Болезни Военный билет Призыв

Микробиология растений. Плесневые грибы и дрожжи. Учет молочнокислых бактерий

Занятие 4 МИКРОБИОЛОГИЧЕСКИЙ АНАЛИЗ КОРМОВ

Цель занятия. Ознакомиться с методами санитарно-микробиологического анализа кормов.

Материалы и оборудование. Лабораторные весы; термостат; шуттель-аппарат; эксикатор; стерильные пробирки; пипетки; чашки Петри; фарфоровые ступки; ватно-марлевые фильтры; питательные среды (мясо-пептонные бульон, агар, желатин, лептонная вода, висмут-сульфит-агар, селенитовый бульон, магниевая среда, среды с мочевиной, глюкозой и сернокислым железом, углеводами и индикатором Андраде в сочетании с тимоловым синим, цитратноаммонийная среда, мясо-пептонный желатин, среды Вильсона- Блера, Киллиана, Китта-Тароцци, Кларка, Левина, Плоскирева, Ресселя, Эндо, Эйкмана, кровяной агар по Цейслеру, бульон Хот- тингера, молоко, печеночный бульон); физиологический раствор; индикаторные бумажки; лабораторные животные (белые мыши, морские свинки).

Общие сведения. От каждой партии корма отбирают две средние пробы массой не менее 500 г. Одну направляют в лабораторию, другую сохраняют в хозяйстве до окончания исследования. Для упаковки проб используют стерильную пластмассовую или стеклянную тару.

В пробах корма определяют общую микробную обсемененность, содержание сальмонелл, энтеропатогенных типов кишечной палочки, анаэробов.

Содержание занятия. Определение микробной обсемененности. В стерильную пробирку помещают 1 г корма, взятого из средней пробы, добавляют 9 мл физиологического раствора и тщательно встряхивают (получают разведение 1: 10). Из взвеси готовят последующие разведения (1: 100, 1: 1000, 1: 10 000 и т. д.). После осаждения взвешенных частиц для посевов берут жидкость из верхнего слоя.

Для количественного учета микробов в стерильные чашки Петри вносят по 1 мл из пробирок с разным разведением и доливают 10- 15 мл стерильного, расплавленного и охлажденного до температуры 44-45 °С мясо-пептонного агара (МПА). Осторожно покачивая чашки, засеянный материал равномерно распределяют в агаре. После застывания среды чашки помещают (вверх дном) в термостат при температуре 37 "С на 24-48 ч. После этого подсчитывают выросшие колонии. Полученные результаты умножают на степень разведения, суммируют и определяют количество микробов в 1 г корма.

Пример расчета. В первой чашке обнаружено 200 колоний, во второй - 21, в третьей - 1. В эти чашки посевной материал брали из пробирок с разведениями соответственно 1: 10 000,1:100 000,1:1000 000. Следовательно, в 1 г корма будет содержаться

Микробную обремененность мясо-костной муки можно определить экспресс-методом с применением резазурина. Для этого в одну стерильную пробирку помещают 1 г средней пробы мясо-костной муки, добавляют 10 мл мясо-пептонного бульона (МПБ) и встряхивают, а вдругую пробирку (для контроля) вносят только 10 мл МПБ. Пробирки помещают в термостат при 40 "С на 3 ч. После этого в них добавляют по 1 мл 0,01%-ного раствора резазурина и вновь выдерживают в термостате в течение 2 ч.

Результаты реакций учитывают через каждые 30 мин. По восстановлению резазурина (изменению окраски из синей в розовую) определяют общую микробную обсемененность мясо-костной муки. Если в пробирке с мясо-костной мукой розовое окрашивание наступает позднее чем через 2 ч, то это говорит о том, что в 1 г продукта содержится до 500 тыс. микробов, а при окрашивании в розовый цвет до 2ч - более 500 тыс. микробов.

Контролем служит пробирка с 10 мл МПБ и 1 мл 0,01 %-ного раствора резазурина, выдержанная в термостате при том же температурном режиме и экспозиции и без изменения цвета содержимого.

