Болезни Военный билет Призыв

Найти корни уравнения по теореме виета. Замечание по поводу кратных корней. Где можно решить уравнение по теореме Виета онлайн

Теорема Виета (точнее, теорема, обратная теореме Виета) позволяет сократить время на решение квадратных уравнений. Только надо уметь ею пользоваться. Как научиться решать квадратные уравнения по теореме Виета? Это несложно, если немного порассуждать.

Сейчас мы будем говорить только о решении по теореме Виета приведенного квадратного уравнения.Приведенное квадратное уравнение — это уравнение, в котором a, то есть коэффициент перед x², равен единице. Не приведенные квадратные уравнения решить по теореме Виета тоже можно, но там уже, как минимум, один из корней — не целое число. Их угадывать сложнее.

Теорема, обратная теореме Виета, гласит: если числа x1 и x2 таковы, что

то x1 и x2 — корни квадратного уравнения

При решении квадратного уравнения по теореме Виета возможны всего 4 варианта. Если запомнить ход рассуждений, находить целые корни можно научиться очень быстро.

I. Если q — положительное число,

это означает, что корни x1 и x2 — числа одинакового знака (поскольку только при умножении чисел с одинаковыми знаками получается положительное число).

I.a. Если -p — положительное число, (соответственно, p<0), то оба корня x1 и x2 — положительные числа (поскольку складывали числа одного знака и получили положительное число).

I.b. Если -p — отрицательное число, (соответственно, p>0), то оба корня — отрицательные числа (складывали числа одного знака, получили отрицательное число).

II. Если q — отрицательное число,

это значит, что корни x1 и x2 имеют разные знаки (при умножении чисел отрицательное число получается только в случае, когда знаки у множителей разные). В этом случае x1+x2 является уже не суммой, а разностью (ведь при сложении чисел с разными знаками мы вычитаем из большего по модулю меньшее). Поэтому x1+x2 показывает, на сколько одно отличаются корни x1 и x2, то есть, на сколько один корень больше другого (по модулю).

II.a. Если -p — положительное число, (то есть p<0), то больший (по модулю) корень — положительное число.

II.b. Если -p — отрицательное число, (p>0), то больший (по модулю) корень — отрицательное число.

Рассмотрим решение квадратных уравнений по теореме Виета на примерах.

Решить приведенное квадратное уравнение по теореме Виета:

Здесь q=12>0, поэтому корни x1 и x2 — числа одного знака. Их сумма равна -p=7>0, поэтому оба корня — положительные числа. Подбираем целые числа, произведение которых равно 12. Это 1 и 12, 2 и 6, 3 и 4. Сумма равна 7 у пары 3 и 4. Значит, 3 и 4 — корни уравнения.

В данном примере q=16>0, значит, корни x1 и x2 — числа одного знака. Их сумма -p=-10<0, поэтому оба корня — отрицательные числа. Подбираем числа, произведение которых равно 16. Это 1 и 16, 2 и 8, 4 и 4. Сумма 2 и 8 равна 10, а раз нужны отрицательные числа, то искомые корни — это -2 и -8.

Здесь q=-15<0, что означает, что корни x1 и x2 — числа разных знаков. Поэтому 2 — это уже не их сумма, а разность, то есть числа отличаются на 2. Подбираем числа, произведение которых равно 15, отличающиеся на 2. Произведение равно 15 у 1 и 15, 3 и 5. Отличаются на 2 числа в паре 3 и 5. Поскольку -p=2>0, то бОльшее число положительно. Значит, корни 5 и -3.

q=-36<0, значит, корни x1 и x2 имеют разные знаки. Тогда 5 — это то, насколько отличаются x1 и x2 (по модулю, то есть пока что без учета знака). Среди чисел, произведение которых равно 36: 1 и 36, 2 и 18, 3 и 12, 4 и 9 — выбираем пару, в которой числа отличаются на 5. Это 4 и 9. Осталось определить их знаки. Поскольку -p=-5<0, бОльшее число имеет знак минус. Поэтому корни данного уравнения равны -9 и 4.

При изучении способов решения уравнений второго порядка в школьном курсе алгебры, рассматривают свойства полученных корней. Они в настоящее время известны под названием теоремы Виета. Примеры использования ее приводятся в данной статье.

