Болезни Военный билет Призыв

Общее уравнение реакции фотосинтеза. Почему фотосинтез так важен? Механизм темновой стадии фотосинтеза

6СО 2 + 6Н 2 О→ С 6 Н 12 О 6 + О 2

      Используя рисунок 2, зарисуйте схему фотосинтеза в протоколы занятий. Под схемой напишите суммарное уравнение фотосинтеза с указанием где в хлоропластах и в какой фазе фотосинтеза используются/образуются углекислый газ, вода, глюкоза, кислород.

ЗАДАНИЯ ДЛЯ ПРОВЕРКИ ДОСТИЖЕНИЯ КОНКРЕТНЫХ ЦЕЛЕЙ ОБУЧЕНИЯ

1. По своему строению, химическому составу и функциям пластиды подразделяются на типы. При этом фотосинтез происходит в:

A. Хлоропластах;

B. Хромопластах;

C. Лейкопластах;

D. Во всех типах; E. ‑ .

2. Для образования крахмала в листьях растений необходимы:

A. Вода, минеральные соли, углекислый газ, кислород;

B. Вода, углекислый газ, энергия Солнца;

C. Вода, кислород, энергия Солнца; D. Вода, углекислый газ, минеральные соли;

E. Вода, кислород.

3. При изучении тонкого строения хлоропласта в нем можно выделить следующие структуры:

A. Строма, граны, тилакоиды (ламеллы);

B. Строма, кристы;

C. Матрикс, кристы;

D. Кариолимфа, хроматин;

E. Матрикс, граны.

8. В результате темновой фазы фотосинтеза образуется:

A. НАДФ∙Н 2 ;

D. C 6 H 12 O 6 ;

4. В фотосинтезе выделяют:

A. Кислородный и бескислородный этапы;

B. Анаэробный и аэробный этапы; C. Световую и темновую фазы;

D. Этапы транскрипции и трансляции;

E. Этапы транскрипции и процессинга.

5. Во время световой фазы фотосинтеза растение выделяет:

A. Водород;

C. Углекислый газ;

D. Кислород;

6. Клетки растений ‑ открытые системы, для которых характерен обмен веществ и энергии. Фотосинтез является примером :

A. Пластического обмена;

B. Энергетического обмена;

C. Обмена информацией;

D. Катаболизма;

E. Диссимиляции.

7. Синтез первичного органического вещества осуществляется в клетке в:

A. Митохондриях;

B. Хлоропластах (строма);

C. Хлоропластах (тилакоиды);

D. Комплексе Гольджи;

E. Рибосомах.

КРАТКИЕ МЕТОДИЧЕСКИЕ УКАЗАНИЯ К РАБОТЕ

НА ПРАКТИЧЕСКОМ ЗАНЯТИИ «ОСОБЕННОСТИ ПЛАСТИЧЕСКОГО ОБМЕНА В КЛЕТКАХ РАСТЕНИЙ»

Для эффективной работы на практическом занятии ознакомьтесь с его основными этапами и методикой проведения занятия, изложенными ниже.

МЕТОДИКА ПРОВЕДЕНИЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

В соответствии с «Организационной структурой проведения занятия» самостоятельная работа выполняется после проверки присутствия студентов на занятии и актуализации (мотивации) их познавательной деятельности. Далее студенты изучают граф логической структуры темы и инструкции по выполнению лабораторных (практических) работ. Затем следует самостоятельное выполнение лабораторных работ и оформление протоколов работ в альбомах или файловых папках. Вся работа выполняется под контролем и при консультативной помощи преподавателя. После завершения самостоятельной работы студентов преподаватель анализирует и, при необходимости, корригирует результаты самостоятельной работы. Далее преподаватель оценивает протокол занятия у каждого студента. Для контроля усвоения конечных целей обучения за 20 минут до окончания занятия проводится итоговый тестовый контроль и проводится подведение итогов занятия.

Как объяснить такой сложный процесс, как фотосинтез, кратко и понятно? Растения являются единственными живыми организмами, которые могут производить свои собственные продукты питания. Как они это делают? Для роста и получают все необходимые вещества из окружающей среды: углекислый газ - из воздуха, воду и - из почвы. Также они нуждаются в энергии, которую получают из солнечных лучей. Эта энергия запускает определенные химические реакции, во время которых углекислый газ и вода превращаются в глюкозу (питание) и и есть фотосинтез. Кратко и понятно суть процесса можно объяснить даже детям школьного возраста.

"Вместе со светом"

Слово "фотосинтез" происходит от двух греческих слов - "фото" и "синтез", сочетание который в переводе означает "вместе со светом". В солнечная энергия преобразуется в химическую энергию. Химическое уравнение фотосинтеза:

6CO 2 + 12H 2 O + свет = С 6 Н 12 О 6 + 6O 2 + 6Н 2 О.

Это означает, что 6 молекул углекислого газа и двенадцать молекул воды используются (вместе с солнечным светом) для производства глюкозы, в итоге образуются шесть молекул кислорода и шесть молекул воды. Если изобразить это в виде словесного уравнения, то получится следующее:

Вода + солнце => глюкоза + кислород + вода.

Солнце является очень мощным источником энергии. Люди всегда стараются использовать его для выработки электричества, утепления домов, нагревания воды и так далее. Растения "придумали", как использовать солнечную энергию еще миллионы лет назад, потому что это было нужно для их выживания. Фотосинтез кратко и понятно можно объяснить таким образом: растения используют световую энергию солнца и преобразуют ее в химическую энергию, результатом которой является сахар (глюкоза), избыток которого хранится в виде крахмала в листьях, корнях, стеблях и семенах растения. Энергия солнца передается растениям, а также животным, которые эти растения едят. Когда растение нуждается в питательных веществах для роста и других жизненных процессов, эти запасы оказываются очень полезными.

Как растения поглощают энергию солнца?

Рассказывая про фотосинтез кратко и понятно, стоит затронуть вопрос о том, каким образом растениям удается поглощать солнечную энергию. Это происходит благодаря особой структуре листьев, включающей в себя зеленые клетки - хлоропласты, которые содержат специальное вещество под названием хлорофилл. Это который придает листьям зеленый цвет и отвечает за поглощение энергии солнечного света.


Почему большинство листьев широкие и плоские?

Фотосинтез происходит в листьях растений. Удивительным фактом является то, что растения очень хорошо приспособлены для улавливания солнечного света и поглощения углекислого газа. Благодаря широкой поверхности будет захватываться гораздо больше света. Именно по этой причине солнечные панели, которые иногда устанавливают на крышах домов, также широкие и плоские. Чем больше поверхность, тем лучше происходит поглощение.

Что еще важно для растений?

Как и люди, растения также нуждаются в полезных и питательных веществах, чтобы сохранить здоровье, расти и выполнять хорошо свои жизненные функции. Они получают растворенные в воде минеральные вещества из почвы через корни. Если в почве не хватает минеральных питательных веществ, растение не будет развиваться нормально. Фермеры часто проверяют почву для того, чтобы убедиться, что в ней имеется достаточное количество питательных веществ для роста культур. В противном случае прибегают к использованию удобрений, содержащих основные минералы для питания и роста растений.

Почему фотосинтез так важен?

Объясняя фотосинтез кратко и понятно для детей, стоит рассказать, что этот процесс является одной из наиболее важных химических реакций в мире. Какие существуют причины для такого громкого утверждения? Во-первых, фотосинтез кормит растения, которые, в свою очередь, кормят всех остальных живых существ на планете, включая животных и человека. Во-вторых, в результате фотосинтеза в атмосферу выделяется необходимый для дыхания кислород. Все живые существа вдыхают кислород и выдыхают углекислый газ. К счастью, растения делают все наоборот, поэтому они очень важны для человека и животных, так как дают им возможность дышать.

Удивительный процесс

Растения, оказывается, тоже умеют дышать, но, в отличие от людей и животных, они поглощают из воздуха углекислый газ, а не кислород. Растения тоже пьют. Вот почему нужно поливать их, иначе они умрут. При помощи корневой системы вода и питательные вещества транспортируются во все части растительного организма, а через маленькие отверстия на листиках происходит поглощение углекислого газа. Пусковым механизмом для запуска химической реакции является солнечный свет. Все полученные продукты обмена используются растениями для питания, кислород выделяется в атмосферу. Вот так можно объяснить кратко и понятно, как происходит процесс фотосинтеза.

