будут конечно кучковаться за ней. Закроем первую, откроем вторую, по-прежнему бросаем фотоны по одному. Кучкуются, ясное дело под второй, открытой, щелью. Открываем обе — получившееся распределение мест, в которых фотоны любят кучковаться, не является суммой распределений, полученных, когда только одна щель была открыта. Они теперь ещё между щелями кучкуются. А точнее, их излюбленные места кучкования теперь — это чередующиеся полосы. В этой — кучкуются, в следующей — нет, опять — да, тёмная, светлая. Ах, интерференция…

Что такое суперпозиция и спин.
Итак. Будем считать, что про интерференцию как таковую мы всё понимаем. Займёмся суперпозицией. Не знаю, как у тебя с квантовой механикой, извини. Если плохо, то придётся многое принимать на веру, в двух словах объяснить сложно.

Но в принципе, мы уже были где-то рядом — когда видели, что отдельный фотон пролетает как бы сразу через две щели. Можно сказать просто: у фотона нет траектории, волна и волна. А можно сказать, что фотон одновременно летит по двум траекториям (строго говоря, даже не по двум, конечно, а по всем сразу). Это — равносильное утверждение. В принципе, если следовать по этому пути до конца, то мы придём к «интегралу по траекториям» — Фейнмановской формулировке квантовой механики. Формулировка эта невероятно изящна и настолько же сложна, на практике ею пользоваться трудно, тем более использовать её для объяснения основ. Поэтому до конца не пойдём, а лучше помедитируем над фотоном, летящим «по двум траекториям сразу». В смысле классических понятий (а траектория — вполне себе хорошо определённое классическое понятие, либо камень летит в лоб, либо мимо), фотон находится в разных состояниях одновременно. Ещё раз, траектория — это даже не совсем то, что нам нужно, наши цели проще, я просто призываю осознать и прочувствиовать факт.

Квантовая механика говорит нам, что такая ситуация — правило, а не исключение. Любая квантовая частица может находиться (и как правило находится) в «нескольких состояниях» сразу. На самом деле, не нужно слишком серьёзно воспринимать это утверждение. Эти «несколько состояний» — это на самом деле наша классическая интуиция. Мы определяем разные «состояния» исходя из каких-то своих (внешних и классических) соображений. А квантовая частица живёт по своим законам. У неё есть состояние. Точка. Всё что утверждение о «суперпозиции» означает — это то, что это состояние может сильно отличаться от наших классических представлений. Мы вводим классическое понятие траектории и применяем его к фотону в том состоянии, в котором ему нравится быть. А фотон говорит — «извините, моё любимое состояние таково, что в отношении этих ваших траекторий я нахожусь на обеих сразу!». Это не значит, что фотон совсем не может быть в состоянии, в котором траектория (более или менее) определена. Закроем одну из прорезей — и можно, до какой то степени, говорить о том, что фотон летит через вторую по определённой траектории, которую мы хорошо понимаем. То есть, такое состояние в принципе существует. Откроем обе — фотон предпочитает быть в суперпозиции.

То же самое относится к другим параметрам. Например, собственному угловому моменту, или спину. Помнишь, про два электрона, которые могут сидеть вместе на одной s-орбитали — если у них при этом противоположные спины? Вот это как раз оно. И у фотона тоже есть спин. Спин фотона хорош тем, что в классике он на самом деле соответствует поляризации световой волны. То есть используя всякие поляризаторы и прочие кристаллы, которые у нас есть, можно манипулировать спином (поляризацией) отдельных фотонов буде они у нас появятся (а они появятся).