Квадратное уравнение

Уравнение второго порядка представляет собой равенство, которое показано на фото ниже.

Здесь символы a, b, c являются некоторыми числами, носящими название коэффициентов рассматриваемого уравнения. Чтобы решить равенство, необходимо найти такие значения x, которые делают его истинным.

Заметим, что поскольку максимальное значение степени, в которую возводится икс, равно двум, тогда число корней в общем случае также равно двум.

Для решения этого типа равенств существует несколько способов. В данной статье рассмотрим один из них, который предполагает использование так называемой теоремы Виета.

Формулировка теоремы Виета

В конце XVI известный математик Франсуа Виет (француз) заметил, анализируя свойства корней различных квадратных уравнений, что определенные их комбинации удовлетворяют конкретным соотношениям. В частности, этими комбинациями является их произведение и сумма.

Теорема Виета устанавливает следующее: корни квадратного уравнения при их сумме дают отношение коэффициентов линейного к квадратичному взятое с обратным знаком, а при их произведении приводят к отношению свободного члена к квадратичному коэффициенту.

Если общий вид уравнения записан так, как это представлено на фото в предыдущем разделе статьи, тогда математически эту теорему можно записать в виде двух равенств:

  • r 2 + r 1 = -b / a;
  • r 1 х r 2 = c / a.

Где r 1 , r 2 - это значение корней рассматриваемого уравнения.

Приведенные два равенства можно использовать для решения ряда самых разных математических задач. Использование теоремы Виета в примерах с решением приведены в следующих разделах статьи.

Формулировка и доказательство теоремы Виета для квадратных уравнений. Обратная теорема Виета. Теорема Виета для кубических уравнений и уравнений произвольного порядка.

Квадратные уравнения

Теорема Виета

Пусть и обозначают корни приведенного квадратного уравнения
(1) .
Тогда сумма корней равна коэффициенту при , взятому с обратным знаком. Произведение корней равно свободному члену:
;
.

Замечание по поводу кратных корней

Если дискриминант уравнения (1) равен нулю, то это уравнение имеет один корень. Но, чтобы избежать громоздких формулировок, принято считать, что в этом случае, уравнение (1) имеет два кратных, или равных, корня:
.

Доказательство первое

Найдем корни уравнения (1). Для этого применим формулу для корней квадратного уравнения :
;
;
.

Находим сумму корней:
.

Чтобы найти произведение, применим формулу:
.
Тогда

.

Теорема доказана.

Доказательство второе

Если числа и являются корнями квадратного уравнения (1), то
.
Раскрываем скобки.

.
Таким образом, уравнение (1) примет вид:
.
Сравнивая с (1) находим:
;
.

Теорема доказана.

Обратная теорема Виета

Пусть и есть произвольные числа. Тогда и являются корнями квадратного уравнения
,
где
(2) ;
(3) .

Доказательство обратной теоремы Виета

Рассмотрим квадратное уравнение
(1) .
Нам нужно доказать, что если и , то и являются корнями уравнения (1).

Подставим (2) и (3) в (1):
.
Группируем члены левой части уравнения:
;
;
(4) .

Подставим в (4) :
;
.

Подставим в (4) :
;
.
Уравнение выполняется. То есть число является корнем уравнения (1).

Теорема доказана.

Теорема Виета для полного квадратного уравнения

Теперь рассмотрим полное квадратное уравнение
(5) ,
где , и есть некоторые числа. Причем .

Разделим уравнение (5) на :
.
То есть мы получили приведенное уравнение
,
где ; .

Тогда теорема Виета для полного квадратного уравнения имеет следующий вид.

Пусть и обозначают корни полного квадратного уравнения
.
Тогда сумма и произведение корней определяются по формулам:
;
.

Теорема Виета для кубического уравнения

Аналогичным образом мы можем установить связи между корнями кубического уравнения. Рассмотрим кубическое уравнение
(6) ,
где , , , есть некоторые числа. Причем .
Разделим это уравнение на :
(7) ,
где , , .
Пусть , , есть корни уравнения (7) (и уравнения (6)). Тогда

.

Сравнивая с уравнением (7) находим:
;
;
.

Теорема Виета для уравнения n-й степени

Тем же способом можно найти связи между корнями , , ... , , для уравнения n-й степени
.

Теорема Виета для уравнения n-й степени имеет следующий вид:
;
;
;

.