Фотосинтез: световая и темновая фазы фотосинтеза

Рассматриваемый процесс состоит из двух основных частей. Существуют две фазы фотосинтеза (описание и таблица - далее по тексту). Первая называется световой фазой. Она происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента АТФ-синтетазы. Что еще скрывает фотосинтез? Световая и сменяют друг друга по мере наступления дня и ночи (циклы Кальвина). Во время темновой фазы происходит производство той самой глюкозы, пищи для растений. Этот процесс называют еще независимой от света реакцией.

Световая фаза Темновая фаза

1. Реакции, происходящие в хлоропластах, возможны только при наличии света. В этих реакциях энергия света преобразуется в химическую энергию

2. Хлорофилл и другие пигменты поглощают энергию от солнечного света. Эта энергия передается на фотосистемы, ответственные за фотосинтез

3. Вода используется для электронов и ионов водорода, а также участвует в производстве кислорода

4. Электроны и ионы водорода используются для создания АТФ (молекула накопления энергии), которая нужна в следующей фазе фотосинтеза

1. Реакции внесветового цикла протекают в строме хлоропластов

2. Углекислый газ и энергия от АТФ используются в виде глюкозы

Заключение

Из всего вышесказанного можно сделать следующие выводы:

  • Фотосинтез - это процесс, который позволяет получать энергию от солнца.
  • Световая энергия солнца преобразуется в химическую энергию хлорофиллом.
  • Хлорофилл придает растениям зеленый цвет.
  • Фотосинтез происходит в хлоропластах клеток листьев растений.
  • Углекислый газ и вода необходимы для фотосинтеза.
  • Углекислый газ поступает в растение через крошечные отверстия, устьица, через них же выходит кислород.
  • Вода впитывается в растение через его корни.
  • Без фотосинтеза в мире не было бы еды.

Фотосинтетическое фосфорилирование было обнаружено Д. Арноном с сотрудниками и другими исследователями в опытах с изолированными хлоропластами высших растений и с бесклеточными препаратами из различных фотосинтезирующих бактерий и водорослей. При фотосинтезе происходят два типа фотоосинтетического фосфорилирования: циклическое и нециклическое. При обоих видах фотофосфорилирования синтез АТР из ADP и неорганического фосфата происходит на этапе передачи электронов от цитохрома b6 к цитохрому f.

Синтез АТР осуществляется при участии АТР-азного комплекса, «вмонтированного» в белково-липидную мембрану тилакоида с eе внешней стороны. Согласно теории Митчелла, так же, как и в случае окислительного фосфорилирования в митохондрии, находящаяся в мембране тилакоида цепь переноса электронов функционирует как «протонный насос», создавая градиент концентрации протонов. Однако в данном случае происходящий при поглощении света перенос электронов вызывает их перемещение снаружи во внутрь тилакоида и возникающий трансмембранный потенциал (между внутренней и внешней поверхностью мембраны) обратен тому, который образуется в мембране митохондрии. Электростатическая энергия и энергия градиента протонов используется для синтеза АТР ATP-синтетазой.

При нециклическом фотофосфорилировании электроны, поступившие от воды и соединения Z к фотосистеме 2, а затем к фотосистеме 1, направляются к промежуточному соединению Х, а затем используются на восстановление NADP+ до NADPH; их путь здесь заканчивается. При циклическом фотофосфорилировании электроны, поступившие от фотосистемы 1 к соединению Х, направляются снова к цитохрому b6 и от него далее к цитохрому У, участвуя на этом последнем этапе своего пути в синтезе АТР из ADP и неорганического фосфата. Таким образом, при нециклическом фотофосфорилировании перемещение электронов сопровождается синтезом АТР и NADPH. При циклическом фотофосфорилировании происходит только синтез АТР, а NADPH не образуется. АТР, образовавшийся в процессе фотофосфорилирования и дыхания, используется не только при восстановлении фосфоглицериновой кислоты до углевода, но и в других синтетических реакциях - при синтезе крахмала, белков, липидов, нуклеиновых кислот и пигментов. Он также служит источником энергии для процессов движения, транспорта метаболитов, поддержания ионного баланса и т.д.

Роль пластохинонов в фотосинтезе

В хлоропластах открыты пять форм пластохинонов, обозначаемых буквами А, В, С, D и Е, являющихся производными бензохинона. Так, например, пластохинон А представляет собой 2,З-диметил-5-соланезилбензохинон. Пластохиноны весьма близки по строению к убихинонам (коэнзимам Q), играющим важную роль в процессе переноса электронов при дыхании. Важная роль пластохинонов в процессе фотосинтеза следует из того факта, что если их экстрагировать из хлоропластов петролейным эфиром, то фотолиз воды и фотофосфорилирование прекращаются, но возобновляются после добавки пластохинонов. Каковы детали функциональной взаимосвязи различных пигментов и переносчиков электронов, участвующих в процессе фотосинтеза, - цитохромов, ферредоксина, пластоцианина и пластохинонов, - должны показать дальнейшие исследования. Во всяком случае, каковы бы ни были детали этого процесса, в настоящее время очевидно, что световая фаза фотосинтеза приводит к образованию трех специфических продуктов: NADPH, АТР и молекулярного кислорода.

Какие соединения образуются в результате третьего, темнового этапа фотосинтеза?

Существенные результаты, проливающие свет на природу первичных продуктов, образующихся при фотосинтезе, получены с помощью изотопной методики. В этих исследованиях растения ячменя, а также одноклеточные зеленые водоросли Chlorella и Scenedesmus получали в качестве источника углерода углекислый газ, содержавший меченый радиоактивный углерод 14C. После чрезвычайно кратковременного облучения подопытных растений, исключавшего возможность вторичных реакций, исследовалось распределение изотопного углерода в различных продуктах фотосинтеза. Было установлено, что первый продукт фотосинтеза - фосфоглицериновая кислота; вместе с тем при весьма кратковременном облучении растений наряду с фосфоглицериновой кислотой образуется незначительное количество фосфоенолпировиноградной и яблочной кислот. Например, в опытах с одноклеточной зеленой водорослью Sceriedesmus после фотосинтеза, продолжавшегося пять секунд, 87% изотопного углерода было обнаружено в составе фосфоглицериновой кислоты, 10% - в фосфоенолпировиноградной кислоте и 3% -- в яблочной кислоте. По-видимому, фосфоенолпировиноградная кислота является продуктом вторичного превращения фосфоглицериновой кислоты. При более длительном фотосинтезе, продолжающемся 15-60 секунд, радиоактивный углерод 14C обнаруживается также в гликолевой кислоте, триозофосфатах, сахарозе, аспарагиновой кислоте, аланине, серине, гликоколе, а также в белках. Позже всего меченый углерод обнаруживается в глюкозе, фруктозе, янтарной, фумаровой и лимонной кислотах, а также в некоторых аминокислотах и амидах (треонин, фенилаланин, тирозин, глютамин, аспарагин). Таким образом, опыты с усвоением растениями углекислого газа, содержащего меченый углерод, показали, что первым продуктом фотосинтеза является фосфоглицериновая кислота.

К какому веществу присоединяется углекислый газ в процессе фотосинтеза?

