Болезни Военный билет Призыв

Неравенства с одной переменной примеры. Видеоурок «Решение линейных неравенств. Используя равносильные преобразования

Как решать линейные неравенства? Для начала неравенство надо упростить: раскрыть скобки, привести подобные слагаемые.

Рассмотрим примеры решения линейных неравенств с одной переменной.

Раскрываем скобки . Если перед скобками стоит множитель, умножаем его на каждое слагаемое в скобках. Если перед скобками стоит знак «плюс», знаки в скобках не меняются. Если перед скобками стоит знак «минус», знаки в скобках меняются на противоположные.

Приводим подобные слагаемые.

Получили неравенство вида ax+b≤cx+d. Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками (можно было сначала перенести неизвестные в одну сторону, известные в другую, а уже потом привести подобные слагаемые).

Обе части неравенства делим на число, стоящее перед иксом. Так как 8 больше нуля, знак неравенства не меняется:

Title="Rendered by QuickLaTeX.com">

Так как , точку -2 отмечаем на числовой прямой закрашенной. от -2, на минус бесконечность.

Так как неравенство нестрогое и точка закрашенная, в ответ -2 записываем с квадратной скобкой.

Чтобы от десятичных дробей перейти к целым числам, можно обе части неравенства умножить на 10 (это не обязательно. Можно работать с десятичными дробями).

Title="Rendered by QuickLaTeX.com">

При умножении обеих частей на положительное число знак неравенства не меняется. Умножать на 10 надо каждое слагаемое. При умножении произведения на 10 используем сочетательное свойство умножения , то есть умножаем на 10 только один множитель.

Раскрываем скобки:

Приводим подобные слагаемые:

Переносим неизвестные в одну сторону, известные — в другую с противоположными знаками:

Обе части неравенства делим на число, стоящее перед иксом. Поскольку -6 — отрицательное число, знак неравенства меняется на противоположный:

Title="Rendered by QuickLaTeX.com">

Сокращаем дробь:

Title="Rendered by QuickLaTeX.com">

Так как неравенство строгое, на числовой прямой -2/3 отмечаем выколотой точкой. Штриховка идёт вправо, на плюс бесконечность:

Неравенство строгое, точка выколотая, поэтому в ответ -2/3 записываем с круглой скобкой:

Title="Rendered by QuickLaTeX.com">

Раскрываем скобки. Если перед произведением двух скобок стоит знак «минус», удобно сначала выполнить умножение, и только потом раскрывать скобки, изменяя знак каждого слагаемого на противоположный:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Приводим подобные слагаемые:

Title="Rendered by QuickLaTeX.com">

Неизвестные — в одну сторону, известные — в другую с противоположными знаками:

Title="Rendered by QuickLaTeX.com">

Title="Rendered by QuickLaTeX.com">

Обе части неравенства делим на число, стоящее перед иксом. Так как -10<0, знак неравенства меняется на противоположный:

Поскольку неравенство строгое, 1,6 отмечаем на числовой прямой выколотой точкой. Штриховка от 1,6 идёт влево, на минус бесконечность:

Так как неравенство строгое и точка выколотая, 1,6 в ответ записываем с круглой скобкой.

Линейное неравенство с одной переменной - это неравенство, которое можно привести к виду:

ax > b или ax < b .

Где x - это переменная, a - коэффициент, а b - свободный член.

Если a > 0, то, разделив обе части неравенства на a , получим:

Данные неравенства и определяют все значения переменной x , при которых данное неравенство будет верным. Оба неравенства можно изобразить с помощью числовых промежутков :

Обратите внимание, что в строгих неравенствах значение, с которым сравнивается переменная, не входит в множество значений самой переменной. В нестрогих неравенствах оно будет входить в множество допустимых значений:

Если a < 0, то, разделив обе части неравенства

ax > b или ax < b

на a и поменяв в них знак на противоположный, получим:

Все возможные значения данных неравенств мы уже рассмотрели выше.

Если a = 0, тогда неравенство примет вид:

0 · x > b или 0 · x < b

В первом случае: 0 · x > b , x ∈ (-∞; +∞), если b отрицательное число, в противном случае неравенство не имеет решений. Во втором случае: 0 · x < b , x ∈ (-∞; +∞), если b положительное число, в противном случае неравенство не имеет решений.