Чтобы получить эти формулы мы записываем уравнение в следующем виде:
.
Затем приравниваем коэффициенты при , , , ... , и сравниваем свободный член.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.
С.М. Никольский, М.К. Потапов и др., Алгебра: учебник для 8 класса общеобразовательных учреждений, Москва, Просвещение, 2006.

Для начала сформулируем саму теорему: Пусть у нас есть приведённое квадратное уравнение вида x^2+b*x + c = 0. Допустим, это уравнение содержит корни x1 и x2. Тогда по теореме следующие утверждения допустимы:

1) Сумма корней x1 и x2 будет равняться отрицательному значению коэффициента b.

2) Произведение этих самых корней будет давать нам коэффициент c .

Но что же такое приведённое уравнение

Приведённым квадратным уравнением называется квадратное уравнение, коэффициент старшей степени, которой равен единицы, т.е. это уравнение вида x^2 + b*x + c = 0. (а уравнение a*x^2 + b*x + c = 0 неприведенное). Другими словами, чтобы привести уравнение к приведённому виду, мы должны разделить это уравнение на коэффициент при старшей степени (a). Задача привести данное уравнение к приведённому виду:

3*x^2 12*x + 18 = 0;

−4*x^2 + 32*x + 16 = 0;

1,5*x^2 + 7,5*x + 3 = 0; 2*x^2 + 7*x − 11 = 0.

Поделим каждое уравнение на коэффициент старшей степени, получим:

X^2 4*x + 6 = 0; X^2 8*x − 4 = 0; X^2 + 5*x + 2 = 0;

X^2 + 3,5*x − 5,5 = 0.

Как можно увидеть из примеров, даже уравнения содержащие дроби, можно привести к приведённому виду.

Использование теоремы Виета

X^2 5*x + 6 = 0 ⇒ x1 + x2 = − (−5) = 5; x1*x2 = 6;

получаем корни: x1 = 2; x2 = 3;

X^2 + 6*x + 8 = 0 ⇒ x1 + x2 = −6; x1*x2 = 8;

в результате получаем корни: x1 = -2 ; x2 = -4;

X^2 + 5*x + 4 = 0 ⇒ x1 + x2 = −5; x1*x2 = 4;

получаем корни: x1 = −1; x2 = −4.

Значение теоремы Виета

Теорема Виета позволяет нам решить любое квадратное приведённое уравнение практически за секунды. На первый взгляд это кажется достаточно сложной задачей, но после 5 10 уравнений, можно научиться видеть корни сразу.

Из приведённых примеров, и пользуясь теоремой, видно как можно значительно упростить решение квадратных уравнений, ведь используя эту теорему, можно решить квадратное уравнение практически без сложных расчётов и вычисления дискриминанта, а как известно чем меньше расчётов, тем сложнее допустить ошибку, что немаловажно.

Во всех примерах мы использовали это правило, опираясь на два важных предположения:

Приведённое уравнение, т.е. коэффициент при старшей степени равен единицы (это условие легко избежать. Можно использовать неприведенный вид уравнения, тогда будут допустимы следующие утверждения x1+x2=-b/a; x1*x2=c/a, но обычно сложнее решать:))

Когда уравнение будет иметь два различных корня. Мы предполагаем что неравенство верно и дискриминант строго больше нуля.

Поэтому, мы можем составить общий алгоритм решения по теореме Виета.

Общий алгоритм решения по теореме Виета

Приводим квадратное уравнение к приведённому виду, если уравнение дано нам в неприведённом виде. Когда коэффициенты в квадратном уравнении, которое раньше мы представили как приведённое, получились дробными(не десятичными), то в этом случае следует решать наше уравнение через дискриминант.

Также бывают случаи когда возврат к начальному уравнению позволяет нам работать с “удобными” числами.

В математике существуют специальные приемы, с которыми многие квадратные уравнения решаются очень быстро и без всяких дискриминантов. Более того, при надлежащей тренировке многие начинают решать квадратные уравнения устно, буквально «с первого взгляда».

К сожалению, в современном курсе школьной математики подобные технологии почти не изучаются. А знать надо! И сегодня мы рассмотрим один из таких приемов - теорему Виета. Для начала введем новое определение.

Квадратное уравнение вида x 2 + bx + c = 0 называется приведенным. Обратите внимание: коэффициент при x 2 равен 1. Никаких других ограничений на коэффициенты не накладывается.