Исследование на сальмонелл ы. Для анализа берут 50- 200 г исследуемого корма, измельчают его в стерильной фарфоровой ступке и переносят в колбу со средой предварительного обогащения (пептонная вода, МПБ с содержанием 5 % маннита) при соотношении материала и среды 1:5. Содержимое колбы тщательно перемешивают и помещают в термостат при температуре 37 °С. Через 16-18 ч материал высевают в чашки Петри на твердые дифференциально-диагностические среды (висмут-сульфит-агар, среда Плоскирева или Левина) и на две основные среды обогащения (селенитовый бульон, среда Киллиана в соотношении 1:1).

После 16-18 ч выдержки в термостате при 37 °С из сред обогащения делают вторично посевы в чашки с висмут-сульфит-агаром и в чашки со средами Плоскирева и Левина (по выбору) и ставят их в термостат при 37 °С.

Чашки просматривают через 16-24 и 48 ч.

На висмут-сульфит-агаре S. typhi и S.paratyphi А растут в виде мелких, нежных, серовато-зеленых колоний с черным центром, S. cholerae suis - в виде зеленых колоний. Колонии всех других сальмонелл значительно крупнее, темно-коричневого цвета, с металлическим блеском, окруженные светлым ореолом, участок среды под колонией черный. На среде Плоскирева вырастают прозрачные или нежно-розовые колонии, на среде Левина - прозрачные, бледные, нежно-розовые или розовато-фиолетовые.

В случае обнаружения колоний, похожих на сальмонеллы, 3-5 из них высевают на комбинированную среду Ресселя или скошенный агар с мочевиной и бульон Хотгингера для определения индола и сероводорода (под пробирки с бульоном подкладывают специальные индикаторные бумажки). Для определения подвижности культуры делают посев уколом в полужидкий агар (0,3-0,5%-ный).

На среду Ресселя и скошенный агар посевы делают сначала штрихом на скошенной поверхности, а затем уколом в глубину столбика. Если разлагается мочевина в скошенном агаре, то окраска среды меняется на оранжевую при индикаторе BP и на коричнево-фиолетовую при индикаторе тимоловый синий в сочетании с индикато-ром Андраде.

Морфологию культуры изучают в мазках, окрашенных по Граму, и подвижность - в висячей или раздавленной капле или полужидком агаре. Культуры, представляющие грамотрицательные подвижные палочки, ферментирующие глюкозу с образованием газа, не ферментирующие лактозу и сахарозу, не разлагающие мочевину и не образующие индол, исследуют серологически - испытывают в реакции агглютинации (РА) на предметном стекле с набором агглютинирующей адсорбированной поливалентной сальмонеллезной О-сыворотки (группы, А, В, С, D, Е).

Для РА с О-сыворотками культуру следует брать из верхней части скошенного агара, а для агглютинации с Н-сыворотками - из нижней части (конденсационной воды), где микробы наиболее подвижны. По групповой О-сыворотке устанавливают принадлежность культур к той или иной серологической группе.

Исследования на энтеропатогенные типы кишечной палочки. 50 г корма помещают в колбу, содержащую 500 мл стерильного физиологического раствора, встряхивают на шуггель-аппарате в течение 20 мин. Из полученной взвеси стерильными пипетками готовят разведения 1: 100, 1: 1000, 1: 10 000, 1: 100 000, 1: 1 000 000. По 1 мл каждого разведения вносят в пробирки со средой Эйкмана. Посевы помешают в термостат при температуре 43 °С. Через 24 ч учитывают рост по помутнению среды и образованию газа. Титр кишечной палочки устанавливают по наи-большему разведению, в котором еще наблюдался ее рост.

Из пробирок, где наблюдается рост микробов, производят посев на плотные дифференциальные среды (Эндо, Левина, Плоскирева), разделенные на секторы для каждого разведения.

Типичные колонии Е. coli круглой формы, гладкие, выпуклые или слегка приподнятые в центре с ровными краями розового, красного или малинового цвета, с металлическим блеском или без него на среде Эндо или черного цвета на среде Левина.

