Болезни Военный билет Призыв

Можно ли 0 разделить на число правило. Уроки математики: почему нельзя делить на ноль

Каждый из нас со школы вынес как минимум два незыблемых правила: «жи и ши — пиши с буквой И» и «на ноль делить нельзя «. И если первое правило можно объяснить особенностью Русского языка, то второе вызывает вполне логичный вопрос: «А почему?»

Почему нельзя делить на ноль?

Не совсем понятно, почему об этом не говорят в школе, но с точки зрения арифметики ответ очень даже прост.

Возьмем число 10 и поделим его на 2 . Это подразумевает, что мы взяли 10 каких-либо предметов и расставили их по 2 равным группам, то есть 10: 2 = 5 (по 5 предметов в группе). Этот же пример можно записать и с помощью уравнения x * 2 = 10 х здесь будет равен 5 ).

Теперь, на секунду представим, что на ноль делить можно, и попробуем 10 делить на 0 .

Получится следующее: 10: 0 = х , следовательно х * 0 = 10 . Но наши расчеты не могут быть верны, так как при умножении любого числа на 0 всегда получается 0 . В математике не существует такого числа, которое при умножении на 0 давало бы, что-то кроме 0 . Следовательно, уравнения 10: 0 = х и х * 0 = 10 не имеют решения. Ввиду этого и говорят, что на ноль делить нельзя.

Когда можно делить на ноль?

Есть вариант, при котором деление на ноль все же имеет некоторый смысл. Если мы делим сам ноль то получаем следующее 0: 0 = х , а значит х * 0 = 0 .

Предположим, что х=0 , тогда уравнение не вызывает никаких вопросов, все идеально сходится 0: 0 = 0 , а значит и 0 * 0 = 0 .

Но что если х ≠ 0 ? Предположим, что х = 9 ? Тогда 9 * 0 = 0 и 0: 0 = 9 ? А если х=45 , то 0: 0 = 45 .

Мы действительно можем делить 0 на 0 . Но это уравнение будет иметь бесконечное множество решений, так как 0: 0 = чему угодно .

Почему 0: 0 = NaN

Пробовали ли Вы когда-нибудь поделить 0 на 0 на смартфоне? Так как ноль деленный на ноль дает абсолютно любое число, программистам пришлось искать выход из данной ситуации, ведь не может же калькулятор игнорировать ваши запросы. И они нашли своеобразный выход: при делении ноль на ноль вы получите NaN (not a number — не число) .

Почему x: 0 = а x: -0 = —

Если Вы попробуете на смартфоне разделить какое-либо число на ноль,то ответ будет равен бесконечности. Все дело в том, что в математике 0 иногда рассматривается не как «ничего», а как «бесконечно малая величина». Следовательно, если любое число поделить на бесконечно малую величину, получится бесконечно большая величина (∞) .

Так можно ли делить на ноль?

Ответ, как это часто бывает, неоднозначен. В школе, лучше всего, зарубить себе на носу, что на ноль делить нельзя — это избавит Вас от ненужных сложностей. А вот если будете поступать на математический факультет в университете, на ноль все-таки делить придется.

Математическое правило относительно деления на ноль всем людям рассказывали еще в первом классе общеобразовательной школы. «Делить на ноль нельзя», - учили всех нас и запрещали под страхом подзатыльника делить на ноль и вообще обсуждать эту тему. Хотя некоторые учителя младших классов все-таки пробовали объяснить на простейших примерах, почему нельзя делить на ноль, но эти примеры были настолько нелогичны, что проще было просто запомнить это правило и не задавать лишних вопросов. Но все эти примеры были нелогичными по той причине, что логически объяснить это в первом классе нам учителя не могли, так как в первом классе мы и близко не знали, что такое уравнение, а логически это математическое правило объяснить можно только с помощью уравнений.

Все знают, что при делении любого числа на ноль выйдет пустота. Почему именно пустота, мы рассмотрим потом.

Вообще в математике только две процедуры с числами признаются независимыми. Это сложение и умножение. Остальные же процедуры считаются производные от этих двух процедур. Рассмотрим это на примере.