Так вот, спин. Спин-то у электона есть (в надежде, что орбитали и электроны тебе роднее, чем фотоны, так-то всё то же самое), но электрону абсолютно безразлично в каком «спиновом состоянии» находиться. Спин — это вектор и мы можем пытаться говорить «спин смотрит вверх». Или «спин смотрит вниз» (относительно какого-нибудь нами же выбранного направления). А электрон нам говорит: «плевал я на вас, я могу находиться на обеих траекториях в обоих спиновых состояниях сразу». Здесь опять-таки очень важно, что не много электронов находятся в разных спиновых состояниях, в ансамбле, один смотрит вверх, другой вниз, а каждый отдельный электрон находится в обоих состояниях сразу. Точно так же как не разные электроны проходят через разные прорези, а один электрон (или фотон) проходит через обе прорези сразу. Электрон может находиться в состоянии с определённым направлением спина, если его очень попросить, но сам он этого делать не станет. Полу-качественно ситуацию можно описать так: 1) есть два состояния, |+1> (спин вверх) и |-1> (спин вниз); 2) в принципе, это — кошерные состояния, в которых электрон может существовать; 3) однако если не прилагать специальных усилий, электрон «размажется» по обоим состояниям и его состояние будет что-то вроде |+1> + |-1>, состояние, в котором электрон не обладает определённым направлением спина (совсем как траектория 1+траектория 2, правда?). Это и есть «суперпозиция состояний».

Про коллапс волновой функции.
Нам осталось совсем немного — понять что такое измерение и «коллапс волновой функции». Волновая функция — это то что мы выше написали, |+1> + |-1>. Просто описание состояния. Можно для простоты говорить о самом состоянии, как таковом, и о его «коллапсе», неважно. Происходит вот что: летит себе электрон в таком вот неопределённом состоянии духа, то ли он вверх, то ли вниз, то ли и то и другое сразу. Тут подбегаем мы с каким-нибудь устрашающего вида прибором и давай измерять направление спина. В данном конкретном случае достаточно сунуть электрон в магнитное поле: те электроны, у которых спин смотрит вдоль направления поля должны отклоняться в одну сторону, те у которых против поля — в другую. Мы сидим с другой стороны и потираем ручонки — видим в какую сторону электрон отклонился и сразу знаем, вверх у него смотрит спин или вниз. Фотоны можно совать в поляризационный фильтр — если поляризация (спин) +1 — фотон проходит, если -1, то нет.

Но позвольте — ведь у электрона не было определённого направления спина до измерения? Вот в этом вся фишка. Определённого — не было, но он был как бы «смешан» из двух состояний сразу, и в каждом из этих состояний направление очень даже было. В процессе измерения мы заставляем электрон принять решение, кем ему быть и куда смотреть — вверх или вниз. В вышеописанной ситуации мы, конечно, в принципе не можем предсказать заранее какое решение примет данный конкретный электрон, когда он влетит в магнитное поле. С вероятностью 50% он может решить «вверх», с такой же вероятностью — «вниз». Но уж как только он это решит — он находится в состоянии с определённым направлением спина. В результате нашего «измерения»! Это и есть «коллапс» — до измерения волновая функция (пардон, состояние) была |+1> + |-1>. После того как мы «измерили» и увидели, что электрон отклонился в определённую сторону — его направление спина определено и его волновая функция стала просто |+1> (или |-1>, если отклонился в другую). То есть состояние «сколлапсировало» на одну из своих составляющих; «подмешивания» второй составляющей больше нет и в помине!

В значительной степени этому было посвящено пустое философствование в исходной записи, и этим мне не нравится конец мультика. Там просто нарисован глаз и у неискушённого зрителя может возникнуть во-первых иллюзия некоей антропоцентричности процесса (мол, нужен наблюдатель, чтобы провести «измерение»), во-вторых его неинвазивности (ну, мы же просто смотрим!). Мои представления на эту тему были изложены выше. Во-первых, «наблюдатель» как таковой не нужен, конечно. Достаточно привести квантовую систему в контакт с большой, классической системой и всё произойдёт само собой (электроны будут влетать в магнитное поле и решать кем им быть независимо от того сидим мы с другой стороны и наблюдаем или нет). Во-вторых, неинвазивное классическое измерение квантовой частицы невозможно в принципе. Нарисовать глаз легко, а что значит «посмотреть на фотон и узнать куда он полетел»? Чтобы посмотреть нужно чтобы в глаз попали фотоны, желательно — много. Как можно так устроить, чтобы много фотонов прилетели и рассказали нам всё о состоянии одного несчастного фотона, состоянием которого мы интересуемся? Посветить на него фонариком? И что от него после этого останется? Ясно, что мы очень сильно повлияем на его состояние, возможно до такой степени, что ему и в одну из прорезей уже лезть не захочется. Это всё не так интересно. Но до интересного мы уже, наконец, добрались.