Выросшие изолированные колонии S-формы (не менее 4) пересевают на МПБ, выдерживают в термостате при температуре 37 °С в течение 16-24 ч. После этого одну часть пробирок используют для приготовления мазков, посевов на дифференциальные диагностические среды, заражения мышей; вторую - для приготовления автоклавированного антигена, если кипяченый антиген не будет агглютинироваться поливалентными (комплексными) коли-сыворотками.

У выделенных культур определяют морфологические и культу-рально-биохимические свойства для установления их родовой принадлежности. Морфологию бактерий изучают в мазках, окрашенных по Граму, их подвижность определяют по характеру роста в 0,3%-ном полужидком МПА.

Для определения культурально-биохимических свойств бактерий используют набор питательных сред (с углеводами и индикатором Андраде, цитратно-аммонийную, мясо-пептонный желатин, МПБ или бульон Хоттингера и агар с глюкозой и сернокислым железом).

Патогенные свойства кишечной палочки определяют путем постановки биологической пробы на белых мышах. Для этого трем мышам массой 14-16 г внутрибрюшинно вводят смывы с суточных агаровых культур в дозе 500 млн микробов. Культуру признают патогенной в случае гибели одной или более мышей в первые 4 сут после заражения.

Исследования на анаэ р об ы. 50 г корма растирают в стерильной ступке, разводят физиологическим раствором и засевают в несколько пробирок со средой Китга-Тароцци, Вильсона-Блера, молоком и в две чашки со средами и кровяным агаром по Цейслеру. Для уничтожения вегетативных форм микробов по одной пробирке с жидкими средами нагревают при температуре 80 °С в течение 20 мин. Посевы помещают в термостат при температуре 37 °С. Чашки должны находиться в специальных аппаратах для анаэробных культур или в эксикаторе, куда заранее вносят тот или иной погло-титель кислорода.

Результаты посевов регистрируют в тот же день. Почернение среды Вильсона-Блера в течение 1 -3 ч после посева, свертывание молока с образованием ноздревато-губчатого сгустка и прозрачной сыворотки в течение 6 ч, а также быстрое начало роста на среде Китта-Тароцци (через 4-5 ч) при обильном газообразовании - характерные признаки присутствия возбудителей Cl. perfringens.

Рост CI. botulinum, наблюдаемый обычно на 2-3 сут, характеризуется помутнением среды Китта-Тароцци, образованием осадка и появлением запаха прогорклого масла.

При обнаружении роста на среде Китта-Тароцци проводят микроскопическое исследование и выделение чистой культуры посевом в 2-3 чашки с кровяным агаром по Цейслеру. Последние выдерживают в анаэробных условиях при температуре 37 °С в течение 24- 48 ч, после чего просматривают рост в чашках и отбирают культуры, которые классифицируют по морфологическим и биохимическим свойствам.

Биологическую пробу ставят на морских свинках или белых мышах, вводя внутрибрюшинно бульонную культуру. При положительном результате подопытные животные погибают через 12-48 ч.

Для идентификации отдельных возбудителей или типов одного вида проводят опыт нейтрализации токсина со специальной сывороткой. Для этого минимальную смертельную дозу культуры в смеси с 0,2-0,5 мл соответствующей типоспецифической сыворотки выдер-живают в термостате 45 мин и вводят мышам внутрибрюшинно. Для контроля испытуемую культуру или фильтрат применяют без сыворотки. Вид и тип микроба определяют по выживаемости мышей.

При исследовании кормов на ботулизм (наличие токсинов) в качестве подопытных животных используют белых мышей. При этом могут быть применены два способа:

а) нейтрализация токсина противоботулиновой сывороткой (антитоксином). Корм предварительно растирают в стерильной ступке, добавляют физиологический раствор (1: 4) и настаивают в течение 1 -2 ч при комнатной температуре. После этого настой центрифугируют и фильтруют через ватно-марлевый фильтр. КО,5 мл фильтрата добавляют 0,2 мл поливалентной противоботулиновой сыворотки. Смесь выдерживают 1 ч при комнатной температуре, затем одному животному вводят подкожно 0,5 мл фильтрата, другому - смесь фильтрата с сывороткой в той же дозе.