Работы М. Кальвина, проведенные с помощью радиоактивного углерода 14С, показали, что у большинства растений соединением, к которому присоединяется СО2, является рибулозодифосфат. Присоединяя СО2, он дает две молекулы фосфоглицериновой кислоты. Последняя фосфоорилируется при участии АТР с образованием дифосфоглицериновой кислоты, которая при участии NADPH восстанавливается и образует фосфоглицериновый альдегид, частично превращающийся в фосфодиоксиацетон. Благодаря синтетическому действию фермента альдолазы, фосфоглицериновый альдегид и фосфодиоксиацетон, соединяясь, образуют молекулу фруктозодифосфата, из которого далее синтезируются сахароза и различные полисахариды. Рибулозодифосфат - акцептор СО2, образуется в результате ряда ферментативных превращений фосфоглицеринового альдегида, фосфодиоксиацетона и фруктозодифосфата. В качестве промежуточных продуктов при этом возникают эритрозофосфат, седогептулозофосфат, ксилулозофосфат, рибозофосфат и рибулозофосфат. Ферментные системы, катализирующие все эти превращения, найдены в клетках хлореллы, в листьях шпината и в других растениях. Согласно М. Кальвину, процесс образования фосфоглицериновой кислоты из рибулозодифосфата и СО2 носит циклический характер. Ассимиляция углекислого газа с образованием фосфоглицериновой кислоты происходит без участия света и хлорофилла и является темновым процессом. Водород воды в конечном счете используется на восстановление фосфоглицериновой кислоты до фосфоглицеринового альдегида. Этот процесс катализируется ферментом дегидрогеназой фосфоглицеринового альдегида и в качестве источника водорода требует участия NADPH. Так как этот процесс в темноте немедленно прекращается, очевидно, что восстановление NADP осуществляется водородом, образующимся при фотолизе воды.

Уравнение Кальвина для фотосинтеза

Суммарное уравнение цикла Кальвина имеет следующий вид:

6СО2 + 12NADPH + 12Н+ + 18АТР + 11Н2О = фруктозо-б-фосфат + 12NADP+ + 18ADP + 17Р неорг

Таким образом, для синтеза одной молекулы гексозы требуется шесть молекул СО2. Для превращения одной молекулы СО2 нужно две молекулы NADPH и три молекулы АТР (1: 1,5). Так как при нециклическом фотофосфорилировании отношение образующихся NADPH:АТР составляет 1:1, добавочное необходимое количество АТР синтезируется в процессе циклического фотофосфорилирования.

Путь углерода при фотосинтезе изучался Кальвином при сравнительно высоких концентрациях СО2. При более низких концентрациях, приближающихся к атмосферным (0,03%), в хлоропласте под действием рибулозодифосфаткарбоксилазы образуется значительное количество фосфогликолевой кислоты. Последняя в процессе транспорта через мембрану хлоропласта гидролизуется специфической фосфатазой, и образовавшаяся гликолевая кислота перемещается из хлоропласта в связанные с ним субклеточные структуры - пероксисомы, где под действием фермента гликолатоксидазы окисляется до глиоксилевой кислоты HOC-COOH. Последняя путем переаминирования образует глицин, который, перемещаясь в митохондрию, превращается здесь в серин.

Это превращение сопровождается образованием СО2 и NН3: 2 глицин + Н2О = серин + СО2 + NН3 +2Н+ +2е-.

Однако аммиак не выделяется во внешнюю среду, а связывается в виде глютамина. Таким образом, пероксисомы и митохондрии принимают участие в процессе так называемого фотодыхания - стимулируемого светом процесса поглощения кислорода и выделения СО2. Этот процесс связан с превращениями гликолевой кислоты и ее окислением до СО2. В результате интенсивного фотодыхания может значительно (до 30%) снижаться продуктивность растений.

Другие возможности усвоения СО2 в процессе фотосинтеза

Усвоение СО2 в процессе фотосинтеза происходит не только путем карбоксилирования рибулозодифосфата, но и путем карбоксилирования других соединений. Например, показано, что у сахарного тростника, кукурузы, сорго, проса и ряда других растений особенно важную роль в процессе фотосинтетической фиксации играет фермент фосфоенолпируват-карбоксилаза, синтезирующая из фосфоенолпирувата, СО2 и воды щавелевоуксусную кислоту. Растения, у которых первым продуктом фиксации СО2 является фосфоглицериновая кислота, принято называть С3-растениями, а те, у которых синтезируется щавелевоуксусная кислота, -C4-растениями. Упоминавшийся выше процесс фотодыхания характерен для С3-растений и является следствием ингибирующего действия кислорода на рибулозодифосфат-карбоксилазу.

Фотосинтез у бактерий

У фотосинтезирующих бактерий фиксация СО2 происходит при участии ферредоксина. Так, из фотосинтезирующей бактерии Chromatium выделена и частично очищена ферментная система, которая при участии ферредоксина катализирует восстановительный синтез пировиноградной кислоты из СО2 и ацетилкоэнзима А:

Ацетил-СоА + С02 + ферредоксин восстановл. = пируват + ферредоксин окислен. + СоА

Аналогичным образом при участии ферредоксина в бесклеточных ферментных препаратах, выделенных из фотосинтезирующей бактерии Chlorobium thiosulfatophilum , происходит синтез а-кетоглютаровой кислоты путем карбоксилирования янтарной кислоты:

Сукцинил-СоА + СО2 + ферредоксин восстановл. = a-кетоглютарат + СоА + ферредоксин окислен.

У некоторых микроорганизмов, содержащих бактериохлорофилл, так называемых пурпурных серобактерий, на свету также происходит процесс фотосинтеза. Однако в отличие от фотосинтеза высших растений в данном случае восстановление углекислого газа осуществляется сероводородом. Суммарное уравнение фотосинтеза у пурпурных бактерий можно представить следующим образом:

Свет, бактериохлорофилл: CO2 + 2H2S = CH2O + H2O + 2S

Таким образом, и в данном случае фотосинтез представляет собой сопряженный окислительно-восстановительный процесс, идущий под влиянием поглощенной бактериохлорофиллом световой энергии. Из приведенного уравнения видно, что в результате фотосинтеза пурпурные бактерии выделяют свободную серу, которая накапливается в них в виде гранул.

Исследования, проведенные при помощи изотопной методики с анаэробной фотосинтезирующей пурпурной бактерией Chromatium, показали, что при очень коротких сроках фотосинтеза (30 секунд) около 45% углерода СО2 включается в аспарагиновую кислоту, а около 28% - в фосфоглицериновую кислоту. По-видимому, образование фосфоглицериновой кислоты предшествует образованию аспарагиновой кислоты, а наиболее ранним продуктом фотосинтеза у Chromatium, так же как у высших растений и одноклеточных зеленых водорослей, является рибулозодифосфат. Последний под действием рибулозодифосфаткарбоксилазы присоединяет СО2 с образованием фосфоглицериновой кислоты. Эта кислота у Chromatium в соответствии со схемой Кальвина может частично превращаться в фосфорилированные сахара, а в основном превращается в аспарагиновую кислоту. Образование аспарагиновой кислоты происходит путем превращения фосфоглицериновой кислоты в фосфоенолпировиноградную кислоту, которая, подвергаясь карбоксилированию, дает щавелевоуксусную кислоту; последняя путем переаминирования дает аспарагиновую кислоту.

Фотосинтез - источник органических веществ на Земле

Процесс фотосинтеза, происходящий при участии хлорофилла, в настоящее время - главный источник образования органического вещества на Земле.

Фотосинтез для получения водорода

Нужно отметить, что одноклеточные фотосинтезирующие водоросли в анаэробных условиях выделяют газообразный водород. Изолированные хлоропласты высших растений, освещаемые в присутствии фермента гидрогеназы катализирующего реакцию 2Н+ + 2е- = Н2, также выделяют водород. Таким образом, возможно фотосинтетическое получение водорода в качестве топлива. Этот вопрос, особеннo в условиях энергетического кризиса, привлекает к себе большое внимание.

Новый вид фотосинтеза

В. Стокениусом был открыт принципиально новый вид фотосинтеза. Оказалось, что у бактерии Halobacterium halobium , живущей в концентрированных растворах хлористого натрия, в окружающей протоплазму белково-липидной мембране содержится хромопротеид бактериородопсин, аналогичный родопсину - зрительному пурпуру глаза животных. В бактериородопсине ретиналь (альдегидная форма витамина А) связан с белком, имеющим молекулярную массу равную 26534, он состоит из 247 аминокислотных остатков. Поглощая свет, бактериородопсин участвует в процессе превращения световой энергии в химическую энергию высокоэнергетических связей АТР. Таким образом, не содержащий хлорофилла организм способен с помощью бактериородопсина использовать световую энергию для синтеза АТР и обеспечения клетки энергией.

Процесс преобразования лучистой энергии Солнца в химическую с использованием последней в синтезе углеводов из углекислого газа. Это единственный путь улавливания солнечной энергии и использования ее для жизни на нашей планете.

