Болезни Военный билет Призыв

Обозначение логарифмов. Рассмотрим вариант размещения логарифма в степени. Правила и ограничения

    логарифмическая зависимость - logaritminė priklausomybė statusas T sritis fizika atitikmenys: angl. logarithmic dependence vok. logarithmische Abhängigkeit, f rus. логарифмическая зависимость, f pranc. dépendance logarithmique, f … Fizikos terminų žodynas

    Функция, обратная к показательной функции (См. Показательная функция). Л. ф. обозначается y = lnx; (1) её значение y, соответствующее значению аргумента х, называется натуральным Логарифмом числа х. В силу определения… …

    Специальным образом разграфленная бумага; обычно изготовляется типографским способом. Она строится следующим образом (рис. 1): на каждой из осей прямоугольной системы координат откладываются десятичные Логарифмы чисел u (на оси абсцисс) и … Большая советская энциклопедия

    Функция, обратная к показательной функции. Л. ф. обозначается ее значение у, соответствующее значению аргумента х, наз. натуральным логарифмом числа х. В силу определения соотношение (1) равносильно Так как при любом действительном у, то Л. ф.… … Математическая энциклопедия

    График двоичного логарифма Логарифм числа … Википедия

    закон Вебера-Фехнера - логарифмическая зависимость силы ощущения Е от физической интенсивности раздражителя Р: Е = к log P + с, где k и с некие постоянные, определяемые данной сенсорной системой. Зависимость была выведена немецким психологом и физиологом Г. Т. Фехнером …

    интенсивность ощущения - степень субъективной выраженности ощущения, связанного с некоим раздражителем. Связь интенсивности ощущения с физической интенсивностью раздражителя имеет достаточно сложный вид. Предложены различные модели, описывающие эту связь: так, в… … Большая психологическая энциклопедия

    Вебера-Фехнера закон - логарифмическая зависимость силы ощущения (Е) от физической интенсивности раздражителя (Р): Е=k log P+ + c, где k и с нек рые постоянные, определяемые данной сенсорной системой. Эта зависимость была выведена немецким психологом и физиологом Г. Т … Большая психологическая энциклопедия

    I. Задача П.; II. законы Вебера и Фехнера; III. Психофизические методы; IV. Результаты опытов; V. Смысл психофизических законов; VI. Литература. I. Задача П. Сравнивая различные ощущения, мы замечаем, что они имеют: 1) разные качества, 2)… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Течение жидкости или газа, характеризующееся беспорядочным, нерегулярным перемещением его объёмов и их интенсивным перемешиванием (см. Турбулентность), но в целом имеющее плавный, регулярный характер. Образование Т. т. связано с неустойчивостью… … Энциклопедия техники

    основной психофизический закон - ОСНОВНОЙ ПСИХОФИЗИЧЕСКИЙ ЗАКОН функция зависимости величины ощущения от величины раздражителя. Единой формулы О. п. з. нет, но есть его варианты: логарифмический (Фехнера), степенной (Стивенса), обобщенные (Бэрда, Экмана, Забродина и др.) … Энциклопедия эпистемологии и философии науки

(от греческого λόγος - «слово», «отношение» и ἀριθμός - «число») числа b по основанию a (log α b ) называется такое число c , и b = a c , то есть записи log α b =c и b=a c эквивалентны. Логарифм имеет смысл, если a > 0, а ≠ 1, b > 0.

Говоря другими словами логарифм числа b по основанию а формулируется как показатель степени , в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки вытекает, что вычисление x= log α b , равнозначно решению уравнения a x =b.

Например:

log 2 8 = 3 потому, что 8=2 3 .

Выделим, что указанная формулировка логарифма дает возможность сразу определить значение логарифма , когда число под знаком логарифма выступает некоторой степенью основания. И в правду, формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

Вычисление логарифма именуют логарифмированием . Логарифмирование - это математическая операция взятия логарифма. При логарифмировании, произведения сомножителей трансформируется в суммы членов.

Потенцирование - это математическая операция обратная логарифмированию. При потенцировании заданное основание возводится в степень выражения, над которым выполняется потенцирование. При этом суммы членов трансформируются в произведение сомножителей.

Достаточно часто используются вещественные логарифмы с основаниями 2 (двоичный), е число Эйлера e ≈ 2,718 (натуральный логарифм) и 10 (десятичный).

На данном этапе целесообразно рассмотреть образцы логарифмов log 7 2, ln5, lg0.0001.

