Болезни Военный билет Призыв

Непрерывная случайная величина задана функцией распределения примеры. Найти функцию распределения F(x). Свойства дифференциальной функции распределения

В отличие от дискретной случайной величины непрерывные случайные величины невозможно задать в виде таблицы ее закона распределения поскольку невозможно перечислить и выписать в определенной последовательностей все ее значения. Одним из возможных способов задания непрерывной случайной величины является использование функции распределения.

ОПРЕДЕЛЕНИЕ. Функцией распределения называют функцию, определяющую вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х, т.е.

Иногда вместо термина «Функция распределения» используют термин «Интегральная функция».

Свойства функции распределения:

1. Значения функции распределения принадлежит отрезку : 0F(x)1
2. F(x) - неубывающая функция, т.е. F(x 2)F(x 1), если x 2 >x 1

Следствие 1. Вероятность того, что случайная величина примет значение, заключенное в интервале (a,b), равна приращению функции распределения на этом интервале:

P(aX

Пример 9. Случайная величина Х задана функцией распределения:

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0;2): P(0

Решение: Так как на интервале (0;2) по условию, F(x)=x/4+1/4, то F(2)-F(0)=(2/4+1/4)-(0/4+1/4)=1/2. Итак, P(0

Следствие 2. Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Следствие 3. Если возможные значения случайной величины принадлежат интервалу (а;b), то: 1) F(x)=0 при xa; 2) F(x)=1 при xb.
Справедливы следующие предельные соотношения:

График функции распределения расположен в полосе, ограниченной прямыми у=0, у=1 (первое свойство). При возрастании х в интервале (а;b), в котором заключены все возможные значения случайной величины, график «подымается вверх». При xa ординаты графика равны нулю; при xb ординаты графика равны единице:


Рисунок-1

Пример 10. Дискретная случайная величина Х задана таблицей распределения:

X 1 4 8
P 0.3 0.1 0.6

Найти функцию распределения и построить ее график.
Решение: Функция распределения аналитически может быть записана так:


Рисунок-2

ОПРЕДЕЛЕНИЕ: Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) - первую производную от функции распределения F(x): f(x)=F"(x)

Из этого определения следует, что функция распределения является первообразной для плотности распределения.

Теорема. Вероятность того, что непрерывная случайная величина Х примет значение, принадлежащее интервалу (а;b) равна определенному интегралу от плотности распределения, взятому в пределах от а до b:

(8)

Свойства плотности распределения вероятностей:

1. Плотность вероятностей является неотрицательной функцией: f(x)0.
2. Определенный интеграл от -∞ до +∞ от плотности распределения вероятностей непрерывной случайной величины равен 1: f(x)dx=1.
3. Определенный интеграл от -∞ до x от плотности распределения вероятностей непрерывной случайной величины равен функции распределения этой величины: f(x)dx=F(x)

Пример 11. Задана плотность распределения вероятностей случайной величины Х

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее интервалу (0,5;1).

Решение: Искомая вероятность:

Распространим определение числовых характеристик дискретных величин на величины непрерывные. Пусть непрерывная случайная величина Х задана плотностью распределения f(x).

ОПРЕДЕЛЕНИЕ. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку , называют определенный интеграл:

M(x)=xf(x)dx (9)

Если возможные значения принадлежат всей оси Ох, то:

M(x)=xf(x)dx (10)

Модой M 0 (X) непрерывной случайной величины X называют то ее возможное значение, которому соответствует локальный максимум плотности распределения.

Медианой M e (X) непрерывной случайной величины X называют то ее возможное значение, которое определяется равенством:

P{X e (X)}=P{X>M e (X)}

ОПРЕДЕЛЕНИЕ. Дисперсией непрерывной случайной величины называют математическое ожидание квадрата ее отклонения. Если возможные значения Х принадлежат отрезку , то:

D(x)= 2 f(x)dx (11)
или
D(x)=x 2 f(x)dx- 2 (11*)

Если возможные значения принадлежат всей оси х, то.


Плотностью распределения вероятностей Х называют функцию f(x) – первую производную от функции распределения F(x) :

Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима.