Улавливание и преобразование солнечной энергии осуществляют многообразные фотосинтезирующие организмы (фотоавтотрофы). К ним относятся многоклеточные организмы (высшие зеленые растения и низшие их формы - зеленые, бурые и красные водоросли) и одноклеточные (эвгленовые, динофлагелляты и диатомовые водоросли). Большую группу фотосинтезирующих организмов составляют прокариоты - сине-зеленые водоросли, зеленые и пурпурные бактерии. Примерно половина работы по фотосинтезу на Земле осуществляется высшими зелеными растениями, а остальная половина - главным образом одноклеточными водорослями.

Первые представления о фотосинтезе были сформированы в 17 веке. В дальнейшем, по мере появления новых данных, эти представления многократно изменялись [показать] .

Развитие представлений о фотосинтезе

Начало изучению фотосинтеза было положено в 1630 году, когда ван Гельмонт показал, что растения сами образуют органические вещества, а не получают их из почвы. Взвешивая горшок с землей, в котором росла ива, и само дерево, он показал, что в течение 5 лет масса дерева увеличилась на 74 кг, тогда как почва потеряла только 57 г. Ван Гельмонт пришел к заключению, что остальную часть пищи растение получило из воды, которой поливали дерево. Теперь мы знаем, что основным материалом для синтеза служит двуокись углерода, извлекаемая растением из воздуха.

В 1772 году Джозеф Пристли показал, что побег мяты "исправляет" воздух, "испорченный" горящей свечой. Семь лет спустя Ян Ингенхуз обнаружил, что растения могут "исправлять" плохой воздух только находясь на свету, причем способность растений "исправлять" воздух пропорциональна ясности дня и длительности пребывания растений на солнце. В темноте же растения выделяют воздух, "вредный для животных".

Следующей важной ступенью в развитии знаний о фотосинтезе были опыты Соссюра, проведенные в 1804 году. Взвешивая воздух и растения до фотосинтеза и после, Соссюр установил, что увеличение сухой массы растения превышало массу поглощенной им из воздуха углекислоты. Соссюр пришел к выводу, что другим веществом, участвовавшим в увеличении массы, была вода. Таким образом, 160 лет назад процесс фотосинтеза представляли себе следующим образом:

H 2 O + CO 2 + hv -> C 6 H 12 O 6 + O 2

Вода + Углекислота + Солнечная энергия ----> Органическое вещество + Кислород

Ингенхуз предположил, что роль света в фотосинтезе заключается в расщеплении углекислоты; при этом происходит выделение кислорода, а освободившийся "углерод" используется для построения растительных тканей. На этом основании живые организмы были разделены на зеленые растения, которые могут использовать солнечную энергию для "ассимиляции" углекислоты, и остальные организмы, не содержащие хлорофилла, которые не могут использовать энергию света и не способны ассимилировать CO 2 .

Этот принцип разделения живого мира был нарушен, когда С. Н. Виноградский в 1887 году открыл хемосинтезирующие бактерии - бесхлорофильные организмы, способные ассимилировать (т. е. превращать в органические соединения) углекислоту в темноте. Он был нарушен также, когда в 1883 году Энгельман открыл пурпурные бактерии, осуществляющие своеобразный фотосинтез, не сопровождающийся выделением кислорода. В свое время этот факт не был оценен в должной мере; между тем открытие хемосинтезирующих бактерий, ассимилирующих углекислоту в темноте, показывает, что ассимиляцию углекислоты нельзя считать специфической особенностью одного лишь фотосинтеза.

После 1940 года благодаря применению меченого углерода было установлено, что все клетки - растительные, бактериальные и животные - способны ассимилировать углекислоту, т. е. включать ее в состав молекул органических веществ; различны лишь источники, из которых они черпают необходимую для этого энергию.

Другой крупный вклад в изучение процесса фотосинтеза внес в 1905 году Блэкман, который обнаружил, что фотосинтез состоит из двух последовательных реакций: быстрой световой реакции и ряда более медленных, не зависящих от света этапов, названных им темповой реакцией. Используя свет высокой интенсивности, Блэкман показал, что фотосинтез протекает с одинаковой скоростью как при прерывистом освещении с продолжительностью вспышек всего в долю секунды, так и при непрерывном освещении, несмотря на то что в первом случае фотосинтетическая система получает вдвое меньше энергии. Интенсивность фотосинтеза снижалась только при значительном увеличении темнового периода. В дальнейших исследованиях было установлено, что скорость темновой реакции значительно возрастает с повышением температуры.

Следующая гипотеза относительно химической основы фотосинтеза была выдвинута ван Нилем, который в 1931 году экспериментально показал, что у бактерий фотосинтез может происходить в анаэробных условиях, не сопровождаясь выделением кислорода. Ван Ниль высказал предположение, что в принципе процесс фотосинтеза сходен у бактерий и у зеленых растений. У последних световая энергия используется для фотолиза воды (Н 2 0) с образованием восстановителя (Н), определенным путем участвующего в ассимиляции углекислоты, и окислителя (ОН) - гипотетического предшественника молекулярного кислорода. У бактерий фотосинтез протекает в общем так же, но донором водорода служит Н 2 S или молекулярный водород, и поэтому выделения кислорода не происходит.

Современные представления о фотосинтезе

По современным представлениям сущность фотосинтеза заключается в превращении лучистой энергии солнечного света в химическую энергию в форме АТФ и восстановленного никотинамидадениндинуклеотидфосфата (НАДФ · Н).

В настоящее время принято считать, что процесс фотосинтеза складывается из двух стадий, в которых активное участие принимают фотосинтезирующие структуры [показать] и светочувствительные пигменты клетки .

Фотосинтезирующие структуры

У бактерий фотосинтезирующие структуры представлены в виде впячивания клеточной мембраны, образуя пластинчатые органоиды мезосомы. Изолированные мезосомы, получаемые при разрушении бактерий, называются хроматофорами, в них сосредоточен светочувствительный аппарат.

У эукариотов фотосинтетический аппарат расположен в специальных внутриклеточных органоидах - хлоропластах, содержащих зеленый пигмент хлорофилл, который придает растению зеленую окраску и играет важнейшую роль в фотосинтезе, улавливая энергию солнечного света. Хлоропласты, подобно митохондриям, содержат также ДНК, РНК и аппарат для синтеза белка, т. е. обладают потенциальной способностью к самовоспроизведению. По размерам хлоропласты в несколько раз больше митохондрий. Число хлоропластов колеблется от одного у водорослей до 40 на клетку у высших растений.


В клетках зеленых растений помимо хлоропластов имеются и митохондрии, которые используются для образования энергии в ночное время за счет дыхания, как в гетеротрофных клетках.

Хлоропласты имеют шаровидную или уплощенную форму. Они окружены двумя мембранами - наружной и внутренней (рис. 1). Внутренняя мембрана укладывается в виде стопок уплощенных пузырьковидных дисков. Эта стопка называется граной.

Каждая грана состоит из отдельных слоев, расположенных наподобие столбиков монет. Слои белковых молекул чередуются со слоями, содержащими хлорофилл, каротины и другие пигменты, а также особые формы липидов (содержащих галактозу или серу, но только одну жирную кислоту). Эти поверхностно-активные липиды, по-видимому, адсорбированы между отдельными слоями молекул и служат для стабилизации структуры, состоящей из чередующихся слоев белка и пигментов. Такое слоистое (ламеллярное) строение граны, вероятнее всего облегчает перенос энергии в процессе фотосинтеза от одной молекулы к близлежащей.

В водорослях находится не более одной граны в каждом хлоропласте, а в высших растениях - до 50 гран, которые соединены между собой мембранными перемычками. Водная среда между гранами - это строма хлоропласта, которая содержит ферменты, осуществляющие "темновые реакции"

Пузырьковидные структуры, из которых состоит грана, называются тилактоидами. В гране от 10 до 20 тилактоидов.

Элементарная структурная и функциональная единица фотосинтеза мембран тилактоидов, содержащая необходимые светоулавливающие пигменты и и компоненты аппарата трансформации энергии, называется квантосомой, состоящей примерно из 230 молекул хлорофилла. Эта частица имеет массу порядка 2 х 10 6 дальтон и размеры около 17,5 нм.