Скажите, сколько будет, например, 11-10? Мы все моментально ответим, что это будет 1. А как мы нашли такой ответ? Кто-то скажет, что это и так понятно, что будет 1, кто-то скажет, что от 11 яблок отнял 10 и посчитал, что получилось одно яблоко. С точки зрения логики все правильно, но вот по законам математики эта задача решается по-другому. Нужно вспомнить, что основными процедурами считаются сложение и умножение, поэтому нужно составить такое уравнение: х+10=11, а только потом х=11-10, х=1. Заметим, что сложение идет на первом месте, а только потом на основе уравнения мы можем отнимать. Казалось бы, зачем столько процедур? Ведь ответ и так очевиден. Но только такими процедурами можно объяснить невозможность деления на ноль.

Например, мы делаем такую математическую задачу: хотим 20 поделить на ноль. Итак, 20:0=х. Чтобы узнать, сколько же будет, нужно вспомнить, что процедура деления вытекает из умножения. Другими словами, деление-это производная процедура от умножения. Поэтому нужно составить уравнение из умножением. Итак, 0*х=20. Вот тут и тупик. Какое бы число мы не множили на ноль, все равно будет 0, но не 20. Вот отсюда и вытекает правило: делить на ноль нельзя. Ноль делить на любое число можно, а вот число на ноль - увы, нельзя.

Отсюда появляется еще один вопрос: а можно ли ноль делить на ноль? Итак, 0:0=х, значит 0*х=0. Это уравнение можно решить. Возьмем, например, х=4, значит 0*4=0. Получается, что если разделить ноль на ноль, получится 4. Но и здесь все не так просто. Если мы возьмем, например, х=12 или х=13, то выйдет тот же ответ (0*12=0). Вообще, какое бы мы число не подставляли, все равно выйдет 0. Поэтому, если 0:0, то получится бесконечность. Вот такая нехитрая математика. К сожалению, процедура деления ноль на ноль тоже бессмысленна.

Вообще, цифра ноль в математике самая интересная. К примеру, все знают, что любое число в нулевой степени дает единицу. Конечно, с таким примером в реальной жизни мы не встречаемся, но вот с делением на ноль жизненные ситуации попадаются очень часто. Поэтому запомним, что делить на ноль нельзя.

Говорят, можно поделить на ноль если определить результат деления на ноль. Просто нужно расширить алгебру. По странному стечению обстоятельств найти хоть какой-то, а лучше понятный и простой, пример такого расширения не удается. Чтобы исправить интернет нужна либо демонстрация одного из способов такого расширения, либо описание почему это не возможно.


Статья написана в продолжение тренда:

Disclaimer

Цель данной статьи - объяснить «человеческим языком», как работают фундаментальные основы математики, структурировать знания и восстановить упущенные причинно-следственные связи между разделами математики. Все рассуждения являются философскими, в части суждений расходятся с общепринятыми (следовательно, не претендует на математическую строгость). Статья рассчитана на уровень читателя «сдал вышку много лет назад».

Понимание принципов арифметики, элементарной, общей и линейной алгебры, математического и нестандартного анализа, теории множеств, общей топологии, проективной и аффинной геометрии - желательно, но не обязательно.

В ходе экспериментов ни одна бесконечность не пострадала.

Пролог

Выход «за рамки» - это естественный процесс поиска новых знаний. Но не всякий поиск приносит новое знание и следовательно пользу.

1. Вобще-то уже все поделили до нас!

1.1 Аффинное расширение числовой прямой

Начнем с того, с чего начинают, наверное, все искатели приключений при делении на ноль. Вспомним график функции .


Слева и справа от нуля функция уходит в разные стороны «небытия». В самом нуле вообще “омут” и ничего не видно.

Вместо того, чтобы бросаться в «омут» с головой, посмотрим что туда втекает и что оттуда вытекает. Для этого воспользуемся пределом - основным инструментом математического анализа . Основная “фишка” в том, что предел позволяет идти к заданной точке так близко, как это возможно, но не “наступить на нее”. Такая себе “оградка” перед “омутом”.


Оригинал

Хорошо, «оградку» поставили. Уже не так страшно. У нас есть два пути к «омуту». Зайдем слева - крутой спуск, справа - крутой подъем. Сколько к “оградке” не иди, ближе она не становится. Пересечь нижнее и верхнее «небытие» никак не выходит. Возникают подозрения, может мы идем по кругу? Хотя нет, числа-то меняются, значит не по кругу. Пороемся в сундучке с инструментами математического анализа еще. Кроме пределов с «оградкой» в комплекте идет положительная и отрицательная бесконечности . Величины совершенно абстрактные (не являются числами), хорошо формализованы и готовы к употреблению! Это нам подходит. Дополним наше «бытие» (множество вещественных чисел) двумя бесконечностями со знаком.