А записи lg(-3), log -3 3.2, log -1 -4.3 не имеют смысла, так как в первой из них под знаком логарифма помещено отрицательное число , во второй - отрицательное число в основании, а в третьей - и отрицательное число под знаком логарифма и единица в основании.

Условия определения логарифма.

Стоит отдельно рассмотреть условия a > 0, a ≠ 1, b > 0.при которых дается определение логарифма . Рассмотрим, почему взяты эти ограничения. В это нам поможет равенство вида x = log α b , называемое основным логарифмическим тождеством , которое напрямую следует из данного выше определения логарифма.

Возьмем условие a≠1 . Поскольку единица в любой степени равна единице, то равенство x=log α b может существовать лишь при b=1 , но при этом log 1 1 будет любым действительным числом . Для исключения этой неоднозначности и берется a≠1 .

Докажем необходимость условия a>0 . При a=0 по формулировке логарифма может существовать только при b=0 . И соответственно тогда log 0 0 может быть любым отличным от нуля действительным числом, так как нуль в любой отличной от нуля степени есть нуль. Исключить эту неоднозначность дает условие a≠0 . А при a<0 нам бы пришлось отвергнуть разбор рациональных и иррациональных значений логарифма, поскольку степень с рациональным и иррациональным показателем определена лишь для неотрицательных оснований. Именно по этой причине и оговорено условие a>0 .

И последнее условие b>0 вытекает из неравенства a>0 , поскольку x=log α b , а значение степени с положительным основанием a всегда положительно.

Особенности логарифмов.

Логарифмы характеризуются отличительными особенностями , которые обусловили их повсеместное употребление для значительного облегчения кропотливых расчетов. При переходе «в мир логарифмов» умножение трансформируется на значительно более легкое сложение, деление — на вычитание, а возведение в степень и извлечение корня трансформируются соответствующе в умножение и деление на показатель степени.

Формулировку логарифмов и таблицу их значений (для тригонометрических функций) впервые издал в 1614 году шотландский математик Джон Непер. Логарифмические таблицы, увеличенные и детализированные прочими учеными, широко использовались при выполнении научных и инженерных вычислений, и оставались актуальными пока не стали применяться электронные калькуляторы и компьютеры.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Степенная или логарифмическая зависимость?

Сравнение коэффициентов корреляции

Еще в XIX в. немецкий философ, один из основоположников научной психологии Г.-Т. Фехнер выдвинул психофизический закон, описывающий зависимость ощущений от величины физической стимуляции. Этот закон, получивший название закона Вебера – Фехнера, предполагал логарифмическую зависимость между энергией стимула, воздействующего на орган чувств, и величиной ощущения, которое этот стимул вызывает. В XX в. американский психофизик С. С. Стивенс подверг критике методологию Фехнера, не предполагавшую возможности непосредственной оценки ощущения. Результатом этой критики стала разработка С. С. Стивенсом ряда методических процедур, которые получили название методов прямой оценки ощущений. На основе получаемых в эксперименте данных стало возможным оценивать связь между величиной стимула и величиной ощущения не только в теории, но и на практике. В результате Стивенс сделал вывод о том, что психофизическая зависимость должна описываться но логарифмической, а степенной функцией.

Посмотрим, каким образом методология Стивенса и простейшие процедуры корреляционного анализа позволяют сравнить данные на предмет их соответствия логарифмическому и степенному психофизическому закону.

Для этого воспользуемся результатами, полученными в одном психофизическом эксперименте (Т. Engen ). В этом эксперименте для оценки концентраций запаха амилацетата (банана), разведенного в диэтилфталате, использовался метод оценки величины с заданным модулем. Каждый из 12 испытуемых дважды проводил оценку семи различных концентраций запаха. В качестве модуля использовалась концентрация 12,5%. Значение модуля задавалось равным 10. В табл. 7.10 представлены усредненные шкальные значения для каждого стимула.

Представим эти результаты в виде диаграммы рассеивания (рис. 7.7). Видно, что по мере нарастания концентрации пахучего вещества увеличивается субъективная оценка его ощущения. Эта зависимость носит монотонный, но, по-видимому, нелинейный характер. Тем не менее вычисление коэффициента корреляции между этими двумя рядами данных дает довольно высокое значение – 0,984. Такой коэффициент корреляции дает объяснение 96,8% дисперсии зависимой переменной (критерия), непосредственно ассоциированной со значением независимой переменной (предиктора), хотя и не имеет под собой каких-либо теоретических оснований.

Таблица 7.10

Субъективная шкала запаха амилацетата, разведенного в диатилфталате (Т. Engen )

Рис. 7.7.