Стадии фотосинтеза

Световая стадия (или энергетическая)

Темновая стадия (или метаболическая)

Место протекание реакции

В квантосомах мембран тилактоидов, протекает на свету.

Осуществляется вне тилактоидов, в водной среде стромы.

Начальные продукты

Энергия света, вода (Н 2 О), АДФ, хлорофилл

СО 2 , рибулозодифосфат, АТФ, НАДФН 2

Суть процесса

Фотолиз воды, фосфорилирование

В световой стадии фотосинтеза энергия света трансформируется в химическую энергию АТФ, а бедные энергией электроны воды переходят в богатые энергией электроны НАДФ· Н 2 . Побочным веществом, образующимся в ходе световой стадии, является кислород. Реакции световой стадии получили название "световых реакций".

Карбоксилирование, гидрирование, дефосфорилирование

В темновой стадии фотосинтеза протекают "темновые реакции" при которых наблюдается восстановительный синтез глюкозы из CO 2 . Без энергии световой стадии темновая стадия невозможна.

Конечные продукты

О 2 , АТФ, НАДФН 2

Богатые энергией продукты световой реакции - АТФ и НАДФ· Н 2 далее используются в темновой стадии фотосинтеза.

Взаимосвязь между световой и темновой стадиями можно выразить схемой

Процесс фотосинтеза эндергонический, т.е. сопровождается увеличением свободной энергии, поэтому требует значительного количества энергии, подведенной извне. Суммарное уравнение фотосинтеза:

6СО 2 + 12Н 2 О--->С 6 Н 12 О 62 + 6Н 2 О + 6О 2 + 2861 кДж/моль.

Наземные растения поглощают необходимую для процесса фотосинтеза воду через корни, а водные растения получают ее путем диффузии из окружающей среды. Необходимая для фотосинтеза углекислота диффундирует в растение через мелкие отверстия на поверхности листьев - устьица. Поскольку углекислота расходуется в процессе фотосинтеза, ее концентрация в клетке обычно несколько ниже, чем в атмосфере. Освобождающийся в процессе фотосинтеза кислород диффундирует наружу из клетки, а затем и из растения - через устьица. Образующиеся при фотосинтезе сахара также диффундируют в те части растения, где их концентрация ниже.

Для осуществления фотосинтеза растениям необходимо очень много воздуха, так как он содержит всего 0,03% углекислоты. Следовательно, из 10 000 м 3 воздуха можно получить 3 м 3 углекислоты, из которой в процессе фотосинтеза образуется около 110 г глюкозы. Обычно растения лучше растут при более высоком содержании в воздухе углекислоты. Поэтому в некоторых теплицах содержание CO 2 в воздухе доводят до 1-5%.

Механизм световой (фотохимической) стадии фотосинтеза

В реализации фотохимической функции фотосинтеза принимают участие солнечная энергия и различные пигменты: зеленые - хлорофиллы а и b, желтые - каротиноиды и красные или синие - фикобилины. Фотохимически активен среди этого комплекса пигментов только хлорофилл а. Остальные пигменты играют вспомогательную роль, являясь лишь собирателями световых квантов (своеобразные светособирающие линзы) и проводниками их к фотохимическому центру.

На основании способности хлорофилла эффективно поглощать солнечную энергию определенной длины волны в мембранах тилактоидов были выделены функциональные фотохимические центры или фотосистемы (рис. 3):

  • фотосистемa I (хлорофилл а ) - содержит пигмент 700 (Р 700) поглощающий свет с длиной волны около 700 нм, играет основную роль в образовании продуктов световой стадии фотосинтеза: АТФ и НАДФ · Н 2
  • фотосистема II (хлорофилл b ) - содержит пигмент 680 (Р 680), поглощающий свет с длиной волны 680 нм, играет вспомогательную роль восполняя за счет фотолиза воды утраченные фотосистемой I электроны

На 300-400 молекул светособирающих пигментов в фотосистемах I и II приходится только одна молекула фотохимически активного пигмента - хлорофилла а.

Поглощенный растением световой квант

  • переводит пигмент Р 700 из основного состояния в возбужденное - Р * 700 , в котором он легко теряет электрон с образованием положительной электронной дырки в виде Р 700 + по схеме:

    Р 700 ---> Р * 700 ---> Р + 700 + е -

    После чего молекула пигмента, потерявшая электрон, может служить акцептором электрона (способна принять электрон) и переходить в восстановленную форму

  • вызывает разложение (фотоокисление) воды в фотохимическом центре Р 680 фотосистемы II по схеме

    Н 2 О ---> 2Н + + 2е - + 1/2O 2

    Фотолиз воды называется реакцией Хилла. Электроны, образующиеся при разложении воды, первоначально акцептируются веществом, обозначаемым Q (иногда его называют цитохромом С 550 пo максимуму поглощения, хотя оно не является цитохромом). Затем от вещества Q через цепь переносчиков, похожую по составу на митохондриальную, электроны поставляются в фотосистему I для заполнения электронной дырки, образовавшейся в результате поглощения системой световых квантов, и восстановления пигмента Р + 700

Если такая молекула просто получит назад тот же электрон, то произойдет выделение световой энергии в виде тепла и флуоресценции (этим обусловлена флуоресценция чистого хлорофилла). Однако, в большинстве случаев, освободившийся отрицательно заряженный электрон акцептируется специальными железосерными белками (FеS-центр), а затем

  1. или транспортируется по одной из цепей переносчиков обратно к Р + 700 , заполняя электронную дырку
  2. или по другой цепи переносчиков через ферредоксин и флавопротеид к постоянному акцептору - НАДФ · Н 2

В первом случае происходит замкнутый циклический транспорт электрона, а во втором - нециклический.

Оба процесса катализируются одной и той же цепью переносчиков электронов. Однако при циклическом фотофосфорилировании электроны возвращаются от хлорофилла а снова к хлорофиллу а , тогда как при нециклическом фотофосфорилировании электроны переходят от хлорофилла b к хлорофиллу а .

Циклическое (фотосинтетическое) фосфорилирование Нециклическое фосфорилирование

В результате циклического фосфорилирования происходит образование молекул АТФ. Процесс связан с возвращением через ряд последовательных этапов возбужденных электронов на Р 700 . Возвращение возбужденных электронов на Р 700 приводит к высвобождению энергии (при переходе с высокого на низкий энергетический уровень), которая, при участии фосфорилирующей ферментной системы, аккумулируется в фосфатных связях АТФ, а не рассеивается в виде флуоресценции и тепла (рис.4.). Этот процесс называется фотосинтетическим фосфорилированием (в отличие от окислительного фосфорилирования, осуществляемого митохондриями);

Фотосинтетическое фосфорилирование - первичная реакция фотосинтеза - механизм образования химической энергии (синтеза АТФ из АДФ и неорганического фосфата) на мембране тилактоидов хлоропластов с использованием энергии солнечного света. Необходима для темновой реакции ассимиляции СО 2

В результате нециклического фосфорилирования происходит восстановление НАДФ + с образование НАДФ · Н. Процесс связан с передачей электрона ферредоксину, его восстановлением и дальнейшим переходом его к НАДФ + с последующим восстановление его до НАДФ · Н

В тилактоидах идут оба процесса, хотя второй более сложный. Он сопряжен (взаимосвязан) с работой фотосистемы II.

Таким образом, утраченные Р 700 электроны восполняются за счет электронов воды, разлагаемой под действием света в фотосистеме II.

а + в основное состояние, образуются, по-видимому, при возбуждении хлорофилла b . Эти высокоэнергетические электроны переходят к ферредоксину и затем через флавопротеин и цитохромы - к хлорофиллу а . На последнем этапе происходит фосфорилирование АДФ до АТФ (рис. 5).

Электроны, необходимые для возвращения хлорофилла в его основное состояние, поставляются, вероятно, ионами ОН - , образующимися при диссоциации воды. Некоторая часть молекул воды диссоциирует на ионы Н + и ОН - . В результате потери электронов ионы ОН - превращаются в радикалы (ОН), которые в дальнейшем дают молекулы воды и газообразного кислорода (рис. 6).

Этот аспект теории подтверждается результатами опытов с водой и CO 2 , меченными 18 0 [показать] .