Про парадокс Эйнштейна-Подольского-Розена и когерентные (entangled) пары фотонов
Мы теперь знаем про суперпозицию состояний, но до сих пор мы говорили только об одной частице. Исключительно для простоты. Но всё же, что если частицы у нас две? Можно приготовить пару частиц во вполне себе квантовом состоянии, так что их общее состояние описывается одной, общей волновой функцией. Это, конечно, не просто — два произвольных фотона в соседних комнатах или электрона в соседних пробирках друг про друга и знать не знают, поэтому их можно и нужно описывать совершенно независимо. Поэтому как раз можно считать энергию связи, скажем, одного электрона на одном протоне в атоме водорода, совершенно не интересуясь другими электронами на марсе или даже на соседних атомах. Но если специально постараться, то квантовое состояние охватываюшее две частицы сразу можно создать. Это будет называться «когерентное состояние», применительно к парам частиц и всяким квантовым erasures и компютерам это ещё называют entangled state.

Двигаемся дальше. Мы можем знать (в силу ограничений, накладываемых процессом приготовления этого когерентного состояния), что, скажем, полный спин нашей системы из двух частиц равен нулю. Ничего страшного, мы же знаем, что спины двух электронов на s-орбитали обязаны быть антипараллельны, то есть полный спин — ноль, и это нас совершенно не пугает, правда? Чего мы не знаем — это куда смотрит спин конкретной частицы. Мы только знаем, что куда бы он не смотрел, спин второй должен смотреть в другую сторону. То есть, если мы обозначим наши две частицы (А) и (Б), то состояние может быть, в принципе, такое: |+1(А), -1(Б)> (А смотрит вверх, Б вниз). Это — разрешённое состояние, налагаемых ограничений оно не нарушает. Другая возможность — |-1(А), +1(Б)> (наоборот, А вниз, Б вверх). Тоже возможное состояние. Ещё не напоминает состояния, которые мы чуть раньше записывали для спина одного единственного электрона? Потому что наша система из двух частиц, пока она квантовая и когерентная, точно также может (и будет) находиться в суперпозиции состояний |+1(А); -1(Б)> + |-1(А); +1(Б)>. То есть, обе возможности реализованы одновременно. Как обе траектории фотона или оба направления спина одного электрона.

Измерять такую систему гораздо увлекательнее, чем отдельный фотон. Действительно, предположим, что мы измеряем спин только одной частицы, А. Мы уже поняли, что измерение — для квантовой частицы тяжёлый стресс, её состояние в процессе измерения сильно поменяется, произойдёт коллапс… Всё так, но — в данном-то случае есть ещё вторая частица, Б, которая намертво с А связана, у них волновая функция общая! Предположим, что мы измерили направление спина А и увидели, что оно +1. Но у А нет своей собственной волновой функции (или другими словами, своего собственного, независимого состояния), чтобы она сколлапсировала к |+1>. Всё что у А есть — это состояние «переплетённое» (entangled) с Б, выписанное выше. Если измерение А даёт +1 и мы знаем, что спины А и Б антипараллельны, мы знаем что спин Б смотрит вниз (-1). Волновая функция пары коллапсирует к чему может, а может она только к |+1(А); -1(Б)>. Других возможностей выписанная волновая функция нам не предоставляет.