Аналогичные испытания могут быть проведены чистой культурой, выращенной (в течение 6-7сут) на печеночном бульоне. В этом случае пастеровской пипеткой отсасывают верхний слой культуры и пропускают через ватно-марлевый фильтр. Далее поступают, как указано выше;

б) разрушение токсина кипячением фильтрата. Фильтрат готовят, как указано в подпункте «а». Одну половину фильтрата кипятят в течение 30 мин. Затем одному животному внутрибрюшинно вводят 0,5-1 мл некипяченого фильтрата, другому - такую же дозу кипяченого.

Положительным результатом биологической пробы по первому и второму способам считают гибель мышей, наступившую как от фильтрата, не обработанного противоботулиновой сывороткой, так и от некипяченого фильтрата.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РФ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

Уральская государственная сельскохозяйственная Академия

Контрольная работа

«Микробиология растений»

Выполнил: Буньков И.А.

Екатеринбург 2012

Введение

5. Микробиология кормов, сена

6. Роль микроорганизмов в природе и сельскохозяйственном производстве

Заключение

Введение

Микробиология (от микро... и биология), наука, изучающая микроорганизмы -- бактерии, микоплазмы, актиномицеты, дрожжи, микроскопические грибы и водоросли -- их систематику, морфологию, физиологию, биохимию, наследственность и изменчивость, распространение и роль в круговороте веществ в природе, практическое значение.

Наука о мельчайших организмах, не видимых невооруженным глазом. Микробиология изучает строение микробов (морфология), их химическую организацию и закономерности жизнедеятельности (физиология), изменчивость и наследственность (генетика микроорганизмов), взаимоотношения с другими организмами, включая человека, и их роль в формировании биосферы. В ходе историч. развития микробиологии как наука разделилась на общую, сельскохозяйственную, ветеринарную, медицинскую и промышленную. Общая микробиология изучает закономерности жизнедеятельности микробов как организмов, а также роль микробов для поддержания жизни на Земле, в частности их участие в круговороте углерода, азота, энергии и пр.

1. Три области практического применения

Итак, микробиология -- это наука, изучающая микроорганизмы, их свойства, распространение и роль в круговороте веществ в природе. Широко известны три области практического приложения микробиологических знаний, три основных направления, без которых и представить нельзя современную жизнь. Одно из этих направлений-- медицинская микробиология, изучающая болезнетворные микроорганизмы и разрабатывающая методы борьбы с ними Медицинская микробиология. включает бактериологию, которая изучает бактерии -- возбудители инфекционных заболеваний, микологию -- раздел о болезнетворных грибках, протозоологию, объектом исследования которой являются болезнетворные одноклеточные животные организмы, и, наконец, мед. вирусологию, исследующую болезнетворные вирусы. Достоверные сведения о микробах впервые были получены во второй половине 17 в. голландским ученым А. Левенгуком, описавшим «живых зверьков» в воде, зубном налете, настоях при рассмотрении их в простейший микроскоп, увеличивавший объекты в 250--300 раз.

Другое -- техническая микробиология, под «покровительством» которой находится производство спиртовых и молочных продуктов (с использованием процессов брожения), витаминов, столь необходимых человеку антибиотиков и гормонов. Техническая, или промышленная, микробиология изучает химические процессы, вызываемые микробами, которые приводят к образованию спиртов, ацетона и других продуктов, важных для человека. В последние годы широко развились также такие области технической микробиологии, как производство витаминов, аминокислот и антибиотиков.

Третья самостоятельная сфера этой науки -- почвенная микробиология, изучающая участие микроорганизмов в почвенных процессах в целях оптимального их использования в области сельскохозяйственного производства.

Микробиология вошла в круг научных дисциплин еще в XVII века: ее появление тесно связано с изобретением микроскопа. Золотой век микробиологии начался в конце XIX века, когда промышленное и техническое развитие человеческого общества вместе с развитием химии красящих веществ, прогрессом оптики и замечательными открытиями бактериологов произвели в медицине и медицинском мышлении настоящий революционный переворот. К отдельным звеньям этой «революции» можно отнести открытия возбудителей значительной части инфекционных заболеваний человека и животных -- возбудителей, обнаруженных в своеобразном царстве микроорганизмов.