Согласно этим результатам, весь газообразный кислород, выделяющийся при фотосинтезе, происходит из воды, а не из СО 2 . Реакции расщепления воды до сих пор еще подробно не изучены. Ясно, однако, что осуществление всех последовательных реакций нециклического фотофосфорилирования (рис. 5), в том числе возбуждение одной молекулы хлорофилла а и одной молекулы хлорофилла b , должно приводить к образованию одной молекулы НАДФ · Н, двух или более молекул АТФ из АДФ и Ф н и к выделению одного атома кислорода. Для этого необходимо по крайней мере четыре кванта света - по два для каждой молекулы хлорофилла.

Нециклический поток электронов от Н 2 О к НАДФ · Н 2 , происходящий при взаимодействии двух фотосистем и связывающих их электронно-транспортных цепей, наблюдается вопреки значениям редокс-потенциалов: Е° для 1/2O 2 /Н 2 О = +0,81 В, а Е° для НАДФ/НАДФ · Н = -0,32 В. Энергия света обращает поток электронов "вспять". Существенно то, что при переносе от фотосистемы II к фотосистеме I часть энергии электронов аккумулируется в виде протонного потенциала на мембране тилактоидов, а затем в энергию АТФ.

Механизм образования протонного потенциала в цепи переноса электронов и его использование на образование АТФ в хлоропластах сходен с таковым в митохондриях. Однако в механизме фотофосфорилирования имеются некоторые особенности. Тилактоиды представляют собой как бы вывернутые наизнанку митохондрии, поэтому направление переноса электронов и протонов через мембрану противоположно направлению его в митохондриальной мембране (рис.6). Электроны движутся к внешней стороне, а протоны концентрируются внутри тилактоидного матрикса. Матрикс заряжается положительно, а внешняя мембрана тилактоида - отрицательно, т. е. направление протонного градиента противоположно направлению его в митохондриях.

Другой особенностью является значительно большая доля рН в протонном потенциале по сравнению с митохондриями. Тилактоидный матрикс сильно закисляется, поэтому Δ рН может достигать 0,1-0,2 В, в то время как Δ Ψ составляет около 0,1 В. Общее значение Δ μ H+ > 0,25 В.

Н + -АТФ-синтетаза, обозначаемая в хлоропластах как комплекс "СF 1 +F 0 ", ориентирована тоже в противоположном направлении. Головка ее (F 1) смотрит наружу, в сторону стромы хлоропласта. Протоны выталкиваются через СF 0 +F 1 из матрикса наружу, и в активном центре F 1 образуется АТФ за счет энергии протонного потенциала.

В отличие от митохондриальной цепи в тилактоидной имеется, по-видимому, только два участка сопряжения, поэтому на синтез одной молекулы АТФ требуется вместо двух три протона, т. е. соотношение 3 Н + /1 моль АТФ.

Итак, на первой стадии фотосинтеза, во время световых реакций, в строме хлоропласта образуются АТФ и НАДФ · Н - продукты, необходимые для осуществления темновых реакций.

Механизм темновой стадии фотосинтеза

Темновые реакции фотосинтеза - это процесс включения углекислоты в органические вещества с образованием углеводов (фотосинтез глюкозы из СО 2). Реакции протекают в строме хлоропласта при участии продуктов световой стадии фотосинтеза - АТФ и НАДФ · Н2.

Ассимиляция диоксида углерода (фотохимическое карбоксилирование) представляет собой циклический процесс, который называется также пентозофосфатным фотосинтетическим циклом или циклом Кальвина (рис. 7). В нем можно выделить три основные фазы:

  • карбоксилирование (фиксация СО 2 рибулозодифосфатом)
  • восстановление (образование триозофосфатов при восстановлении 3-фосфоглицерата)
  • регенерация рибулозодифосфата

Рибулозо-5-фосфат (сахар, содержащий 5 атомов углерода, с фосфатным остатком у углерода в положении 5) подвергается фосфорилированию за счет АТФ, что приводит к образованию рибулозодифосфата. Это последнее вещество карбоксилируется путем присоединения СО 2 , по-видимому, до промежуточного шестиуглеродного продукта, который, однако, немедленно расщепляется с присоединением молекулы воды, образуя две молекулы фосфоглицериновой кислоты. Затем фосфоглицериновая кислота восстанавливается в ходе ферментативной реакции, для осуществления которой необходимо присутствие АТФ и НАДФ · Н с образованием фосфоглицеринового альдегида (трехуглеродный сахар - триоза). В результате конденсации двух таких триоз образуется молекула гексозы, которая может включаться в молекулу крахмала и таким образом откладываться про запас.

Для завершения этой фазы цикла в процессе фотосинтеза поглощается 1 молекула С0 2 и используются 3 молекулы АТФ и 4 атома Н (присоединенных к 2 молекулам НАД · Н). Из гексозофосфата путем определенных реакций пентозофосфатного цикла (рис. 8) регенерирует рибулозофосфат, который снова может присоединить к себе другую молекулу углекислоты.

Ни одну из описанных реакций - карбоксилирование, восстановление или регенерацию - нельзя считать специфичной только для фотосинтезирующей клетки. Единственное обнаруженное у них отличие заключается в том, что для реакции восстановления, в течение которой фосфоглицериновая кислота превращается в фосфоглицериновый альдегид, необходим НАДФ · Н, а не НАД · Н, как обычно.

Фиксация СО 2 рибулозодифосфатом катализируется ферментом рибулозодифосфаткарбоксилазой: Рибулозодифосфат + СО 2 --> 3-Фосфоглицерат Далее 3-фосфоглицерат восстанавливается с помощью НАДФ · Н 2 и АТФ до глицеральдегид-3-фосфата. Эта реакция катализируется ферментом - глицеральдегид-3-фосфат-дегидрогеназой. Глицеральдегид-3-фосфат легко изомеризуется в дигидроксиацетонфосфат. Оба триозофосфата используются в образовании фруктозобисфосфата (обратная реакция, катализируемая фруктозо-бисфосфат-альдолазой). Часть молекул образовавшегося фруктозобисфосфата участвует вместе с триозофосфатами в регенерации рибулозодифосфата (замыкают цикл), а другая часть используется для запасания углеводов в фотосинтезирующих клетках, как показано на схеме.

Подсчитано, что для синтеза одной молекулы глюкозы из СО 2 в цикле Кальвина требуется 12 НАДФ · Н + Н + и 18 АТФ (12 молекул АТФ расходуются на восстановление 3-фосфоглицерата, а 6 молекул - в реакциях регенерации рибулозодифосфата). Минимальное соотношение - 3 АТФ: 2 НАДФ · Н 2 .

Можно заметить общность принципов, лежащих в основе фотосинтетического и окислительного фосфорилирования, причем фотофосфорилирование представляет собой как бы обращенное окислительное фосфорилирование:

Энергия света является движущей силой фосфорилирования и синтеза органических веществ (S-Н 2) при фотосинтезе и, наоборот, энергия окисления органических веществ - при окислительном фосфорилировании. Поэтому именно растения обеспечивают жизнь животным и другим гетеротрофным организмам:

Углеводы, образующиеся при фотосинтезе, служат для построения углеродных скелетов многочисленных органических веществ растений. Азоторганические вещества усваиваются фотосинтезирующими организмами путем восстановления неорганических нитратов или атмосферного азота, а сера - восстановлением сульфатов до сульфгидрильных групп аминокислот. Фотосинтез в конечном итоге обеспечивает построение не только обязательных для жизни белков, нуклеиновых кислот, углеводов, липидов, кофакторов, но и многочисленных продуктов вторичного синтеза, являющихся ценными лекарственными веществами (алкалоиды, флавоноиды, полифенолы, терпены, стероиды, органические кислоты и т.д.).

Бесхлорофильный фотосинтез

Бесхлорофильный фотосинтез обнаружен у солелюбивых бактерий, имеющих фиолетовый светочувствительный пигмент. Этим пигментом оказался белок бактериородопсин, содержащий, подобно зрительному пурпуру сетчатки - родопсину, производное витамина А - ретиналь. Бактериородопсин, встроенный в мембрану солелюбивных бактерий, образует на этой мембране в ответ на поглощение ретиналем света протонный потенциал, преобразующийся в АТФ. Таким образом, бактериородопсин является бесхлорофильным преобразователем энергии света.