Логарифмический закон Вебера – Фехнера предполагает, что линейная зависимость будет наблюдаться между логарифмами концентрации амилацетата и субъективной оценкой ощущения.

Такая зависимость представляется весьма вероятной, если судить по данным, которые представлены на рис. 7.7. Поэтому осуществим трансформацию использовавшихся в эксперименте концентраций в их натуральные логарифмы и снова построим диаграмму рассеивания. На рис. 7.8 отражена зависимость субъективной оценки запаха теперь уже от величины логарифма концентрации амилацетата. Но снова, как кажется, мы не наблюдаем линейной зависимости. На этот раз коэффициент корреляции между логарифмом концентрации пахучего вещества и субъективной оценкой его запаха оказался даже ниже того, что мы отмечали для первоначальных данных, хотя все еще и довольной высокий – 0,948. В этом случае только 89,8% дисперсии критерия непосредственно оказываются связанными с дисперсией предиктора. Таким образом предсказания закона Вебера – Фехнера применительно к нашим данным выглядят не слишком убедительно.

Рис. 7.8.

Степенной психофизический закон Стивенса устанавливает линейную зависимость между логарифмами стимуляции и величины ощущения. Рисунок 7.9 свидетельствует о том, что такое предсказание оказывается довольно точным. Все точки диаграммы рассеивания идеально выстраиваются вдоль одной линии. Коэффициент корреляции между этими рядами данных составляет 0,999. Это значит, что такая регрессионная модель описывает 99,8% дисперсии зависимой переменной, которая может быть связана с дисперсией независимой переменной.

Рис. 7.9.

Таким образом, наглядное сравнение рис. 7.7-7.9, а также вычисленные коэффициенты корреляции, как кажется, однозначно свидетельствуют в пользу степенного закона Стивенса. Тем не менее попытаемся оценить, насколько велика статистическая разница между этими тремя коэффициентами корреляции.

Прежде всего осуществим логарифмическую трансформацию вычисленных нами коэффициентов корреляции, воспользовавшись нелинейным преобразованием Фишера:

Для упрощения расчетов можно воспользоваться соответствующей функцией Microsoft Excel – ФИШЕР. В качестве аргумента она принимает значение соответствующего коэффициента корреляции.

Результаты таких преобразований дают нам следующие значения z":

  • 1. Для связи концентраций амилацетата и оценки запахов z" = 2,41.
  • 2. Для связи логарифма концентраций и оценки запахов z" = 1,81.
  • 3. Для связи логарифма концентраций и логарифма субъективных оценок z" = 3,89.

Теперь мы можем выдвинуть три статистические гипотезы о попарном равенстве этих коэффициентов корреляции в генеральной совокупности. Для оценки статистической надежности этих гипотез необходимо построить три статистики z:

Здесь п и т соответствуют размерам выборок. В нашем случае и то и другое значение равно семи, так как используются одни и тс же данные.

В результате получаем, что статистика z для случая сравнения коэффициента корреляции между первоначальными значениями концентрации пахучего вещества и субъективной оценкой запаха, с одной стороны, и коэффициента корреляции между результатами логарифмического преобразования стимульных значений и их ощущениями – с другой, оказывается равной 0,85, что соответствует закону Вебера – Фехнера. Оценить надежность этой статистики можно с помощью статистических таблиц (см. приложение 1). Оценка показывает, что такое значение ненадежно отличается от нулевого и, следовательно, необходимо сохранить выдвинутую нулевую гипотезу о равенстве этих коэффициентов корреляции.

Сравнение коэффициента корреляции, предполагающего логарифмическую трансформацию обеих переменных – закон Стивенса, с коэффициентами корреляции, предполагающими логарифмическую трансформацию только независимой переменной – закон Вебера – Фехнера и вообще не предполагающими такой трансформации, дает значения z-статистики соответственно 2,94 и 2,10. Оба этих значения свидетельствуют о надежном отличии статистики z от теоретически ожидаемой нулевой величины. Следовательно,

необходимо отвергнуть нулевую гипотезу о равенстве коэффициентов корреляции.

Как известно, при перемножении выражений со степенями их показатели всегда складываются (a b *a c = a b+c). Этот математический закон был выведен Архимедом, а позже, в VIII веке, математик Вирасен создал таблицу целых показателей. Именно они послужили для дальнейшего открытия логарифмов. Примеры использования этой функции можно встретить практически везде, где требуется упростить громоздкое умножение на простое сложение. Если вы потратите минут 10 на прочтение этой статьи, мы вам объясним, что такое логарифмы и как с ними работать. Простым и доступным языком.