О том, что же именно относится к пестрой плеяде микроорганизмов, к сфере, контролируемой микробиологией, многие имеют не всегда точное и полное представление. С годами микробиология превратилась в обширную и сложную научную дисциплину, и причина этого лежит не в каком-нибудь искусственном ее усложнении, а в том, что были открыты группы микроорганизмов, которые никак нельзя было подогнать к какому-то единому, общему знаменателю. Это заставило разделить микробиологию на несколько специальных отделов.

Пока что выделено пять таких «провинций» в «государстве» микробиологии. Правда, ее дальнейшее развитие и дифференциация определенно говорят, что это пятичленное подразделение не окончательное. Но на сегодня оно нас вполне удовлетворяет. Вот краткое перечисление и определение упомянутых групп.

Вирусология изучает вирусы.

Бактериология занимается исследованием бактерий (специалисты считают их самыми древними обитателями Земли) и актиномицетов (одноклеточных микроорганизмов, близких по чертам организации к бактериям).

Микология исследует низшие (микроскопические) грибы.

Альгология изучает микроскопические водоросли.

Протозоология имеет объектом своего изучения простейших -- одноклеточных животных, стоящих в системе классификации на грани растительного и животного мира.

Мы перечислили эти подразделения в соответствии с увеличением размеров микроорганизмов.

Вирусы в сравнении с другими группами микроорганизмов неизмеримо мельче. Именно их ничтожно малая величина и дала в руки микробиологов (в период зарождения вирусологии) основную возможность отличать их от бактерий. Размеры вирусов варьируют в пределах от 20 до 300 нанометров (один нанометр равен миллионной доли миллиметра).

В «молодые годы» вирусологии для обозначения небактериального возбудителя какой-либо болезни применяли термин «фильтрующийся вирус» (от лат. virus -- яд).

Первоначальный термин подчеркивал своеобразное свойство возбудителей -- способность проходить через фильтры, не пропускающие самые мелкие бактерии.

Дальнейшие исследования показали, что вирусы представляют особую группу инфекционных возбудителей и их изучение требует применения совершенно новых методов. В результате возникла и новая самостоятельная отрасль микробиологии --вирусология. Такое выделение было безоговорочно принято всеми учеными. Вирусологию с самого начала считали как бы младшей сестрой- бактериологии.

Однако между этими двумя отраслями науки, вернее, их объектами, есть существенное различие.

Бактериологи уже сравнительно давно обнаружили наряду с болезнетворными бактериями и такие, которые просто необходимы для жизнедеятельности человека, животных и растений, для нормального протекания естественного круговорота веществ в природе и многих технологических процессов в пищевой и фармацевтической промышленности.