Плотность распределения вероятностей f(x) – называют дифференциальной функцией распределения:

Свойство 1. Плотность распределения - величина неотрицательная:

Свойство 2. Несобственный интеграл от плотности распределения в пределах от до равен единице:

Пример 1.25. Дана функция распределения непрерывной случайной величины Х:

f(x) .

Решение: Плотность распределения равна первой производной от функции распределения:

1. Дана функция распределения непрерывной случайной величины Х:

Найти плотность распределения.

2. Задана функция распределения непрерывной случайной величины Х:

Найти плотность распределения f(x).

1.3. Числовые характеристики непрерывной случайной

величины

Математическое ожидание непрерывной случайной величины Х , возможные значения которой принадлежат всей оси Ох , определяется равенством:

Предполагается, что интеграл сходится абсолютно.

a,b ), то:

f(x) – плотность распределения случайной величины.

Дисперсия непрерывной случайной величины Х , возможные значения которой принадлежат всей оси, определяется равенством:

Частный случай. Если значения случайной величины принадлежат интервалу (a,b ), то:

Вероятность того, что Х примет значения, принадлежащие интервалу (a,b ), определяется равенством:

.

Пример 1.26. Непрерывная случайная величина Х

Найти математическое ожидание, дисперсию и вероятность попадание случайной величины Х в интервале (0;0,7).

Решение: Случайная величина распределена на интервале (0,1). Определим плотность распределения непрерывной случайной величины Х :

а) Математическое ожидание :

б) Дисперсия

в)

Задания для самостоятельной работы:

1. Случайная величина Х задана функцией распределения:

M(x) ;

б) дисперсию D(x) ;

Х в интервал (2,3).

2. Случайная величина Х

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал (1;1,5).

3. Случайная величина Х задана интегральной функцией распределения:

Найти: а) математическое ожидание M(x) ;

б) дисперсию D(x) ;

в) определить вероятность попадания случайной величины Х в интервал .

1.4. Законы распределения непрерывной случайной величины

1.4.1. Равномерное распределение

Непрерывная случайная величина Х имеет равномерное распределение на отрезке [a,b ], если на этом отрезке плотность распределения вероятности случайной величины постоянна, а вне его равна нулю, т.е.:

Рис. 4.

; ; .

Пример 1.27. Автобус некоторого маршрута движется равномерно с интервалом 5 минут. Найти вероятность того, что равномерно распределенная случайная величина Х – время ожидания автобуса составит менее 3 минут.

Решение: Случайная величина Х – равномерно распределена на интервале .

Плотность вероятности: .

Для того чтобы время ожидания не превысило 3 минут, пассажир должен появиться на остановке в интервале от 2 до 5 минут после ухода предыдущего автобуса, т.е. случайная величина Х должна попасть в интервал (2;5). Т.о. искомая вероятность:

Задания для самостоятельной работы:

1. а) найти математическое ожидание случайной величины Х распределенной равномерно в интервале (2;8);

б) найти дисперсию и среднее квадратическое отклонение случайной величины Х, распределенной равномерно в интервале (2;8).

2. Минутная стрелка электрических часов перемещается скачком в конце каждом минуты. Найти вероятность того, что в данное мгновение часы покажут время, которое отличается от истинного не более чем на 20 секунд.

1.4.2. Показательное (экспоненциальное) распределение

Непрерывная случайная величина Х распределена по показательному закону, если ее плотность вероятности имеет вид:

где – параметр показательного распределения.

Таким образом

Рис. 5.

Числовые характеристики:

Пример 1.28. Случайная величина Х – время работы электролампочки - имеет показательное распределение. Определить вероятность того, что время работы лампочки будет не меньше 600 часов, если среднее время работы - 400 часов.

Решение: По условию задачи математическое ожидание случайной величины Х равно 400 часам, следовательно:

;

Искомая вероятность , где

Окончательно:


Задания для самостоятельной работы:

1. Написать плотность и функцию распределения показательного закона, если параметр .

2. Случайная величина Х

Найти математическое ожидание и дисперсию величины Х .