Определение в математике

Логарифмом называется выражение следующего вида: log a b=c, то есть логарифмом любого неотрицательного числа (то есть любого положительного) "b" по его основанию "a" считается степень "c", в которую необходимо возвести основание "a", чтобы в итоге получить значение "b". Разберем логарифм на примерах, допустим, есть выражение log 2 8. Как найти ответ? Очень просто, нужно найти такую степень, чтобы из 2 в искомой степени получить 8. Проделав в уме некоторые расчеты, получаем число 3! И верно, ведь 2 в степени 3 дает в ответе число 8.

Разновидности логарифмов

Для многих учеников и студентов эта тема кажется сложной и непонятной, однако на самом деле логарифмы не так страшны, главное - понять общий их смысл и запомнить их свойста и некоторые правила. Существует три отдельных вида логарифмических выражений:

  1. Натуральный логарифм ln a, где основанием является число Эйлера (e = 2,7).
  2. Десятичный a, где основанием служит число 10.
  3. Логарифм любого числа b по основанию a>1.

Каждый из них решается стандартным способом, включающим в себя упрощение, сокращение и последующее приведение к одному логарифму с помощью логарифмических теорем. Для получения верных значений логарифмов следует запомнить их свойства и очередность действий при их решениях.

Правила и некоторые ограничения

В математике существует несколько правил-ограничений, которые принимаются как аксиома, то есть не подлежат обсуждению и являются истиной. Например, нельзя числа делить на ноль, а еще невозможно извлечь корень четной степени из отрицательных чисел. Логарифмы также имеют свои правила, следуя которым можно с легкостью научиться работать даже с длинными и емкими логарифмическими выражениями:

  • основание "a" всегда должно быть больше нуля, и при этом не быть равным 1, иначе выражение потеряет свой смысл, ведь "1" и "0" в любой степени всегда равны своим значениям;
  • если а > 0, то и а b >0, получается, что и "с" должно быть больше нуля.

Как решать логарифмы?

К примеру, дано задание найти ответ уравнения 10 х = 100. Это очень легко, нужно подобрать такую степень, возведя в которую число десять, мы получим 100. Это, конечно же, 10 2 =100.

А теперь давайте представим данное выражение в виде логарифмического. Получим log 10 100 = 2. При решении логарифмов все действия практически сходятся к тому, чтобы найти ту степень, в которую необходимо ввести основание логарифма, чтобы получить заданное число.

Для безошибочного определения значенияя неизвестной степени необходимо научиться работать с таблицей степеней. Выглядит она следующим образом:

Как видите, некоторые показатели степени можно угадать интуитивно, если имеется технический склад ума и знание таблицы умножения. Однако для больших значений потребуется таблица степеней. Ею могут пользоваться даже те, кто совсем ничего не смыслит в сложных математических темах. В левом столбце указаны числа (основание a), верхний ряд чисел - это значение степени c, в которую возводится число a. На пересечении в ячейках определены значения чисел, являющиеся ответом (a c =b). Возьмем, к примеру, самую первую ячейку с числом 10 и возведем ее в квадрат, получим значение 100, которое указано на пересечении двух наших ячеек. Все так просто и легко, что поймет даже самый настоящий гуманитарий!

Уравнения и неравенства

Получается, что при определенных условиях показатель степени - это и есть логарифм. Следовательно, любые математические численные выражения можно записать в виде логарифмического равенства. Например, 3 4 =81 можно записать в виде логарифма числа 81 по основанию 3, равному четырем (log 3 81 = 4). Для отрицательных степеней правила такие же: 2 -5 = 1/32 запишем в виде логарифма, получим log 2 (1/32) = -5. Одной из самых увлекательных разделов математики является тема "логарифмы". Примеры и решения уравнений мы рассмотрим чуть ниже, сразу же после изучения их свойств. А сейчас давайте разберем, как выглядят неравенства и как их отличить от уравнений.

Дано выражение следующего вида: log 2 (x-1) > 3 - оно является логарифмическим неравенством, так как неизвестное значение "х" находится под знаком логарифма. А также в выражении сравниваются две величины: логарифм искомого числа по основанию два больше, чем число три.

Самое главное отличие между логарифмическими уравнениями и неравенствами заключается в том, что уравнения с логарифмами (пример - логарифм 2 x = √9) подразумевают в ответе одно или несколько определенных числовых значений, тогда как при решении неравенства определяются как область допустимых значений, так и точки разрыва этой функции. Как следствие, в ответе получается не простое множество отдельных чисел как в ответе уравнения, а а непрерывный ряд или набор чисел.