2. Возникновение и развитие микробиологии

микроорганизм биология корм

За несколько тыс. лет до возникновения Микробиология как науки человек, не зная о существовании микроорганизмов, широко применял их для приготовления кумыса и др. кисломолочных продуктов, получения вина, пива, уксуса, при силосовании кормов, мочке льна. Впервые бактерии и дрожжи увидел А. Левенгук, рассматривавший с помощью изготовленных им микроскопов зубной налёт, растительные настои, пиво и т.д. Творцом микробиологии как науки был Л. Пастер, выяснивший роль микроорганизмов в брожениях (виноделие, пивоварение) и в возникновении болезней животных и человека. Исключительное значение для борьбы с заразными болезнями имел предложенный Пастером метод предохранительных прививок, основанный на введении в организм животного или человека ослабленных культур болезнетворных микроорганизмов. Задолго до открытия вирусов Пастер предложил прививки против вирусной болезни -- бешенства. Он же доказал, что в современных земных условиях невозможно самопроизвольное зарождение жизни. Эти работы послужили научной основой стерилизации хирургических инструментов и перевязочных материалов, приготовления консервов, пастеризации пищевых продуктов и т.д. Идеи Пастера о роли микроорганизмов в круговороте веществ в природе были развиты основоположником общей Микробиология в России С. Н. Виноградским, открывшим хемоавтотрофные микроорганизмы (усваивают углекислый газ атмосферы за счёт энергии окисления неорганических веществ; см. Хемосинтез), азотфиксирующие микроорганизмы и бактерий, разлагающих целлюлозу в аэробных условиях. Его ученик В. Л. Омелянский открыл анаэробных бактерий, сбраживающих, т. е. разлагающих в анаэробных условиях целлюлозу, и бактерий, образующих метан. Значительный вклад в развитие Микробиология был сделан голландской школой микробиологов, изучавших экологию, физиологию и биохимию разных групп микроорганизмов (Микробиология Бейеринк, А. Клюйвер, К. ван Нил). В развитии медициской Микробиология важная роль принадлежит Р. Коху, предложившему плотные питательныесреды для выращивания микроорганизмов и открывшему возбудителей туберкулёза и холеры. Развитию медицинской Микробиология и иммунологии способствовали Э. Беринг (Германия), Э. Ру (Франция), С. Китазато (Япония), а в России и СССР -- И.И. Мечников, Л.А. Тарасевич, Д.К. Заболотный, Н.Ф. Гамалея.

Развитие микробиологии и потребности практики привели к обособлению ряда разделов микробиологии в самостоятельные научные дисциплины. Общая микробиология изучает фундаментальные закономерности биологии микроорганизмов. Знание основ общей микробиологии необходимо при работе в любом из специальных разделов микробиологии содержание, границы и задачи общей микробиологии постепенно изменялись.

Ранее к объектам, изучаемым ею, относили также вирусы, простейшие растительного или животного происхождения (протозоа), высшие грибы и водоросли. В зарубежных руководствах по общей микробиологии до сих пор описываются эти объекты

В задачу технической, или промышленной, микробиологии входит изучение и осуществление микробиологических процессов, применяемых для получения дрожжей, кормового белка, липидов, бактериальных удобрений, а также получение путём микробиологического синтеза антибиотиков, витаминов, ферментов, аминокислот, нуклеотидов, органических кислот и т.п. (см. также Микробиологическая промышленность).

Сельскохозяйственная микробиология выясняет состав почвенной микрофлоры, её роль в круговороте веществ в почве, а также её значение для структуры и плодородия почвы, влияние обработки на микробиологические процессы в ней, действие бактериальных препаратов на урожайность растений. В задачу сельско-хозяйственной микробиологии входят изучение микроорганизмов, вызывающих заболевания растений, и борьба с ними, разработка микробиологических способов борьбы с насекомыми -- вредителями с.-х. растений и лесных пород, а также методов консервирования кормов, мочки льна, предохранения урожая от порчи, вызываемой микроорганизмами.

Геологическая микробиология изучает роль микроорганизмов в круговороте веществ в природе, в образовании и разрушении залежей полезных ископаемых, предлагает методы получения (выщелачивания) из руд металлов (медь, германий, уран, олово) и др. ископаемых с помощью бактерий.

Водная Микробиология изучает количественный и качественный состав микрофлоры солёных и пресных вод и её роль в биохимических процессах, протекающих в водоёмах, осуществляет контроль за качеством питьевой воды, совершенствует микробиологические методы очистки сточных вод.

В задачу медицинской Микробиология входит изучение микроорганизмов, вызывающих заболевания человека, и разработка эффективных методов борьбы с ними. Эти же вопросы в отношении сельскохозяйственных и др. животных решает ветеринарная Микробиология

Своеобразие строения и размножения вирусов, а также применение специальных методов их исследования привели к возникновению вирусологии как самостоятельной науки, не относящейся к микробиологии