3. Случайная величина Х задана функцией распределения вероятностей:

Найти математическое ожидание и среднее квадратическое отклонение случайной величины.

1.4.3. Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины Х , плотность которого имеет вид:

где а – математическое ожидание, – среднее квадратическое отклонение Х .

Вероятность того, что Х примет значение, принадлежащее интервалу :

, где

– функция Лапласа.

Распределение, у которого ; , т.е. с плотностью вероятности называется стандартным.

Рис. 6.

Вероятность того, что абсолютная величина отклонена меньше положительного числа :

.

В частности, при а= 0 справедливо равенство:

Пример 1.29. Случайная величина Х распределена нормально. Среднее квадратическое отклонение . Найти вероятность того, что отклонение случайной величины от ее математического ожидания по абсолютной величине будет меньше 0,3.

Решение: .


Задания для самостоятельной работы:

1. Написать плотность вероятности нормального распределения случайной величины Х , зная, что M(x)= 3, D(x)= 16.

2. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 20 и 5. Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале (15;20).

3. Случайные ошибки измерения подчинены нормальному закону со средним квадратическим отклонением мм и математическим ожиданием а= 0. Найти вероятность того, что из 3 независимых измерений ошибка хотя бы одного не превзойдет по абсолютной величине 4 мм.

4. Производится взвешивание некоторого вещества без систематических ошибок. Случайные ошибки взвешивания подчинены нормальному закону со средним квадратическим отклонением г. Найти вероятность того, что взвешивание будет произведено с ошибкой, не превосходящей по абсолютной величине 10 г.

Пусть непрерывная случайная величина Х задана функцией распределения f(x) . Допустим, что все возможные значения случайной величины принадлежат отрезку [a,b ].

Определение. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку , называется определенный интеграл

Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

При этом, конечно, предполагается, что несобственный интеграл сходится.

Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения.

По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:

Определение. Средним квадратичным отклонением называется квадратный корень из дисперсии.

Определение. Модой М 0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.

Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным . Если распределение имеет минимум, но не имеет максимума, то оно называется антимодальным .

Определение. Медианой M D случайной величины Х называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.

Геометрически медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам. Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.

Определение. Начальным моментом порядка k случайной величины Х называется математическое ожидание величины Х k .

Начальный момент первого порядка равен математическому ожиданию.

Определение. Центральным моментом порядка k случайной величины Х называется математическое ожидание величины

Для дискретной случайной величины: .

Для непрерывной случайной величины: .

Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.

Определение. Отношение центрального момента третьего порядка к среднему квадратическому отклонению в третьей степени называется коэффициентом асимметрии .

Определение. Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом .

Кроме рассмотренных величин используются также так называемые абсолютные моменты:

Абсолютный начальный момент: . Абсолютный центральный момент: . Абсолютный центральный момент первого порядка называется средним арифметическим отклонением .

Пример. Для рассмотренного выше примера определить математическое ожидание и дисперсию случайной величины Х.

Пример. В урне 6 белых и 4 черных шара. Из нее пять раз подряд извлекают шар, причем каждый раз вынутый шар возвращают обратно и шары перемешивают. Приняв за случайную величину Х число извлеченных белых шаров, составить закон распределения этой величины, определить ее математическое ожидание и дисперсию.

Т.к. шары в каждом опыте возвращаются обратно и перемешиваются, то испытания можно считать независимыми (результат предыдущего опыта не влияет на вероятность появления или непоявления события в другом опыте).

Таким образом, вероятность появления белого шара в каждом опыте постоянна и равна

Таким образом, в результате пяти последовательных испытаний белый шар может не появиться вовсе, появиться один раз, два, три, четыре или пять раз. Для составления закона распределения надо найти вероятности каждого из этих событий.

1) Белый шар не появился вовсе:

2) Белый шар появился один раз:

3) Белый шар появиться два раза: .

Функция распределения непрерывной случайной величины

Функцией распределения вероятностей F(x) случайной величины Х в точке х называется вероятность того, что в результате опыта случайная величина примет значение, меньше, чем х, т.е. F(x)=P{X < х}. Рассмотрим свойства функции F(x).