Равносильные неравенства

Равносильные неравенства - это неравенства, у которых совпадает множество решений. Неравенства, не имеющие решений, тоже считаются равносильными.

Неравенство, равносильное данному, получится, если:

  1. Перенести слагаемое из одной части неравенства в другую, изменив знак слагаемого на противоположный.
  2. Умножить или разделить обе части неравенства на одно и то же положительное число.
  3. Умножить или разделить обе части неравенства на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный.

Решение неравенств

Решить неравенство с одной переменной - это значит, найти все значения этой переменной, при которых данное неравенство верно, или убедиться, что таких значений у переменной нет.

Все неравенства с одной переменной решаются одинаково с помощью преобразований, которые могут выполняться в любом порядке. Список возможных преобразований, которые могут быть использованы для решения неравенств:

  • освобождение от дробных членов,
  • раскрытие скобок,
  • перенос всех членов, содержащих переменную, в одну часть, а остальных – в другую (члены с переменными, как правило, переносят в левую часть неравенства),
  • приведение подобных членов,
  • деление обеих частей неравенства на коэффициент при переменной.

Пример 1.

8x - 2 > 14

Решение: Переносим -2 в правую часть:

8x > 14 + 2

8x > 16

Делим обе части неравенства на -8:

8x : (-8) < 16: (-8)

x < -2

Отмечаем множество значений x на координатной прямой:

Ответ: (-∞; -2)

Пример 2. Решить неравенство и изобразить множество решений на координатной прямой:

6(y + 12) ⩾ 3(y - 4)

Решение: Сначала раскрываем скобки:

6y + 72 ⩾ 3y - 12

Переносим 72 в правую часть, а 3y в левую и делаем приведение подобных слагаемых :

6y - 3y ⩾ -12 - 72

3y ⩾ -84

Делим обе части неравенства на коэффициент при неизвестном (на 3):

(3y ) : 3 ⩾ (- 84) : 3

y ⩾ -28

Отмечаем множество значений y на координатной прямой:

Ответ: [-28; +∞)

Неравенство это выражение с, ≤, или ≥. Например, 3x - 5 Решить неравенство означает найти все значения переменных, при которых это неравенство верно. Каждое из этих чисел является решением неравенства, а множество всех таких решений является его множеством решений . Неравенства, которые имеют то же множество решений, называются эквивалентными неравенствами .

Линейные неравенства

Принципы решения неравенств аналогичны принципам решения уравнений.

Принципы решения неравенств
Для любых вещественных чисел a, b, и c :
Принцип прибавления неравенств : Если a Принцип умножения для неравенств : Если a 0 верно, тогда ac Если a bc также верно.
Подобные утверждения также применяются для a ≤ b.

Когда обе стороны неравенства умножаются на отрицательное число, необходимо полностью изменить знак неравенства.
Неравенства первого уровня, как в примере 1 (ниже), называются линейными неравенствами .

Пример 1 Решите каждое из следующих неравенств. Затем изобразите множество решений.
a) 3x - 5 b) 13 - 7x ≥ 10x - 4
Решение
Любое число, меньше чем 11/5, является решением.
Множество решений есть {x|x
Чтобы сделать проверку, мы можем нарисовать график y 1 = 3x - 5 и y 2 = 6 - 2x. Тогда отсюда видно, что для x
Множеством решений есть {x|x ≤ 1}, или (-∞, 1]. График множества решений изображён ниже.

Двойные неравенства

Когда два неравенства соединены словом и , или , тогда формируется двойное неравенство . Двойное неравенство, как
-3 и 2x + 5 ≤ 7
называется соединённым , потому что в нём использовано и . Запись -3 Двойные неравенства могут быть решены с использованием принципов прибавления и умножения неравенств.

Пример 2 Решите -3 Решение У нас есть

Множество решений {x|x ≤ -1 или x > 3}. Мы можем также написать решение с использованием обозначения интервала и символ для объединения или включения обоих множеств: (-∞ -1] (3, ∞). График множества решений изображен ниже.

Для проверки, нарисуем y 1 = 2x - 5, y 2 = -7, и y 3 = 1. Заметьте, что для {x|x ≤ -1 или x > 3}, y 1 ≤ y 2 или y 1 > y 3 .

Неравенства с абсолютным значением (модулем)

Неравенства иногда содержат модули. Следующие свойства используются для их решения.
Для а > 0 и алгебраического выражения x:
|x| |x| > a эквивалентно x или x > a.
Подобные утверждения и для |x| ≤ a и |x| ≥ a.