  1. x 2 + 7x + 12 = 0 - это приведенное квадратное уравнение;
  2. x 2 − 5x + 6 = 0 - тоже приведенное;
  3. 2x 2 − 6x + 8 = 0 - а вот это нифига не приведенное, поскольку коэффициент при x 2 равен 2.

Разумеется, любое квадратное уравнение вида ax 2 + bx + c = 0 можно сделать приведенным - достаточно разделить все коэффициенты на число a . Мы всегда можем так поступить, поскольку из определения квадратного уравнения следует, что a ≠ 0.

Правда, далеко не всегда эти преобразования будут полезны для отыскания корней. Чуть ниже мы убедимся, что делать это надо лишь тогда, когда в итоговом приведенном квадратом уравнении все коэффициенты будут целочисленными. А пока рассмотрим простейшие примеры:

Задача. Преобразовать квадратное уравнение в приведенное:

  1. 3x 2 − 12x + 18 = 0;
  2. −4x 2 + 32x + 16 = 0;
  3. 1,5x 2 + 7,5x + 3 = 0;
  4. 2x 2 + 7x − 11 = 0.

Разделим каждое уравнение на коэффициент при переменной x 2 . Получим:

  1. 3x 2 − 12x + 18 = 0 ⇒ x 2 − 4x + 6 = 0 - разделили все на 3;
  2. −4x 2 + 32x + 16 = 0 ⇒ x 2 − 8x − 4 = 0 - разделили на −4;
  3. 1,5x 2 + 7,5x + 3 = 0 ⇒ x 2 + 5x + 2 = 0 - разделили на 1,5, все коэффициенты стали целочисленными;
  4. 2x 2 + 7x − 11 = 0 ⇒ x 2 + 3,5x − 5,5 = 0 - разделили на 2. При этом возникли дробные коэффициенты.

Как видите, приведенные квадратные уравнения могут иметь целые коэффициенты даже в том случае, когда исходное уравнение содержало дроби.

Теперь сформулируем основную теорему, для которой, собственно, и вводилось понятие приведенного квадратного уравнения:

Теорема Виета. Рассмотрим приведенное квадратное уравнение вида x 2 + bx + c = 0. Предположим, что это уравнение имеет действительные корни x 1 и x 2 . В этом случае верны следующие утверждения:

  1. x 1 + x 2 = −b . Другими словами, сумма корней приведенного квадратного уравнения равна коэффициенту при переменной x , взятому с противоположным знаком;
  2. x 1 · x 2 = c . Произведение корней квадратного уравнения равно свободному коэффициенту.

Примеры. Для простоты будем рассматривать только приведенные квадратные уравнения, не требующие дополнительных преобразований:

  1. x 2 − 9x + 20 = 0 ⇒ x 1 + x 2 = − (−9) = 9; x 1 · x 2 = 20; корни: x 1 = 4; x 2 = 5;
  2. x 2 + 2x − 15 = 0 ⇒ x 1 + x 2 = −2; x 1 · x 2 = −15; корни: x 1 = 3; x 2 = −5;
  3. x 2 + 5x + 4 = 0 ⇒ x 1 + x 2 = −5; x 1 · x 2 = 4; корни: x 1 = −1; x 2 = −4.

Теорема Виета дает нам дополнительную информацию о корнях квадратного уравнения. На первый взгляд это может показаться сложным, но даже при минимальной тренировке вы научитесь «видеть» корни и буквально угадывать их за считанные секунды.

Задача. Решите квадратное уравнение:

  1. x 2 − 9x + 14 = 0;
  2. x 2 − 12x + 27 = 0;
  3. 3x 2 + 33x + 30 = 0;
  4. −7x 2 + 77x − 210 = 0.