1. F(-?)=lim(x>-?)F(x)=0.

Действительно, по определению, F(-?)=P{X < -?}. Событие (X < -?) является невозможным событием:

F(-?)=P{X < - ?}=p{V}=0.

2. F(?)=lim(x>?)F(x)=1,

так как по определению, F(?)=P{X < ?}. Событие Х < ? является достоверным событием. Следовательно,

F(?)=P{X < ?}=p{U}=1.

3. Вероятность того, что случайная величина примет значение из интервала [Б В] равна приращению функции распределения вероятностей на этом интервале.

P{Б?X<В}=F(В)-F(Б).

4. F(x2)? F(x1), если x2, > x1, т.е. функция распределения вероятностей является неубывающей функцией.

5. Функция распределения вероятностей непрерывна слева.

FШ(xo-0)=limFШ(x)=FШ(xo) при х> xo

Различия между функциями распределения вероятностей дискретной и непрерывной случайных величин хорошо иллюстрировать графиками. Пусть, например, дискретная случайная величина имеет n возможных значений, вероятности которых равны

P{X=xk}=pk, k=1,2,..n.

Если x ? x1, то F(Х)=0, так как левее х нет возможных значений случайной величины. Если x1< x ? x2 , то левее х находится всего одно возможное значение, а именно, значение х1.

Значит, F(x)=P{X=x1}=p1.При x2< x ? x3 слева от х находится уже два возможных значения, поэтому F(x)=P{X=x1}+P{X=x2}=p1+p2. Рассуждая аналогично, приходим к выводу, что если хk< x? xk+1, то F(x)=1, так как функция будет равна сумме вероятностей всех возможных значений, которая по условию нормировки равна единице. Таким образом, график функции распределения дискретной случайной величины является ступенчатым. Возможные значения непрерывной величины располагаются плотно на интервале задания этой величины, что обеспечивает плавное возрастания функции распределения F(x), т.е. ее непрерывность.

Рассмотрим вероятность попадания случайной величины в интервал

Дx>0: P{x?X< x+Дx}=F(x+ Дx)-F(x).

Перейдем к пределу при Дx>0:

lim(Дx>0)P{x? X < x+Дx}=lim(Дx>0)F(x+Дx)-F(x).

Предел равен вероятности того, что случайная величина примет значение, равное х. Если функция F(x) непрерывна в точке х, то

lim(Дx>0)F(x+Дx)=F(x), т.е. P{X=x}=0.

Если F(x) имеет разрыв в точке х, то вероятность P{X=x} будет равна скачку функции в этой точке. Таким образом, вероятность появления любого возможного значения для непрерывной величины равна нулю. Выражение P{X=x}=0 следует понимать как предел вероятности попадания случайной величины в бесконечно малую окрестность точки х при

P{Б< X? В},P{Б? X< В},P{Б< X< В},P{Б? X? В}

равны, если Х - непрерывная случайная величина.

Для дискретных величин эти вероятности неодинаковы в том случае, когда границы интервала Б и(или) В совпадают с возможными значениями случайной величин. Для дискретной случайной величины необходимо строго учитывать тип неравенства в формуле P{Б?X<В}=F(В)-F(Б).

Свойства функции распределения

Любая функция распределения обладает следующими свойствами:

Она не убывает: если, то;

Существуют пределы и;

Она в любой точке непрерывна слева:

Доказательство свойства (1). Для любых чисел событие влечёт событие, т.е. . Но вероятность - монотонная функция событий, поэтому

Для доказательства остальных свойств нам понадобится свойство непрерывности вероятностной меры.

Доказательство свойства (2). Заметим сначала, что существование пределов в свойствах (2), (3) вытекает из монотонности и ограниченности функции. Остается лишь доказать равенства

Для этого в каждом случае достаточно найти предел по какой-нибудь подпоследовательности, так как существование предела влечёт совпадение всех частичных пределов.