Например,
|x| |y| ≥ 1 эквивалентно y ≤ -1 или y ≥ 1;
и |2x + 3| ≤ 4 эквивалентно -4 ≤ 2x + 3 ≤ 4.

Пример 4 Решите каждое из следующих неравенств. Постройте график множества решений.
a) |3x + 2| b) |5 - 2x| ≥ 1

Решение
a) |3x + 2|

Множеством решением есть {x|-7/3
b) |5 - 2x| ≥ 1
Множеством решением есть {x|x ≤ 2 или x ≥ 3}, или (-∞, 2] )

Свойства позволяют руководствоваться при решении неравенств следующими правилами:

  • Правило 1. Любой член неравенства можно перенести из одной части неравенства в другую с противоположным знаком, не изменив при этом знак неравенства.
  • Правило 2. Обе части неравенства можно умножить или разделить на одно и то же положительное число, не изменив при этом знак неравенства.
  • Правило 3. Обе части неравенства можно умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный.

Применим эти правила для решения линейных неравенств, т.е. неравенств, сводящихся к виду

где а и b — любые числа, за одним исключением: а ≠ 0.

Если а = 0, то рассматриваем 2 случая:

1) Если b > 0, то x может быть любое число

2) Если b < 0, то решения нет

Пример 1:

Решить неравенство

Зх - 5 ≥ 7х - 15.

Решение.

Руководствуемся правилом 1 перенесем член 7х в левую часть неравенства, а член -5 — в правую часть неравенства, не забыв при этом изменить знаки и у члена 7х, и у члена -5. Тогда получим:

Зх - 7х ≥ -15 + 5

Согласно правилу 3 разделим обе части последнего неравенства на одно и то же отрицательное число -4, не забыв при этом сменить знак неравенства. Получим:

Это и есть решение заданного неравенства.

Как мы условились, для записи решения можно использовать обозначение соответствующего промежутка числовой прямой: (-∞; 2,5].

Ответ: (- ∞; 2,5].

Пример 2:

Решить неравенство

3x + 2 > 2(x + 3) + x

Решение.

3x + 2 > 2x + 6 + x

Руководствуясь правилом 1

3x - 2x - x > 6 - 2

Получаем противоречие.

Решения нет.

Пример 4:

Решить неравенство

2(x - 1) + 3 > 2x - 5

Решение.

Раскроем скобки во второй части неравенства:

2x - 2 + 3 > 2x - 5

Руководствуясь правилом 1 , перенесем члены "с иксом" в левую часть неравенства, а "без икса" в правую:

2x - 2x > 2 - 5 - 3

Получаем верное неравенство.

В данном случае можно взять любое число x, так как от него не зависит решение.

Ответом является вся числовая прямая.

В заключение заметим, что, используя свойства числовых неравенств и правила, мы в этом параграфе учились решать не любое неравенство с переменной, а только такое, которое после ряда простейших преобразований (типа тех, что были выполнены в примерах из этого параграфа) принимает вид ax > b, такие неравенства называются линейными . Далее мы изучим методы для решения более сложных неравенств.

Например, неравенством является выражение \(x>5\).

Виды неравенств:

Если \(a\) и \(b\) – это числа или , то неравенство называется числовым . Фактически это просто сравнение двух чисел. Такие неравенства подразделяются на верные и неверные .

Например:
\(-5<2\) - верное числовое неравенство, ведь \(-5\) действительно меньше \(2\);

\(17+3\geq 115\) - неверное числовое неравенство, так как \(17+3=20\), а \(20\) меньше \(115\) (а не больше или равно).


Если же \(a\) и \(b\) – это выражения, содержащие переменную, то у нас неравенство с переменной . Такие неравенства разделяют по типам в зависимости от содержимого:

\(2x+1\geq4(5-x)\)

Переменная только в первой степени

\(3x^2-x+5>0\)

Есть переменная во второй степени (квадрате), но нет старших степеней (третьей, четвертой и т.д.)

\(\log_{4}{(x+1)}<3\)

\(2^{x}\leq8^{5x-2}\)

... и так далее.

Что такое решение неравенства?

Если в неравенство вместо переменной подставить какое-нибудь число, то оно превратится в числовое.