Как общая Микробиология, так и её специальные разделы развиваются исключительно бурно. Существуют три основных причины такого развития. Во-первых, благодаря успехам физики, химии и техники Микробиология получила большое число новых методов исследования. Во-вторых резко возросло практическое применение микроорганизмов. В-третьих, микроорганизмы стали использовать для решения важнейших биологических проблем, таких, как наследственность и изменчивость, биосинтез органических соединений, регуляция обмена веществ и др. Успешное развитие современной микробиологии невозможно без гармонического сочетания исследований, проводимых на популяционном, клеточном, органоидном и молекулярном уровнях. Для получения бесклеточных ферментных систем и фракций, содержащих определённые внутриклеточные структуры, применяют аппараты, разрушающие клетки микроорганизмов, а также градиентное центрифугирование, позволяющее получать частицы клеток, обладающие различной массой. Для исследования морфологии и цитологии микроорганизмов разработаны новые виды микроскопической техники. В СССР был изобретён метод капиллярной микроскопии, позволивший открыть новый, ранее не доступный для наблюдения мир микроорганизмов, обладающих своеобразной морфологией и физиологией.

Для изучения обмена веществ и химического состава микроорганизмов получили распространение различные способы хроматографии, масс-спектрометрия, метод изотопных индикаторов, электрофорез и др. физические и физико-химические методы. Для обнаружения органических соединений применяют также чистые препараты ферментов. Предложены новые способы выделения и химической очистки продуктов жизнедеятельности микроорганизмов (адсорбция и хроматография на ионообменных смолах, а также иммунохимические методы, основанные на специфической адсорбции определённого продукта, например фермента, антителами животного, образовавшимися у него после введения этого вещества). Сочетание цитологических и биохимических методов исследования привело к возникновению функциональной морфологии микроорганизмов. С помощью электронного микроскопа стало возможным изучение тонких особенностей строения цитоплазматических мембран и рибосом, их состава и функций (например, роль цитоплазматических мембран в процессах транспорта различных веществ или участие рибосом в биосинтезе белка).

Лаборатории обогатились ферментёрами различной ёмкости и конструкции. Широкое распространение получило непрерывное культивирование микроорганизмов, основанное на постоянном притоке свежей питательной среды и оттоке жидкой культуры. Установлено, что наряду с размножением клеток (ростом культуры) происходит развитие культуры, т. е. возрастные изменения у клеток, составляющих культуру, сопровождающиеся изменением их физиологии (молодые клетки, даже интенсивно размножаясь, не способны синтезировать многие продукты жизнедеятельности, например ацетон, бутанол, антибиотики, образуемые более старыми культурами). Современные методы изучения физиологии и биохимии микроорганизмов дали возможность расшифровать особенности их энергетического обмена, пути биосинтеза аминокислот, многих белков, антибиотиков, некоторых липидов, гормонов и др. соединений, а также установить принципы регуляции обмена веществ у микроорганизмов.

3. Связь микробиологии с другими науками

Микробиология в той или иной степени связана с др. науками: морфологией и систематикой низших растений и животных (микологией, альгологией, протистологией), физиологией растений, биохимией, биофизикой, генетикой, эволюционным учением, молекулярной биологией, органической химией, агрохимией, почвоведением, биогеохимией, гидробиологией, химической и микробиологической технологией и др. Микроорганизмы служат излюбленными объектами исследований при решении общих вопросов биохимии и генетики (см. Генетика микроорганизмов, Молекулярная генетика). Так, с помощью мутантов, утративших способность осуществлять один из этапов биосинтеза какого-либо вещества, были расшифрованы механизмы образования многих природных соединений (например, аминокислот лизина, аргинина и др.). Изучение механизма фиксации молекулярного азота для воспроизведения его в промышленных масштабах направлено на поиски катализаторов, аналогичных тем, которые в мягких условиях осуществляют азотфиксацию в клетках бактерий. Между Микробиология и химией существует постоянная конкуренция при выборе наиболее экономичных путей синтеза различных органических веществ. Ряд веществ, которые ранее получали микробиологическим путём, теперь производят на основе чисто химического синтеза (этиловый и бутиловый спирты, ацетон, метионин, антибиотик левомицетин и др.). Некоторые сиитезы осуществляют как химическим, так и микробиологическим путём (витамин B2, лизин и др.). В ряде производств сочетают микробиологические и химические методы (пенициллин, стероидные гормоны, витамин С и др.). Наконец, есть продукты и препараты, которые пока могут быть получены только путём микробиологического синтеза (многие антибиотики сложного строения, ферменты, липиды, кормовой белок и т.д.).