Пока ничего? Подумаешь, полный спин сохраняется? Теперь представим себе, что мы создали такую пару А, Б и дали этим двум частицам разлетаться в разные стороны, оставаясь когерентными. Одна (А) долетела до Меркурия. А другая (Б), скажем, до Юпитера. В этот самый момент мы случились на Меркурии и измерили направление спина А. Что произошло? В этот же самый момент мы узнали направление спина Б и изменили волновую функцию Б! Обрати внимание, что это совсем не то же что в классике. Пускай два разлетающихся камня вращаются вокруг своей оси и пускай мы точно знаем, что они вращаются в противоположные стороны. Если мы измерим направление вращения одного, когда он достигнет Меркурия, мы тоже узнаем направление вращения второго, где бы он к тому моменту не оказался, хоть на Юпитере. Но эти камни всегда вращались в определённую сторону, до всяких наших измерений. И если кто-то измерит камень летящий к Юпитеру, то он(а) получит тот же самый и вполне определённый ответ, независимо от того, измерили мы что-то на Меркурии или нет. С нашими фотонами ситуация совершенно иная. Ни один из них не имел вообще никакого определённого направления спина до измерения. Если бы кто-то без нашего участия решил измерить направление спина Б где-нибудь в районе Марса, то он получил бы что? Правильно, с вероятностью 50% он увидел бы +1, с вероятностью 50% -1. Такое у Б состояние, суперпозиция. Если же этот кто-то решит измерить спин Б немедленно после того как мы уже измерили спин А, увидели +1 и вызвали коллапс *всей* волновой функции,
то он получит в результате измерения только -1, с вероятностью 100%! Только в момент нашего измерения А, наконец, решил кем ему быть и «выбрал» направление спина — и этот выбор мгновенно повлиял на *всю* волновую функцию и на состояние Б, который в этот момент уже находится чёрт знает где.

Вот эта-то неприятность и называется «нелокальность квантовой механики». Также известна как парадокс Эйнштейна-Подольского-Розена (EPR paradox) и, в общем, то что происходит в erasure с этим связано. Может быть я чего то недопонимаю, конечно, но на мой вкус erasure инетерсен тем, что это как раз эскпериментальная демострация нелокальности.

Упрощенно, эсксперимент с erasure может выглядеть так: создаём когерентные (entangled) пары фотонов. По одной: пара, потом следующая, и т.д. В каждой паре один фотон (А) летит в одну сторону, другой (Б) в другую. Всё как мы уже обсуждали чуть выше. На пути фотона Б ставим двойную прорезь и смотрим, что там за этой прорезью на стенке вырисовывается. Вырисовывается интерференционная картина, потому что каждый фотон Б, как мы знаем, летит по обеим траекториям, через обе прорези сразу (мы ещё помним про интерференцию, с которой мы начали эту историю, правда?). То, что Б ещё когерентно связан с А и имеет общую с А волновую функцию ему довольно фиолетово. Усложняем эксперимент: одну прорезь прикрываем фильтром, который пропускает только фотоны со спином +1. Вторую прикрываем фильтром, который пропускает только фотоны со спином (поляризацией) -1. Продолжаем наслаждаться интерференционной картиной, потому что в общем состоянии пары А,Б (|+1(А); -1(Б)> + |-1(А);+1(Б)>, как мы помним), присутствуют состояния Б и с тем и с другим спином. То есть «часть» Б может пройти через один фильтр/прорезь, часть — через другой. Так же как раньше одна «часть» летела по одной траектории, другая по другой (это, конечно, фигура речи, но факт остаётся фактом).

Наконец, кульминация: где-нибудь на меркурии, или чуть поближе, на другом конце оптического стола, мы ставим поляризационный фильтр на пути фотонов А, а за фильтром детектор. Пускай, для определённости, этот новый фильтр пропускает только фотоны со спином +1. Каждый раз когда срабатывает детектор, мы знаем что пролетел фотон А со спином +1 (спин -1 не пройдёт). Но это означает, что волновая функция всей пары сколлапсировала и у «брата» нашего фотона, у фотона Б, в этот момент осталось только одно возможное состояние -1. Всё. Фотону Б «нечем» теперь пролезать через, прорезь покрытую фильтром, пропускающим только поляризацию +1. У него просто не осталось такой составляюшей. «Узнать» этот фотон Б очень просто. Мы ведь создаём пары по одной. Когда мы регистрируем фотон А, прошедший через фильтр, мы записываем время, в которое он пришёл. Пол-второго, например. Значит, его «брат» Б прилетит на стенку тоже в пол-второго. Ну или в 1:36, если ему лететь чуть дальше и, следовательно, дольше. Там мы тоже записываем времена, то есть можем сопоставить кто есть кто и кто кому родственник.

Так вот, если мы теперь посмотрим какая картинка вырисовывается на стенке, мы не обнаружим никакой интерференции. Фотон Б из каждой пары проходит либо через одну прорезь, либо через другую. На стенке — два пятна. Теперь, убираем фильтр с пути фотонов А. Интерференционная картина восстанавливается.