Основные теоремы о логарифмах

При решении примитивных заданий по нахождению значений логарифма, его свойства можно и не знать. Однако когда речь заходит о логарифмических уравнениях или неравенствах, в первую очередь, необходимо четко понимать и применять на практике все основные свойства логарифмов. С примерами уравнений мы познакомимся позже, давайте сначала разберем каждое свойство более подробно.

  1. Основное тождество выглядит так: а logaB =B. Оно применяется только при условии, когда а больше 0, не равно единице и B больше нуля.
  2. Логарифм произведения можно представить в следующей формуле: log d (s 1 *s 2) = log d s 1 + log d s 2. При этом обязательным условием является: d, s 1 и s 2 > 0; а≠1. Можно привести доказательство для этой формулы логарифмов, с примерами и решением. Пусть log a s 1 = f 1 и log a s 2 = f 2 , тогда a f1 = s 1 , a f2 = s 2. Получаем, что s 1 *s 2 = a f1 *a f2 = a f1+f2 (свойства степеней), а далее по определению: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, что и требовалось доказать.
  3. Логарифм частного выглядит так: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теорема в виде формулы приобретает следующий вид: log a q b n = n/q log a b.

Называется эта формула "свойством степени логарифма". Она напоминает собой свойства обычных степеней, и неудивительно, ведь вся математика держится на закономерных постулатах. Давайте посмотрим на доказательство.

Пусть log a b = t, получается a t =b. Если возвести обе части в степень m: a tn = b n ;

но так как a tn = (a q) nt/q = b n , следовательно log a q b n = (n*t)/t, тогда log a q b n = n/q log a b. Теорема доказана.

Примеры задач и неравенств

Самые распространенные типы задач на тему логарифмов - примеры уравнений и неравенств. Они встречаются практически во всех задачниках, а также входят в обязательную часть экзаменов по математике. Для поступления в университет или сдачи вступительных испытаний по математике необходимо знать, как правильно решать подобные задания.

К сожалению, единого плана или схемы по решению и определению неизвестного значения логарифма не существует, однако к каждому математическому неравенству или логарифмическому уравнению можно применить определенные правила. Прежде всего следует выяснить, можно ли упростить выражение или привести к общему виду. Упрощать длинные логарифмические выражения можно, если правильно использовать их свойства. Давайте скорее с ними познакомимся.

При решении же логарифмических уравнений, следует определить, какой перед нами вид логарифма: пример выражения может содержать натуральный логарифм или же десятичный.

Вот примеры ln100, ln1026. Их решение сводится к тому, что нужно определить ту степень, в которой основание 10 будет равно 100 и 1026 соответственно. Для решений же натуральных логарифмов нужно применить логарифмические тождества или же их свойства. Давайте на примерах рассмотрим решение логарифмических задач разного типа.

Как использовать формулы логарифмов: с примерами и решениями

Итак, рассмотрим примеры использования основных теорем о логарифмах.

  1. Свойство логарифма произведения можно применять в заданиях, где необходимо разложить большое значение числа b на более простые сомножители. Например, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Ответ равен 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - как видите, применяя четвертое свойство степени логарифма, удалось решить на первый взгляд сложное и нерешаемое выражение. Необходимо всего лишь разложить основание на множители и затем вынести значения степени из знака логарифма.

Задания из ЕГЭ

Логарифмы часто встречаются на вступительных экзаменах, особенно много логарифмических задач в ЕГЭ (государственный экзамен для всех выпускников школ). Обычно эти задания присутствуют не только в части А (самая легкая тестовая часть экзамена), но и в части С (самые сложные и объемные задания). Экзамен подразумевает точное и идеальное знание темы "Натуральные логарифмы".

Примеры и решения задач взяты из официальных вариантов ЕГЭ. Давайте посмотрим, как решаются такие задания.

Дано log 2 (2x-1) = 4. Решение:
перепишем выражение, немного его упростив log 2 (2x-1) = 2 2 , по определению логарифма получим, что 2x-1 = 2 4 , следовательно 2x = 17; x = 8,5.

  • Все логарифмы лучше всего приводить к одному основанию, чтобы решение не было громоздким и запутанным.
  • Все выражение, стоящие под знаком логарифма, указываются как положительные, поэтому при вынесении множителем показателя степени выражения, который стоит под знаком логарифма и в качестве его основания, остающееся под логарифмом выражение должно быть положительно.