Фотосинтез и внешняя среда

Фотосинтез возможен только при наличии света, воды и диоксида углерода. КПД фотосинтеза не более 20% у культурных видов растений, а обычно он не превышает 6-7%. В атмосфере примерно 0,03% (об.) СО 2 , при повышении его содержания до 0,1% интенсивность фотосинтеза и продуктивность растений возрастают, поэтому целесообразно подкармливать растения гидрокарбонатами. Однако содержание СО 2 в воздухе выше 1,0% оказывает вредное действие на фотосинтез. За год только наземные растения усваивают 3% всего СО 2 атмосферы Земли, т. е. около 20 млрд. т. В составе синтезируемых из СО 2 углеводов аккумулируется до 4 · 10 18 кДж энергии света. Это соответствует мощности электростанции в 40 млрд кВт. Побочный продукт фотосинтеза - кислород - жизненно необходим для высших организмов и аэробных микроорганизмов. Сохранить растительный покров - значит сохранить жизнь на Земле.

Эффективность фотосинтеза

Эффективность фотосинтеза с точки зрения производства биомассы можно оценить через долю общей солнечной радиации, попадающей на определенную площадь за определенное время, которая запасается в органических веществах урожая. Продуктивность системы можно оценить по количеству органического сухого вещества, получаемого с единицы площади за год, и выразить в единицах массы (кг) или энергии (мДж) продукции, полученной с гектара за год.

Выход биомассы зависит, таким образом, от площади коллектора солнечной энергии (листьев), функционирующих в течение года, и числа дней в году с такими условиями освещенности, когда возможен фотосинтез с максимальной скоростью, что определяет эффективность всего процесса. Результаты определения доли солнечной радиации (в %), доступной растениям (фотосинтетически активной радиации, ФАР), и знание основных фотохимических и биохимических процессов и их термодинамической, эффективности позволяют рассчитать вероятные предельные скорости образования органических веществ в пересчете на углеводы.

Растения используют свет с длиной волны от 400 до 700 нм, т. е. на долю фотосинтетически активной радиации приходится 50% всего солнечного света. Это соответствует интенсивности на поверхности Земли 800-1000 Вт/м 2 за обычный солнечный день (в среднем). Усредненная максимальная эффективность превращения энергии при фотосинтезе на практике составляет 5-6%. Эти оценки получены на основе изучения процесса связывания СО 2 , а также сопутствующих физиологических и физических потерь. Одному молю связанного СО 2 в форме углевода соответствует энергия 0,47 МДж, а энергия моля квантов красного света с длиной волны 680 нм (наиболее бедный энергией свет, используемый в фотосинтезе) составляет 0,176 МДж. Таким образом, минимальное число молей квантов красного света, необходимое для связывания 1 моля СО 2 , составляет 0,47:0,176 = 2,7. Однако, поскольку перенос четырех электронов от воды для фиксации одной молекулы СО 2 требует не менее восьми квантов света, теоретическая эффективность связывания равна 2,7:8 = 33%. Эти расчеты сделаны для красного света; ясно, что для белого света эта величина будет соответственно ниже.

В наилучших полевых условиях эффективность фиксации в растениях достигает 3%, однако это возможно лишь в короткие периоды роста и, если пересчитать ее на весь год, то она будет где-то между 1 и 3%.

На практике в среднем за год эффективность фотосинтетического преобразования энергии в зонах с умеренным климатом составляет обычно 0,5-1,3%, а для субтропических культур - 0,5-2,5%. Выход продукта, который можно ожидать при определенном уровне интенсивности солнечного света и разной эффективности фотосинтеза, легко оценить из графиков, приведенных на рис. 9.

Значение фотосинтеза

  • Процесс фотосинтеза является основой питания всех живых существ, а также снабжает человечество топливом, волокнами и бесчисленными полезными химическими соединениями.
  • Из диоксида углерода и воды, связанных из воздуха в ходе фотосинтеза, образуется около 90-95% сухого веса урожая.
  • Человек использует около 7% продуктов фотосинтеза в пищу, в качестве корма для животных, в виде топлива и строительных материалов

Фотосинтез , образование зелеными растениями и некоторыми бактериями органических веществ с использованием энергии солнечного света. Происходит при участии (у растений ). В основе фотосинтеза лежат , в которых переносятся от донора (например, H 2 O, H 2 S) к акцептору (CO 2) с образованием восстановленных соединений (углеводов) и выделением O 2 (если донор электронов H 2 O), S (если донор электронов, например, H 2 S) и др.

Фотосинтез - один из самых распространенных процессов на Земле, обусловливает круговорот в природе углерода, O 2 и других элементов. Он составляет материальную и энергетическую основу всего живого на планете. Ежегодно в результате фотосинтеза в виде органических вещества связывается около 8·10 10 т углерода, образуется до 10 11 т . Благодаря фотосинтезу растения суши образуют около 1,8·10 11 т сухой биомассы в год; примерно такое же количество биомассы растений образуется ежегодно в Мировом океане. Тропический лес вносит до 29% в общую продукцию фотосинтеза суши, а вклад лесов всех типов составляет 68%. Фотосинтез высших растений и водорослей - единственный источник атмосферного O 2 .

Возникновение на Земле около 2,8 млрд. лет назад механизма с образованием O 2 представляет собой важнейшее событие в биологической эволюции, сделавшее свет Солнца главным источником свободной энергии , а воду - практически неограниченным источником водорода для синтеза веществ в живых организмах. В результате образовалась современного состава, O 2 стал доступным для пищи (см. ), а это обусловило возникновение высокоорганизованных гетеротрофных организмов (применяют в качестве источника экзогенные органические вещества).

Около 7% органических продуктов фотосинтеза человек использует в пищу, в качестве корма для животных, а также в виде и строительного материала. Ископаемое топливо - тоже продукт фотосинтеза. Его потребление в конце 20 в. примерно равно приросту биомассы.

Общее запасание энергии солнечного излучения в виде продуктов фотосинтеза составляет около 1,6·10 21 кДж в год, что примерно в 10 раз превышает современное энергетическое потребление человечества. Примерно половина энергии солнечного излучения приходится на видимую область спектра (длина волны l от 400 до 700 нм), которая используется для фотосинтеза (физиологически активная радиация, или ФАР). ИК излучение не пригодно для фотосинтеза кислородвыделяющих организмов (высших растений и водорослей), но используется некоторыми фотосинтезирующими бактериями.

Хлоропласт, представляющий собой замкнутую структуру, отделенную от остальной части клетки оболочкой, заключает в себе весь фотосинтетический аппарат. Световая стадия реализуется в мембранных структурах хлоропласта (так называемых тилакоидах), тогда как темновая стадия происходит в жидком содержимом хлоропласта (строме) при участии водорастворимых ферментов. У фотосинтезирующих бактерий хлоропласты отсутствуют, но световая стадия также осуществляется в мембранных образованиях - в так называемых хроматофорах.

Световая стадия фотосинтеза

Минимальная функциональная единица, еще способная осуществлять световую стадию фотосинтеза,- тилакоид. Он представляет собой микроскопический плоский диск, образованный белковолипидными мембранами, в которых находятся пигменты. В эти мембраны встроены все компоненты, необходимые для воды, никотинамиддинуклеотидфосфата (НАДФ) до НАДФН и синтеза АТФ из аденозиндифосфата. Световая стадия фотосинтеза инициируется поглощением кванта света пигментами, организованными в специальные светособирающие комплексы. Среди преобладает хлорофилл а . К вспомогательным пигментам относятся хлорофилл b , каротиноиды и др. Наличие светособирающей структуры из нескольких сотен или десятков молекул на каждый фотохимически активный (реакционный) центр на 2-3 порядка увеличивает сечение захвата излучения и обеспечивает возможность фотосинтеза при слабом освещении.

Часть вспомогательных пигментов, спектрально наиболее близких к фотохимически активному хлорофиллу, непосредственно окружает каждый из реакционных центров, образуя так называемые антенны.

Высокая эффективность переноса возбуждения от молекулы, поглотившей квант, к фотохимическому центру определяется спектральными свойствами и структурной организацией светособирающего комплекса и антенны, окружающей фотохимический центр. Эти пигменты обеспечивают передачу возбуждения за время менее 100 пс в пределах времени жизни синглетно возбужденного состояния хлорофилла.