…и наконец про delayed choice
Совсем паскудной ситуация становится, когда фотону А лететь до своего фильтра/детектора дольше, чем фотону Б до прорезей. Мы производим измерение (и заставляем А решить, а волновую функцию сколлапсировать) после того как Б должен был бы уже долететь до стенки и создать интерференционную картину. Однако, пока мы измеряем А, даже «позже, чем следует», интерференционная картина для фотонов Б всё равно пропадает. Убираем фильтр для А — восстанавливается. Это уже — delayed erasure. Не могу сказать, что я хорошо понимаю с чем это едят.

Поправки и уточнения.
Всё было правильно, с поправкой на неизбежные упрощения, до тех пор, пока мы не построили прибор с двумя entangled фотонами. Сначала интерференция у фотона Б есть. С фильтрами, похоже, не получится. Закрывать нужно пластинками, которые меняют поляризацию с линейной на круговую. Это уже сложнее обяснить 😦 Но главное не это. Главное, что когда мы так закрываем прорези разными фильтрами, то интерференция пропадает. Не в тот момент, когда мы измеряем фотон А, а сразу. Хитрая фишка состоит в том, что поставив фильтры пластинки мы «пометили» фотоны Б. Другими словами, фотоны Б несут на себе дополнительную информацию, позволяющую узнать по какой именно траектории они пролетели. *Если* мы измерим фотон А, то мы сможем узнать по какой именно траектории пролетел Б, значит и интерференции у Б не будет. Тонкость состоит в том, что физически «измерять» А не обязательно! Тут я в прошлый раз грубо ошибся. Не нужно измерять А, чтобы интерференция пропала. Если *можно* измерить и узнать по какой из траекторий пролетел фотон Б, то уже в этом случае интерференции не будет.

На самом деле, это ещё можно пережить. Там, по ссылке ниже народ как-то несколько беспомощно руками разводит, но по-моему (может быть я опять неправ? 😉) объяснение такое: сунув в прорези фильтры мы уже сильно изменили систему. Неважно, зарегистрировали мы реально поляризацию или траекторию по которой фотон прошёл или махнули в последний момент рукой. Важно что мы всё «приготовили» для измерения, уже повлияли на состояния. Поэтому, собственно «измерять» (в смысле сознательного человекоподобного наблюдателя, принесшего градусник и записавшего результат в журнал) ничего не нужно. Всё в некотором смысле (в смысле воздействия на систему) уже «измерено». Утверждение обычно формулируется так: «*если* мы измерим поляризацию фотона А, то мы будем знать поляризацию фотона Б, а следовательно и его траекторию, ну а раз фотон Б летит по определённой траектории, то интерференции не будет; мы можем даже не проводить измерение фотона А — достаточно того, что это измерение возможно, фотон Б знает о том, что его можно измерить и отказывается интерферировать». Есть в этом некоторая мистификация. Ну да, отказывается. Просто потому что систему так приготовили. Если в системе есть дополнительная информация (есть способ) определить по какой из двух траекторий пролетел фотон, то и интерференции не будет.

Если я тебе скажу, что я всё устроил так, чтобы фотон летел только через одну прорезь, ты ведь сразу поймешь что интерференции не будет? Можешь бежать проверять («измерять») и убеждаться, что я правду говорю, а можешь и так поверить. Если я не соврал, то интерференции не будет безотносительно того бросишься ты меня проверять или нет 🙂 Соответственно, фраза «можно измерить» на деле означает «система приготовлена таким специальным образом что…». Приготовлена и приготовлена, то есть в этом месте ещё коллапса никакого нет. Есть «помеченные» фотоны и отсутствие интерференции.

Вот дальше — почему, собственно, erasure это всё называется — нам говорят: а давайте-ка подействуем на систему так, чтобы «стереть» эти метки с фотонов Б — тогда они снова начнут интерферировать. Интересный момент, к которому мы уже подходили, хотя и в ошибочной модели, состоит в том, что фотоны Б можно не трогать, и пластинки в прорезях оставить. Можно подёргать за фотон А и так же как при коллапсе, изменение его состояния вызовет (нелокально) изменение полной волновой функции системы так, что информации, достаточной для определения через какую щель прошёл фотон Б, у нас больше не будет. То есть, вставляем на пути фотона А поляризатор — интерференция фотонов Б восстанавливается. С delayed всё то же самое — делаем так, что фотону А лететь до поляризатора дольше, чем Б до прорезей. И всё равно если на пути у А есть поляризатор, то Б интерферирует (хотя как бы «до того» как А долетел до поляризатора)!