Докажем, что при. Рассмотрим вложенную убывающую последовательность событий:

Пересечение всех этих событий состоит из тех и только тех, для которых меньше любого вещественного числа. Но для любого элементарного исхода значение вещественно, и не может быть меньше всех вещественных чисел. Иначе говоря, пересечение событий не содержит элементарных исходов, т.е. . По свойству непрерывности меры, при.

Точно так же докажем остальные свойства.

Покажем, что при, т.е. . Обозначим через событие. События вложены:

а пересечение этих событий снова пусто - оно означает, что больше любого вещественного числа. По свойству непрерывности меры,

Доказательство свойства (3). Достаточно доказать, что

при. Иначе говоря, доказать сходимость к нулю следующей разности:

вероятность распределение регрессионный анализ

Регрессионный анализ

Регрессионный анализ - метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной). Регрессионная модель есть функция независимой переменной и параметров с добавленной случайной переменной. Параметры модели настраиваются таким образом, что модель наилучшим образом приближает данные. Критерием качества приближения (целевой функцией) обычно является среднеквадратичная ошибка: сумма квадратов разности значений модели и зависимой переменной для всех значений независимой переменной в качестве аргумента. Регрессионный анализ - раздел математической статистики и машинного обучения. Предполагается, что зависимая переменная есть сумма значений некоторой модели и случайной величины. Относительно характера распределения этой величины делаются предположения, называемые гипотезой порождения данных. Для подтверждения или опровержения этой гипотезы выполняются статистические тесты, называемые анализом остатков. При этом предполагается, что независимая переменная не содержит ошибок. Регрессионный анализ используется для прогноза, анализа временных рядов, тестирования гипотез и выявления скрытых взаимосвязей в данных.

Регрессия - зависимость математического ожидания (например, среднего значения) случайной величины от одной или нескольких других случайных величин (свободных переменных), то есть. Регрессионным анализом называется поиск такой функции f, которая описывает эту зависимость. Регрессия может быть представлена в виде суммы неслучайной и случайной составляющих.

где f - функция регрессионной зависимости, а v - аддитивная случайная величина с нулевым матожиданием. Предположение о характере распределения этой величины называется гипотезой порождения данных. Обычно предполагается, что величина v имеет гауссово распределение с нулевым средним и дисперсией.

Задача нахождения регрессионной модели нескольких свободных переменных ставится следующим образом. Задана выборка - множество значений свободных переменных и множество соответствующих им значений зависимой переменной. Эти множества обозначаются как D, множество исходных данных. Задана регрессионная модель - параметрическое семейство функций f(w,x) зависящая от параметров и свободных переменных x. Требуется найти наиболее вероятные параметры:

Функция вероятности p зависит от гипотезы порождения данных и задается Байесовским выводом или методом наибольшего правдоподобия.

Линейная регрессия предполагает, что функция f зависит от параметров w линейно. При этом линейная зависимость от свободной переменной x необязательна,

В случае, когда функция линейная регрессия имеет вид

здесь - компоненты вектора x.

Значения параметров в случае линейной регрессии находят с помощью метода наименьших квадратов. Использование этого метода обосновано предположением о гауссовском распределении случайной переменной.

Разности между фактическими значениями зависимой переменной и восстановленными называются регрессионными остатками (residuals). В литературе используются также синонимы: невязки и ошибки. Одной из важных оценок критерия качества полученной зависимости является сумма квадратов остатков:

Здесь SSE - Sum of Squared Errors.

Дисперсия остатков вычисляется по формуле

Здесь MSE - Mean Square Error, среднеквадратичная ошибка.

Нелинейные регрессионные модели - модели вида, которые не могут быть представлены в виде скалярного произведения

Где - параметры регрессионной модели, x - свободная переменная из пространства Rn, y - зависимая переменная, v - случайная величина и - функция из некоторого заданного множества.

Задача

По двум независимым выборкам объемом n1=30 и n2=15, извлеченным из нормальных генеральных совокупностей, найдены выборочные средние =25 и =27. Дисперсии генеральных совокупностей известны =1,3 и =1,6. На уровне значимости =0,1 проверить гипотезу Н0: м1= м2 при конкурирующей гипотезе Н1: м1м2.