Если данное значение для икса превращает исходное неравенство верное числовое, то оно называется решением неравенства . Если же нет - то данное значение решением не является. И чтобы решить неравенство – нужно найти все его решения (или показать, что их нет).

Например, если мы в линейное неравенство \(x+6>10\), подставим вместо икса число \(7\) –получим верное числовое неравенство: \(13>10\). А если подставим \(2\), будет неверное числовое неравенство \(8>10\). То есть \(7\) – это решение исходного неравенства, а \(2\) – нет.

Однако, неравенство \(x+6>10\) имеет и другие решения. Действительно, мы получим верные числовые неравенства при подстановке и \(5\), и \(12\), и \(138\)... И как же нам найти все возможные решения? Для этого используют Для нашего случая имеем:

\(x+6>10\) \(|-6\)
\(x>4\)

То есть нам подойдет любое число больше четырех. Теперь нужно записать ответ. Решения неравенств, как правило, записывают числовыми , дополнительно отмечая их на числовой оси штриховкой. Для нашего случая имеем:

Ответ: \(x\in(4;+\infty)\)

Когда в неравенстве меняется знак?

В неравенствах есть одна большая ловушка, в которую очень «любят» попадаться ученики:

При умножении (или делении) неравенства на отрицательное число, меняется на противоположный («больше» на «меньше», «больше или равно» на «меньше или равно» и так далее)

Почему так происходит? Чтобы это понять, давайте посмотрим преобразования числового неравенства \(3>1\). Оно верное, тройка действительно больше единицы. Сначала попробуем умножить его на любое положительное число, например, двойку:

\(3>1\) \(|\cdot2\)
\(6>2\)

Как видим, после умножения неравенство осталось верным. И на какое бы положительное число мы не умножали – всегда будем получать верное неравенство. А теперь попробуем умножить на отрицательное число, например, минус тройку:

\(3>1\) \(|\cdot(-3)\)
\(-9>-3\)

Получилось неверное неравенство, ведь минус девять меньше, чем минус три! То есть, для того, чтобы неравенство стало верным (а значит, преобразование умножения на отрицательное было «законным»), нужно перевернуть знак сравнения, вот так: \(−9<− 3\).
С делением получится аналогично, можете проверить сами.

Записанное выше правило распространяется на все виды неравенств, а не только на числовые.

Пример: Решить неравенство \(2(x+1)-1<7+8x\)
Решение:

\(2x+2-1<7+8x\)

Перенесем \(8x\) влево, а \(2\) и \(-1\) вправо, не забывая при этом менять знаки

\(2x-8x<7-2+1\)

\(-6x<6\) \(|:(-6)\)

Поделим обе части неравенства на \(-6\), не забыв поменять с «меньше» на «больше»

Отметим на оси числовой промежуток. Неравенство , поэтому само значение \(-1\) «выкалываем» и в ответ не берем

Запишем ответ в виде интервала

Ответ: \(x\in(-1;\infty)\)

Неравенства и ОДЗ

Неравенства, также как и уравнения могут иметь ограничения на , то есть на значения икса. Соответственно, из промежутка решений должны быть исключены те значения, которые недопустимы по ОДЗ.

Пример: Решить неравенство \(\sqrt{x+1}<3\)

Решение: Понятно, что для того чтоб левая часть была меньше \(3\), подкоренное выражение должно быть меньше \(9\) (ведь из \(9\) как раз \(3\)). Получаем:

\(x+1<9\) \(|-1\)
\(x<8\)

Все? Нам подойдет любое значение икса меньшее \(8\)? Нет! Потому что если мы возьмем, например, вроде бы подходящее под требование значение \(-5\) – оно решением исходного неравенства не будет, так как приведет нас к вычислению корня из отрицательного числа.

\(\sqrt{-5+1}<3\)
\(\sqrt{-4}<3\)

Поэтому мы должны еще учесть ограничения на значения икса – он не может быть таким, чтоб под корнем было отрицательное число. Таким образом, имеем второе требование на икс:

\(x+1\geq0\)
\(x\geq-1\)

И чтобы икс был окончательным решением, он должен удовлетворять сразу обоим требованиям: он должен быть меньше \(8\) (чтобы быть решением) и больше \(-1\) (чтобы быть допустимым в принципе). Нанося на числовую ось, имеем окончательный ответ:

Ответ: \(\left[-1;8\right)\)