Математическим языком:
Именно это расширение позволяет брать предел при аргументе стремящемся к бесконечности и получить бесконечность в качестве результата взятия предела.

Есть два раздела математики которые описывают одно и тоже используя разную терминологию.

Подытожим:

В сухом остатке. Старые подходы перестали работать. Сложность системы, в виде кучи “если”, “для всех, кроме” и т.п., возросла. У нас было только две неопределенности 1/0 и 0/0 (мы не рассматривали степенные операции), стало пять. Раскрытие одной неопределенности породило еще больше неопределенностей.

1.2 Колесо

На введении беззнаковой бесконечности все не остановилось. Для того чтобы выбраться из неопределенностей нужно второе дыхание.

Итак, у нас есть множество вещественных чисел и две неопределенности 1/0 и 0/0. Для устранения первой мы выполнили проективное расширение числовой прямой (то есть ввели беззнаковую бесконечность). Попробуем разобраться со второй неопределенностью вида 0/0. Сделаем аналогично. Дополним множество чисел новым элементом, представляющим вторую неопределенность.


Определение операции деления основано на умножении. Это нам не подходит. Отвяжем операции друг от друга, но сохраним привычное поведение для вещественных чисел. Определим унарную операцию деления, обозначаемую знаком "/".


Доопределим операции.


Данная структура называется «Колесом» (Wheel). Термин был взят из-за схожести с топологической картинкой проективного расширения числовой прямой и точки 0/0.


Вроде все неплохо выглядит, но дьявол кроется в деталях:

Чтобы устаканить все особенности, дополнительно к расширению множества элементов прилагается бонус в виде не одного, а двух тождеств, описывающих дистрибутивный закон.


Математическим языком:
С точки зрения общей алгебры мы оперировали полем . А в поле, как известно, определены всего две операции (сложение и умножение). Понятие деления выводится через обратные, а если еще глубже, то единичные элементы. Внесенные изменения превращают нашу алгебраическую систему в моноид как по операции сложения (с нулем в качестве нейтрального элемента), так и по операции умножения (с единицей в качестве нейтрального элемента).

В трудах первооткрывателей не всегда используются символы ∞ и ⊥. Вместо этого можно встретить запись в виде /0 и 0/0.


Мир уже не так прекрасен, не правда ли? Все же не стоит спешить. Проверим, справятся ли новые тождества дистрибутивного закона с нашим расширенным множеством .


На этот раз результат намного лучше.

Подытожим:

В сухом остатке. Алгебра работает отлично. Однако за основу было взято понятие «не определено» которое стали считать чем-то существующим и оперировать им. Однажды кто-нибудь скажет, что все плохо и нужно разбить данное «не определено» еще на несколько “не определено", но помельче. Общая алгебра скажет: “Без проблем, Бро!".
Примерно так постулированы дополнительные (j и k) мнимые единицы в кватернионах Добавить метки

У математиков специфический юмор и некоторые вопросы, связанные с вычислениями, уже давно не воспринимаются серьезно. Не всегда понятно, пытаются тебе на полном серьезе объяснить, почему нельзя делить на ноль или это очередная шутка. А ведь сам вопрос не такой уж очевидный, если в элементарной математике до его решения можно дойти чисто логически, то вот в высшей вполне могут быть другие исходные условия.

Когда появился ноль?

Цифра ноль таит в себе множество загадок:

  • В Древнем Риме этого числа не знали, система отсчета начиналась с I.
  • За право называться прародителями ноля долгое время спорили арабы и индийцы.
  • Исследования культуры Майя показали, что эта древняя цивилизация вполне могла быть первой, в плане употребления ноля.
  • Ноль не обладает никаким числовым значением, даже минимальным.
  • Он буквально означает ничто, отсутствие предметов для счета.

В первобытном строе не было особой нужды для такой цифры, отсутствие чего-либо можно было объяснить при помощи слов. Но с зарождением цивилизаций повысились и потребности человека, в плане архитектуры и инженерии.

Для осуществления более сложных расчетов и выведения новых функций понадобилось число, которое обозначало бы полное отсутствие чего-либо .