Feed. You can , or from your own site.

Если Вы вдруг поняли, что подзабыли основы и постулаты квантовой механики или вообще не знаете, что это за механика такая, то самое время освежить в памяти эту информацию. Ведь никто не знает, когда квантовая механика может пригодиться в жизни.

Зря вы усмехаетесь и ехидствуете, думая, что уж с этим предметом вам в жизни вообще никогда не придется сталкиваться. Ведь квантовая механика может быть полезной практически каждому человеку, даже бесконечно далекому от нее. Например, у Вас бессонница. Для квантовой механики это не проблема! Почитайте перед сном учебник – и Вы спите крепчайшим сном странице уже эдак на третьей. Или можете назвать так свою крутую рок группу. Почему бы и нет?

Шутки в сторону, начинаем серьезный квантовый разговор.

С чего начать? Конечно, с того, что такое квант.

Квант

Квант (от латинского quantum – ”сколько”) – это неделимая порция какой-то физической величины. Например, говорят - квант света, квант энергии или квант поля.

Что это значит? Это значит, что меньше быть уже просто не может. Когда говорят о том, что какая-то величина квантуется, понимают, что данная величина принимает ряд определенных, дискретных значений. Так, энергия электрона в атоме квантуется, свет распространяется «порциями», то есть квантами.

Сам термин «квант» имеет множество применений. Квантом света (электромагнитного поля) является фотон. По аналогии квантами называются частицы или квазичастицы, соответствующие иным полям взаимодействия. Здесь можно вспомнить про знаменитый бозон Хиггса, который является квантом поля Хиггса. Но в эти дебри мы пока не лезем.


Квантовая механика для "чайников"

Как механика может быть квантовой?

Как Вы уже заметили, в нашем разговоре мы много раз упоминали о частицах. Возможно, Вы и привыкли к тому, что свет – это волна, которая просто распространяется со скоростью с . Но если посмотреть на все с точки зрения квантового мира, то есть мира частиц, все изменяется до неузнаваемости.

Квантовая механика – это раздел теоретической физики, составляющая квантовой теории, описывающая физические явления на самом элементарном уровне – уровне частиц.

Действие таких явлений по величине сравнимо с постоянной Планка, а классическая механика Ньютона и электродинамика оказались совершенно непригодными для их описания. Например, согласно классической теории электрон, вращаясь с большой скоростью вокруг ядра, должен излучать энергию и в конце концов упасть на ядро. Этого, как известно, не происходит. Именно поэтому и придумали квантовую механику – открытые явления нужно было как-то объяснить, и она оказалась именно той теорией, в рамках которой объяснение было наиболее приемлемым, а все экспериментальные данные "сходились".


Кстати! Для наших читателей сейчас действует скидка 10% на

Немного истории

Зарождение квантовой теории произошло в 1900 году, когда Макс Планк выступил на заседании немецкого физического общества. Что тогда сообщил Планк? А то, что излучение атомов дискретно, а наименьшая порция энергии этого излучения равна

Где h - постоянная Планка, ню - частота.

Затем Альберт Эйнштейн, введя понятие “квант света” использовал гипотезу Планка для объяснения фотоэффекта. Нильс Бор постулировал существование у атома стационарных энергетических уровней, а Луи де Бройль развил идею о корпускулярно-волновом дуализме, то есть о том, что частица (корпускула) обладает также и волновыми свойствами. К делу присоединились Шредингер и Гейзенберг, и вот, в 1925 году публикуется первая формулировка квантовой механики. Собственно, квантовая механика – далеко не законченная теория, она активно развивается и в настоящее время. Также следует признать, что квантовая механика с ее допущениями не имеет возможности объяснить все стоящие перед ней вопросы. Вполне возможно, что на смену ей придет более совершенная теория.