Найдем отношение большой исправленной дисперсии к меньшей Fнабл=1.6/1.3=1.23.

По условию конкурирующая гипотеза имеет вид м1м2 поэтому критическая область - двусторонняя. В соответствии с правилом 2 при отыскании критической точки следует брать уровень значимости вдвое меньше заданного.

По таблице приложения 7, по уровню значимости a/2=0.1/2=0.05 и числом степеней свободы k1=15-1=14 и k2=30-1=29, находим критическую точку Fкр(0,05;14;29)=2,38.

Так как Fнабл>Fкр - нулевую гипотезу о равенстве генеральных дисперсий отвергаем.

Список используемой литературы

1. Ахтямов А.М. «Теория вероятностей». - М.: Физматлит, 2009.

2. Булдык Г.М. «Теория вероятностей и математическая статистика», Мн., Высш. шк., 1989.

3. Гнеденко Б.В. «Курс теории вероятностей», УРСС. М.: 2001.

4. Мацкевич И.П., Свирид Г.П. «Высшая математика. Теория вероятностей и математическая статистика», Мн.: Выш. шк., 1993.

5. Севастьянов Б.А. «Курс теории вероятностей и математической статистики», - М.: Наука, 1982.

Непрерывные случайные величины имеют бесконечное число возможных значений. Поэтому ввести для них ряд распределения нельзя.

Вместо вероятности того, что случайная величина Х примет значение, равное х, т.е. p(X = x), рассматривают вероятность того, что Х примет значение, меньшее, чем х, т.е. Р(Х < х).

Введем новую характеристику случайных величин - функцию распределения и рассмотрим ее свойства.

Функция распределения - самая универсальная характеристика случайной величины. Она может быть определена как для дискретных, так и для непрерывных случайных величин:

F(x) = p(X < x).

Свойства функции распределения.

Функция распределения является неубывающей функцией своего аргумента, т.е. если:

На минус бесконечности функция распределения равна нулю:

На плюс бесконечности функция распределения равна единице:

Вероятность попадания случайной величины на заданный интервал определяется формулой:

Функция f(x), равная производной от функции распределения, называется плотностью вероятности случайной величины Х или плотностью распределения:

Выразим вероятность попадания на участок б до в через f(x). Она равна сумме элементов вероятности на этом участке, т.е. интегралу:

Отсюда можно выразить функцию распределения через плотность вероятности:

Свойства плотности вероятности.

Плотность вероятности является неотрицательной функцией (так как функция распределения является неубывающей функцией):

Плотность вероятно

сти является непрерывной функцией.

Интеграл в бесконечных пределах от плотности вероятности равен 1:

Плотность вероятности имеет размерность случайной величины.

Математическое ожидание и дисперсия непрерывной случайной величины

Смысл математического ожидания и дисперсии остается таким же, как и в случае дискретных случайных величин. Меняется вид формул для их нахождения путем замены:

Тогда получаем формулы для расчета математического ожидания и дисперсии непрерывной случайной величины:

Пример. Функция распределения непрерывной случайной величины задана выражением:

Найти величину a, плотность вероятности, вероятность попадания на участок (0,25-0,5), математическое ожидание и дисперсию.

Так как функция распределения F(x) непрерывна, то при х = 1 ax2 = 1, следовательно, a = 1.

Плотность вероятности находится, как производная от функции распределения:

Вычисление вероятности попадания на заданный участок может быть произведено двумя способами: с помощью функции распределения и с помощью плотности вероятности.

  • 1-й способ. Используем формулу нахождения вероятности через функцию распределения:
  • 2-й способ. Используем формулу нахождения вероятности через плотность вероятности:

Находим математическое ожидание:

Находим дисперсию:

Равномерное распределение

Рассмотрим непрерывную случайную величину Х, возможные значения которой лежат в некотором интервале и равновероятны.

Плотность вероятности такой случайной величины будет иметь вид:

где с - некоторая постоянная.