Можно ли делить на ноль?

На этот счет существуют два диаметрально противоположных мнения :

В школе, еще в младших классах учат тому, что на ноль делить нельзя ни в коем случае. Объясняется это предельно просто:

  1. Представим, что у вас есть 20 долек мандарина.
  2. Поделив их на 5, вы раздадите пятерым друзьям по 4 дольки.
  3. Разделить на ноль не получится, ведь самого процесса деления между кем-то не будет.

Конечно же, это образное объяснение, во многом упрощенное и не совсем соответствующее действительности. Но оно предельно доступно поясняет бессмысленность деления чего-либо на ноль.

Ведь, по сути, таким образом можно обозначать факт отсутствия деления. А зачем усложнять математические вычисления и записывать еще и отсутствие деления?

Можно ли ноль делить на число?

С точки зрения прикладной математики, любое деление, в котором принимает участие ноль, имеет не так уж много смысла. Но школьные учебники однозначны в своем мнении:

  • Ноль можно делить.
  • Для деления следует использовать любое число.
  • Нельзя делить ноль на ноль.

Третий пункт может вызвать легкое недоумение, ведь всего несколькими абзацами выше указывалось, что такое деление вполне возможно. На самом деле, все зависит от дисциплины, в рамках которой вы проводите вычисления.

Школьникам в таком случае действительно лучше писать, что выражение невозможно определить , а, следовательно, оно и не имеет смысла. Но в некоторых ответвлениях алгебраической науки допускается запись такого выражения, с делением ноля на ноль. Особенно когда речь идет о вычислительных машинах и языках программирования.

Потребность делить ноль на число может возникнуть во время решения каких-либо равенств и поиска исходных значений. Но в таком случае, в ответе всегда будет ноль . Здесь, как и с умножением, на какое число вы бы не делили ноль, больше ноля в итоге не получите. Поэтому если в огромной формуле заметили это заветное число, постарайтесь быстро «прикинуть», а не сведутся ли все вычисления к очень простому решению.

Если бесконечность делить на ноль

О бесконечно больших и бесконечно малых значениях необходимо было упомянуть чуть раньше, ведь это тоже открывает некоторые лазейки для деления, в том числе и с использованием ноля. Вот правда и тут есть небольшая загвоздка, ведь бесконечно малое значение и полное отсутствие значения - понятия разные .

Но этой небольшой разницей в наших условиях можно пренебречь, в конечном счете, вычисления проходят с использованием абстрактных величин:

  • В числители должен быть знак бесконечности.
  • В знаменатели символическое изображение стремящегося к нулю значения.
  • В ответе выйдет бесконечность, отображающая бесконечно большую функцию.

Следует обратить внимание на то, что речь все же идет о символическом отображении бесконечно малой функции, а не об использовании ноля. С этим знаком ничего не поменялось, на него все так же нельзя делить, только в качестве очень и очень редких исключений.

В большинстве своем ноль используется для решения задач, которые находятся в чисто теоретической плоскости . Возможно, по прошествии десятилетий или даже столетий, всем современным вычислениям найдется практическое применение, и они обеспечат какой-то грандиозный прорыв в науке.

А пока что большинство гениев от математики о всемирном признании лишь мечтают. Исключение из этих правил - наш соотечественник, Перельман . Но его знают благодаря решению действительно эпохальной задачи с доказательством гипотезы Пуанкере и экстравагантному поведению.

Парадоксы и бессмысленность деления на ноль

Деление на ноль, в большинстве своем, не имеет никакого смысла:

  • Деление представляют как функцию, обратную умножению .
  • Мы можем умножить на ноль любое число и получить в ответе ноль.
  • По той же логике, можно было бы делить любое число на ноль.
  • В таких условиях несложно было бы прийти к выводу, что любое число, умноженное или деленное на ноль, равно любому другому числу, над которым провели эту операцию.
  • Откидываем математическое действие и получаем интереснейшее заключение - любое число равно любому числу.

Помимо создания таких вот казусов, деление на ноль не имеет практического значения , от слова вообще. Даже при возможности выполнения этого действия, не выйдет получить никакой новой информации.

С точки зрения элементарной математики, во время деления на ноль происходит разделение целого предмета ноль раз, то есть ни одного раза. Проще говоря - процесса деления не происходит , следовательно, и результата этого события быть не может.