Попробуем выписать коэффициенты по теореме Виета и «угадать» корни:

  1. x 2 − 9x + 14 = 0 - это приведенное квадратное уравнение.
    По теореме Виета имеем: x 1 + x 2 = −(−9) = 9; x 1 · x 2 = 14. Несложно заметить, что корни - числа 2 и 7;
  2. x 2 − 12x + 27 = 0 - тоже приведенное.
    По теореме Виета: x 1 + x 2 = −(−12) = 12; x 1 · x 2 = 27. Отсюда корни: 3 и 9;
  3. 3x 2 + 33x + 30 = 0 - это уравнение не является приведенным. Но мы это сейчас исправим, разделив обе стороны уравнения на коэффициент a = 3. Получим: x 2 + 11x + 10 = 0.
    Решаем по теореме Виета: x 1 + x 2 = −11; x 1 · x 2 = 10 ⇒ корни: −10 и −1;
  4. −7x 2 + 77x − 210 = 0 - снова коэффициент при x 2 не равен 1, т.е. уравнение не приведенное. Делим все на число a = −7. Получим: x 2 − 11x + 30 = 0.
    По теореме Виета: x 1 + x 2 = −(−11) = 11; x 1 · x 2 = 30; из этих уравнений легко угадать корни: 5 и 6.

Из приведенных рассуждений видно, как теорема Виета упрощает решение квадратных уравнений. Никаких сложных вычислений, никаких арифметических корней и дробей. И даже дискриминант (см. урок «Решение квадратных уравнений ») нам не потребовался.

Разумеется, во всех размышлениях мы исходили из двух важных предположений, которые, вообще говоря, не всегда выполняются в реальных задачах:

  1. Квадратное уравнение является приведенным, т.е. коэффициент при x 2 равен 1;
  2. Уравнение имеет два различных корня. С точки зрения алгебры, в этом случае дискриминант D > 0 - по сути, мы изначально предполагаем, что это неравенство верно.

Однако в типичных математических задачах эти условия выполняются. Если же в результате вычислений получилось «плохое» квадратное уравнение (коэффициент при x 2 отличен от 1), это легко исправить - взгляните на примеры в самом начале урока. Про корни вообще молчу: что это за задача, в которой нет ответа? Конечно, корни будут.

Таким образом, общая схема решения квадратных уравнений по теореме Виета выглядит следующим образом:

  1. Свести квадратное уравнение к приведенному, если это еще не сделано в условии задачи;
  2. Если коэффициенты в приведенном квадратном уравнении получились дробными, решаем через дискриминант. Можно даже вернуться к исходному уравнению, чтобы работать с более «удобными» числами;
  3. В случае с целочисленными коэффициентами решаем уравнение по теореме Виета;
  4. Если в течение нескольких секунд не получилось угадать корни, забиваем на теорему Виета и решаем через дискриминант.

Задача. Решите уравнение: 5x 2 − 35x + 50 = 0.

Итак, перед нами уравнение, которое не является приведенным, т.к. коэффициент a = 5. Разделим все на 5, получим: x 2 − 7x + 10 = 0.

Все коэффициенты квадратного уравнения целочисленные - попробуем решить по теореме Виета. Имеем: x 1 + x 2 = −(−7) = 7; x 1 · x 2 = 10. В данном случае корни угадываются легко - это 2 и 5. Считать через дискриминант не надо.

Задача. Решите уравнение: −5x 2 + 8x − 2,4 = 0.

Смотрим: −5x 2 + 8x − 2,4 = 0 - это уравнение не является приведенным, разделим обе стороны на коэффициент a = −5. Получим: x 2 − 1,6x + 0,48 = 0 - уравнение с дробными коэффициентами.

Лучше вернуться к исходному уравнению и считать через дискриминант: −5x 2 + 8x − 2,4 = 0 ⇒ D = 8 2 − 4 · (−5) · (−2,4) = 16 ⇒ ... ⇒ x 1 = 1,2; x 2 = 0,4.

Задача. Решите уравнение: 2x 2 + 10x − 600 = 0.

Для начала разделим все на коэффициент a = 2. Получится уравнение x 2 + 5x − 300 = 0.

Это приведенное уравнение, по теореме Виета имеем: x 1 + x 2 = −5; x 1 · x 2 = −300. Угадать корни квадратного уравнения в данном случае затруднительно - лично я серьезно «завис», когда решал эту задачу.

Придется искать корни через дискриминант: D = 5 2 − 4 · 1 · (−300) = 1225 = 35 2 . Если вы не помните корень из дискриминанта, просто отмечу, что 1225: 25 = 49. Следовательно, 1225 = 25 · 49 = 5 2 · 7 2 = 35 2 .

Теперь, когда корень из дискриминанта известен, решить уравнение не составит труда. Получим: x 1 = 15; x 2 = −20.