График плотности вероятности изобразится следующим образом:

Выразим параметр с через б и в. Для этого используем тот факт, что интеграл от плотности вероятности по всей области должен быть равен 1:

Плотность распределения равномерно распределенной случайной величины

Найдем функцию распределения:

Функция распределения равномерно распределенной случайной величины

Построим график функции распределения:

Вычислим математическое ожидание и дисперсию случайной величины, подчиняющейся равномерному распределению.

Тогда среднеквадратичное отклонение будет иметь вид:

Нормальное (Гауссово) распределение

Непрерывная случайная величина Х называется распределенной по нормальному закону с параметрами a, у > 0, если она имеет плотность вероятности:

Кривая распределение случайной величины, имеет вид:

Контрольная работа 2

Задание 1. Составить закон распределения дискретной случайной величины Х, вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 1

ОТК проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равно 0,7. Проверено 20 изделий. Найти закон распределения случайной величины Х - числа стандартных изделий среди проверенных. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 2

В урне 4 шара, на которых указаны очки 2; 4; 5; 5. Наудачу вынимается шар. Найти закон распределения случайной величины Х - числа очков на нем. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 3

Охотник стреляет по дичи до попадания, но может сделать не более трех выстрелов. Вероятность попадания при каждом выстреле равна 0,6. Составить закон распределения случайной величины Х - числа выстрелов сделанных стрелком. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 4

Вероятность превысить заданную точность при измерении равна 0,4. Составить закон распределения случайной величины Х - число ошибок при 10 измерениях. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 5

Вероятность попадания в цель при одном выстреле равна 0,45. Произведено 20 выстрелов. Составить закон распределения случайной величины Х - числа попаданий. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 6

Изделия некоторого завода содержит 5% брака. Составить закон распределения случайной величины Х - числа бракованных изделий среди пяти взятых на удачу. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 7

Нужные сборщику детали находятся в трех из пяти ящиков. Сборщик вскрывает ящики до тех пор пока не найдет нужные детали. Составить закон распределения случайной величины Х - числа вскрытых ящиков. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 8

В урне 3 черных и 2 белых шара. Производится последовательное без возвращения извлечение шаров до появления черного. Составить закон распределения случайной величины Х - числа извлеченных шаров. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 9

Студент знает 15 вопросов из 20. В билете 3 вопроса. Составить закон распределения случайной величины Х - числа известных студенту вопросов в билете. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Вариант 10

Имеется 3 лампочки, каждая из которых с вероятностью 0,4 имеет дефект. При включении дефектная лампочка перегорает и заменяется другой. Составить закон распределения случайной величины Х - числа испробованных ламп. Вычислить математическое ожидание, дисперсию и среднеквадратическое отклонение случайной величины.

Задание 2. Случайная величина Х задана функцией распределения F(X). Найти плотность распределения, математическое ожидание, дисперсию, а также вероятность попадания случайной величины в интервал (б, в). Построить графики функций F(X) и f(X).

Вариант 1

Вариант 2

Вариант 3

Вариант 4

Вариант 5

Вариант 6

Вариант 7

Вариант 8

Вариант 9

Вариант 10

Вопросы к экзамену

Классическое определение вероятности.

Элементы комбинаторики. Размещение. Примеры.

Элементы комбинаторики. Перестановка. Примеры.

Элементы комбинаторики. Сочетания. Примеры.

Теорема о сумме вероятностей.

Теорема умножения вероятностей.

Операции над событиями.

Формула полной вероятности.

Формула Байеса.

Повторение испытаний. Формула Бернулли.

Дискретные случайные величины. Ряд распределения. Пример.

Математическое ожидание дискретной случайной величины.

Дисперсия дискретной случайной величины.

Биномиальное распределение случайной величины.

Распределение Пуассона.

Распределение по закону геометрической прогрессии.

Непрерывные случайные величины. Функция распределения и ее свойства.

Плотность вероятности и ее свойства.

Математическое ожидание непрерывной случайной величины.

Дисперсия непрерывной случайной величины.

Равномерное распределение непрерывной случайной величины.

Нормальный закон распределения.