Находясь в одном обществе с математиком, всегда можно задать пару банальных вопросов, по примеру, почему нельзя делить на ноль и получить интересный и доступный для понимания ответ. Или раздраженность, ведь у человека наверняка это спрашивают не в первый раз. И даже не в десятый. Так что берегите своих друзей-математиков, не заставляйте их повторять по сотне раз одно объяснение.

Видео: делим на ноль

В этом видео математик Анна Ломакова расскажет, что произойдет, если поделить какое-либо число на ноль и почему этого делать нельзя, с точки зрения математики:

Ноль сам по себе цифра очень интересная. Сам по себе означает пустоту, отсутствие значения, а рядом с другой цифрой увеличивает ее значимость в 10 раз. Любые числа в нулевой степени всегда дают 1. Этот знак использовали еще в цивилизации майя, причем он у них еще обозначал понятие «начало, причина». Даже календарь у начинался с нулевого дня. А еще эта цифра связана со строгим запретом.

Еще с начальных школьных лет все мы четко усвоили правило «на ноль делить нельзя». Но если в детстве многое воспринимаешь на веру и слова взрослого редко вызывают сомнения, то со временем иногда хочется все-таки разобраться в причинах, понять, почему были установлены те или иные правила.

Почему нельзя делить на ноль? На этот вопрос хочется получить понятное логическое объяснение. В первом классе учителя это сделать не могли, потому как в математике правила объясняются с помощью уравнений, а в том возрасте мы и представления не имели о том, что это такое. А теперь пришла пора разобраться и получить понятное логическое объяснение того, почему нельзя делить на ноль.

Дело в том, что в математике лишь две из четырех основных операций (+, - , х, /) с числами признаются независимыми: умножение и сложение. Остальные же операции принято считать производными. Рассмотрим простенький пример.

Вот скажите, сколько получится, если от 20 отнять 18? Естественно, в нашей голове моментально возникает ответ: это будет 2. А как мы пришли к такому результату? Кому-то этот вопрос покажется странным - ведь и так все ясно, что получится 2, кто-то пояснит, что от 20 копеек отнял 18 и у него получилось две копейки. Логически все эти ответы не вызывают сомнений, однако с точки зрения математики решать эту задачу следует по-другому. Еще раз напомним, что главными операциями в математике являются умножение и сложение и поэтому в нашем случае ответ кроется в решении следующего уравнения: х + 18 = 20. Из которого и вытекает, что х = 20 - 18, х =2. Казалось бы, зачем так подробно все расписывать? Ведь и так все элементарно просто. Однако без этого тяжело объяснить почему нельзя делить на ноль.

А теперь посмотрим что получится если мы пожелаем 18 разделить на ноль. Снова составим уравнение: 18: 0 = х. Поскольку операция деления является производной от процедуры умножения, то преобразовав наше уравнение получим х * 0 = 18. Вот здесь как раз и начинается тупик. Любое число на месте икса при умножении на ноль даст 0 и получить 18 нам никак не удастся. Теперь становится предельно ясно почему нельзя делить на ноль. Сам ноль можно делить на какое-угодно число, а вот наоборот - увы, никак нельзя.

А что получится, если ноль разделить на самого себя? Это можно записать в таком виде: 0: 0 = х, или х * 0 = 0. Это уравнение имеет бесчисленное число решений. Поэтому в итоге получается бесконечность. Поэтому операция и в этом случае тоже не имеет смысла.

Деление на 0 лежит в корне многих мнимых математических шуток, которыми при желании можно озадачить любого несведущего человека. К примеру, рассмотрим уравнение: 4*х - 20 = 7*х - 35. Вынесем за скобки в левой части 4, а в правой 7. Получим: 4*(х - 5) = 7*(х - 5). Теперь умножим левую и правую часть уравнения на дробь 1 / (х - 5). Уравнение примет такой вид: 4*(х - 5)/(х - 5) = 7*(х - 5)/ (х - 5). Сократим дроби на (х - 5) и у нас выйдет, что 4 = 7. Из этого можно сделать вывод, что 2*2 = 7! Конечно, подвох здесь в том, что равен 5 и сокращать дроби было нельзя, поскольку это приводило к делению на ноль. Поэтому при сокращении дробей нужно всегда проверять чтобы ноль случайно не оказался в знаменателе, иначе результат получится совсем непредсказуемым.