В реакционном центре фотосинтеза, куда почти со 100%-ной вероятностью переносится возбуждение, происходит первичная реакция между фотохимически активной молекулой а (у бактерий - бактериохлорофилла) и первичным акцептором электрона (ПА). Дальнейшие реакции в тилакоидных мембранах происходят между молекулами в их основных состояниях и не требуют возбуждения светом. Эти реакции организованы в электронтранспортную цепь - последовательность фиксированных в мембране переносчиков электрона. В электронтранспортной цепи высших растений и водорослей содержится два фотохимических центра (фотосистемы), действующих последовательно (рис. 2), в бактериальной электронтранспортной цепи - один (рис. 3).

В фотосистеме II высших растений и водорослей синглетно возбужденный хлорофилл а в центре Р680 (число 680 обозначает, что максимум спектральных изменений системы при возбуждении светом находится вблизи 680 нм) отдает электрон через промежуточный акцептор к феофитину (ФЕО, безмагниевый аналог хлорофилла), образуя катион-радикал . Анион-радикал восстановленного феофитина служит далее донором электрона для связанного пластохинона (ПХ*; отличается от заместителями в хиноидном кольце), координированного с ионом Fe 3+ (в бактериях имеется аналогичный Fе 3+ -убихинонный комплекс). Далее электрон переносится по цепи, включающей свободный пластохинон (ПХ), присутствующий в избытке по отношению к остальным компонентам цепи, затем цитохромы (Ц) b 6 и f , образующие комплекс с железо-серным центром, через медьсодержащий белок пластоцианин (ПЦ; мол. м. 10400) к реакционному центру фотосистемы I.

Центры быстро восстанавливаются, принимая электрон через ряд промежуточных переносчиков от воды. Образование O 2 требует последовательного четырехкратного возбуждения реакционного центра фотосистемы П и катализируется мембранным комплексом, содержащим Mn.

Хлорофилл a в фотосистеме I, имеющий максимум поглощения вблизи 700 нм (центр Р700), является первичным фотовозбуждаемым донором электрона, который он отдает первичному акцептору (ПА; его природа однозначно не установлена), а затем, через ряд промежуточных переносчиков (A i ) - растворимому белку ферредоксину (ФД), восстанавливающему с помощью фермента ферредоксин-НАДФ-редуктазы (ФНР) НАДФ до НАДФН. Катион-радикал окисленного пигмента восстанавливается пластоцианином.

В зрелых хлоропластах имеются граны (стопки тилакоидов), в мембранах которых присутствуют все компоненты злектронтранспортной цепи, и так называемые агранальные тилакоиды, не содержащие фотосистемы II.

Благодаря асимметрическому расположению компонентов электронтранспортной цепи относительно плоскости мембраны при разделении зарядов между хлорофиллом в каждом из двух фотосинтетических центров и акцептором электрона на тилакоидной мембране создается разность электрических потенциалов (плюс - на внутренней, минус - на внешней ее стороне). Перенос электрона пластохиноном сопровождается транспортом протонов, которые захватываются снаружи тилакоида при восстановлении пластохинона и освобождаются внутрь тилакоида при окислении пластогидрохинона. Перенос электронов сопряжен с синтезом АТФ из аденозиндифосфата (АДФ) и неорганического фосфата. Предполагают, что обратный транспорт протонов из тилакоидов в строму через белковый сопрягающий фактор (Н + -АТФ-синтетазу) сопровождается образованием .

Фотосистема I может действовать автономно без контакта с системой II. В этом случае циклический перенос электрона (на схеме показан пунктиром) сопровождается синтезом АТФ, а не НАДФН. Образующиеся в световой стадии коферменты НАДФН и АТФ используются в темновой стадии фотосинтез, в ходе которой снова образуется НАДФ и АДФ.

Электронтранспортные цепи фотосинтезирующих бактерий в основных своих чертах аналогичны отдельным фрагментам таковых в хлорогпастах высших растений. На рис. 3 показана электронтранспортная цепь пурпурных бактерий.

Темновая стадия фотосинтеза

Все фотосинтезирующие организмы, выделяющие O 2 , а также некоторые фотосинтезирующие бактерии сначала восстанавливают CO 2 до фосфатов Сахаров в так называемом Калвина. У фотосинтезирующих бактерий встречаются, по-видимому, и другие механизмы. Большинство цикла Калвина находится в растворимом состоянии в строме хлоропластов.

Упрощенная схема цикла показана на рис. 4. Первая стадия - карбоксилирование рибулозо-1,5-дифосфата и гидролиз продукта с ооразованием двух молекул 3-фосфоглицериновой кислоты. Эта С 3 -кислота фосфорилируется АТФ с образованием 3-фосфоглицероилфосфата, который затем восстанавливается НАДФН до глицеральдегид-3-фосфата. Полученный триозофосфат затем вступает в ряд реакций изомеризации, конденсации и перегруппировок, дающих 3 молекулы рибулозо-5-фосфата. Последний фосфорилируется при участии АТФ с образованием рибулозо-1,5-дифосфата и, таким образом, цикл замыкается. Одна из 6 образующихся молекул глицеральдегид-3-фосфата превращается в глюкозо-6-фосфат и используется затем для синтеза крахмала либо выделяется из хлоропласта в цитоплазму. Глицеральдегид-3-фосфат может также превращаться в 3-глицерофосфат и затем в липиды. Триозофосфаты, поступающие из хлоропласта, превращаются в основном в сахарозу, которая переносится из листа в другие части растения.

В одном полном обороте цикла Калвина расходуется 9 молекул АТФ и 6 молекул НАДФН для образования одной молекулы 3-фосфоглицериновой кислоты. Энергетическая эффективность цикла (отношение энергии фотонов, необходимых для фотосинтеза АТФ и НАДФН, к ΔG 0 образования углевода из CO 2) с учетом действующих в строме хлоропласта концентраций субстратов составляет 83%. В самом цикле Калвина нет фотохимических стадий, но световые стадии могут косвенно влиять на него (в том числе и на реакции, не требующие АТФ или НАДФН) через изменения концентраций ионов Mg 2+ и H + , а также уровня восстановленности ферредоксина.

Некоторые высшие растения, приспособившиеся к высокой интенсивности света и к теплому климату (например, сахарный тростник, кукуруза), способны предварительно фиксировать CO 2 в дополнительном С 4 -цикле. При этом CO 2 сначала включается в обмен четырехуглеродных дикарбоновых кислот, которые затем декарбоксилируются там, где локализован цикл Калвина. С 4 -цикл характерен для растений с особым анатомическим строением листа и разделением функций между двумя типами клеток: мезофильных, где сосредоточено карбоксилирование фосфоенолпировиноградной кислоты, и клеток обкладки сосудистого пучка, где функционирует цикл Калвина. Образующаяся в С 4 -цикле щавелевоуксусная кислота восстанавливается НАДФН до яблочной, которая перемещается в клетки сосудистой обкладки и здесь подвергается окислительному декарбоксилированию, образуя пировиноградную кислоту, CO 2 и НАДФН. Два последних используются в цикле Калвина, а пировиноградная кислота возвращается в С 4 -цикл (рис. 5). Физиологический смысл С 4 -цикла состоит в запасании CO 2 и повышении, таким образом, общей эффективности процесса.

Для кактусов, молочая и других засухоустойчивых растений характерно частичное разделение фиксации CO 2 и фотосинтеза во времени (CAM -обмен, или обмен по типу толстянковых; CAM сокр. от англ. Crassulaceae acid metabolism ). Днем устьица (каналы, через которые осуществляется газообмен с атмосферой) закрываются, чтобы уменьшить испарение воды. При этом поступление CO 2 также затруднено. Ночью устьица открываются, происходит фиксация CO 2 в виде фосфоенол-пировиноградной кислоты с образованием С 4 -кислот, которые днем декарбоксилируются, а освобождаемый при этом CO 2 включается в цикл Калвина (рис. 6).

Фотосинтез галобактерий

Единственный известный в природе нехлорофилльный способ запасания энергии света осуществляют бактерии Halobacterium halobium . Ha ярком свету при пониженной