При переходе от мира квантового к миру привычных нам вещей законы квантовой механики естественным образом трансформируются в законы механики классической. Можно сказать, что классическая механика – это частный случай квантовой механики, когда действие имеет место быть в нашем с Вами привычном и родном макромире. Здесь тела спокойно движутся в неинерциальных системах отсчета со скоростью, гораздо меньшей скорости света, и вообще - все вокруг спокойно и понятно. Хочешь узнать положение тела в системе координат – нет проблем, хочешь измерить импульс – всегда пожалуйста.

Совершенно иной подход к вопросу имеет квантовая механика. В ней результаты измерений физических величин носят вероятностный характер. Это значит, что при изменении какой-то величины возможно несколько результатов, каждому из которых соответствует определенная вероятность. Приведем пример: монетка крутится на столе. Пока она крутится, она не находится в каком-то определенном состоянии (орел-решка), а имеет лишь вероятность в одном из этих состояний оказаться.

Здесь мы плавно подходим к уравнению Шредингера и принципу неопределенности Гейзенберга .

Согласно легенде Эрвин Шредингер, в 1926 году выступая на одном научном семинаре с докладом на тему корпускулярно-волнового дуализма, был подвергнут критике со стороны некоего старшего ученого. Отказавшись слушать старших, Шредингер после этого случая активно занялся разработкой волнового уравнения для описания частиц в рамках квантовой механики. И справился блестяще! Уравнение Шредингера (основное уравнение квантовой механики) имеет вид:

Данный вид уравнения – одномерное стационарное уравнение Шредингера – самый простой.

Здесь x - расстояние или координата частицы, m - масса частицы, E и U - соответственно ее полная и потенциальная энергии. Решение этого уравнения – волновая функция (пси)

Волновая функция – еще одно фундаментальное понятие в квантовой механике. Так, у любой квантовой системы, находящейся в каком-то состоянии, есть волновая функция, описывающая данное состояние.

Например, при решении одномерного стационарного уравнения Шредингера волновая функция описывает положение частицы в пространстве. Точнее говоря, вероятность нахождения частицы в определенной точке пространства. Иными словами, Шредингер показал, что вероятность может быть описана волновым уравнением! Согласитесь, до этого нужно было додуматься!


Но почему? Почему мы должны иметь дело с этими непонятными вероятностями и волновыми функциями, когда, казалось бы, нет ничего проще, чем просто взять и измерить расстояние до частицы или ее скорость.

Все очень просто! Ведь в макромире это действительно так – мы с определенной точностью измеряем расстояние рулеткой, а погрешность измерения определяется характеристикой прибора. С другой стороны, мы можем практически безошибочно на глаз определить расстояние до предмета, например, до стола. Во всяком случае, мы точно дифференцируем его положение в комнате относительно нас и других предметов. В мире же частиц ситуация принципиально иная – у нас просто физически нет инструментов измерения, чтобы с точностью измерить искомые величины. Ведь инструмент измерения вступает в непосредственный контакт с измеряемым объектом, а в нашем случае и объект, и инструмент – это частицы. Именно это несовершенство, принципиальная невозможность учесть все факторы, действующие на частицу, а также сам факт изменения состояния системы под действием измерения и лежат в основе принципа неопределенности Гейзенберга.

Приведем самую простую его формулировку. Представим, что есть некоторая частица, и мы хотим узнать ее скорость и координату.

В данном контексте принцип неопределенности Гейзенберга гласит: невозможно одновременно точно измерить положение и скорость частицы . Математически это записывается так:

Здесь дельта x - погрешность определения координаты, дельта v - погрешность определения скорости. Подчеркнем – данный принцип говорит о том, что чем точнее мы определим координату, тем менее точно будем знать скорость. А если определим скорость, не будем иметь ни малейшего понятия о том, где находится частица.

На тему принципа неопределенности существует множество шуток и анекдотов. Вот один из них:

Полицейский останавливает квантового физика.
- Сэр, Вы знаете, с какой скоростью двигались?
- Нет, зато я точно знаю, где я нахожусь


И, конечно, напоминаем Вам! Если вдруг по какой-то причине решение уравнения Шредингера для частицы в потенциальной яме не дает Вам уснуть, обращайтесь к – профессионалам, которые были взращены с квантовой механикой на устах!