4. Практическое значение микробиологии

Активно участвуя в круговороте веществ в природе, микроорганизмы играют важнейшую роль в плодородии почв, в продуктивности водоёмов, в образовании и разрушении залежей полезных ископаемых. Особенно важна способность микроорганизмов минерализовать органические остатки животных и растений. Всё возрастающее применение микроорганизмов в практике привело к возникновению микробиологической промышленности и к значительному расширению микробиологических исследований в различных отраслях промышленности и сельского хозяйства. Ранее техническая Микробиология в основном изучала различные брожения, а микроорганизмы использовались преимущественно в пищевой промышленности. Быстро развиваются и новые направления технической микробиологии, которые потребовали иного аппаратурного оформления микробиологических процессов. Выращивание микроорганизмов стали проводить в закрытых ферментёрах большой ёмкости, совершенствовались методы отделения клеток микроорганизмов от культуральной жидкости, выделения из последней и химической очистки их продуктов обмена. Одним из первых возникло и развилось производство антибиотиков. В широких масштабах микробиологическим путём получают аминокислоты (лизин, глутаминовая кислота, триптофан и др.), ферменты, витамины, а также кормовые дрожжи на непищевом сырье (сульфитные щелока, гидролизаты древесины, торфа и с.-х. растительные отходы, углеводороды нефти и природного газа, фенольные или крахмалсодержащие сточные воды и т.д.). Осуществляется получение микробиологическим путём полисахаридов и осваивается промышленный биосинтез липидов. Резко возросло применение микроорганизмов в сельском хозяйстве. Увеличилось производство бактериальных удобрений, в частности нитрагина, приготовляемого из культур клубеньковых бактерий, фиксирующих азот в условиях симбиоза с бобовыми растениями, и применяемого для заражения семян бобовых культур. Новое направление с.-х. микробиологии связано с микробиологическими методами борьбы с насекомыми и их личинками -- вредителями с.-х. растений и лесов. Найдены бактерии и грибы, убивающие своими токсинами этих вредителей, освоено производство соответствующих препаратов. Высушенные клетки молочнокислых бактерий используют для лечения кишечных заболеваний человека и с.-х. животных.

Деление микроорганизмов на полезных и вредных условно, т.к. оценка результатов их деятельности зависит от условий, в которых она проявляется. Так, разложение целлюлозы микроорганизмами важно и полезно в растительных остатках или при переваривании пищи в пищеварительном тракте (животные и человек не способны усваивать целлюлозу без её предварительного гидролиза микробным ферментом целлюлазой). В то же время микроорганизмы, разлагающие целлюлозу, разрушают рыболовные сети, канаты, картон, бумагу, книги, хлопчато-бумажные ткани и т.д. Для получения белка микроорганизмы выращивают на углеводородах нефти или природного газа. Одновременно с этим большие количества нефти и продуктов её переработки разлагаются микроорганизмами на нефтяных промыслах или при их хранении. Даже болезнетворные микроорганизмы не могут быть отнесены к абсолютно вредным, т.к. из них приготовляют вакцины, предохраняющие животных или человека от заболеваний. Порча микроорганизмами растительного и животного сырья, пищевых продуктов, строительных и промышленных материалов и изделий привела к разработке различных способов их предохранения (низкая температура, высушивание, стерилизация, консервирование, добавление антибиотиков и консервантов, подкисление и т.п.). В др. случаях возникает необходимость ускорить разложение определённых химических веществ, например пестицидов, в почве. Велика роль микроорганизмов при очистке сточных вод (минерализация веществ, содержащихся в сточных водах).

5. Микробиология кормов, сена

Обыкновенное сено готовят из скошенных трав, которые имеют влажность 70-80% и содержат большое количество свободной воды. Такую воду для своего развития используют микроорганизмы. В процессе сушки свободная вода испаряется, остается связанная, которая недоступна микроорганизмам.

При влажности сена 12-17% микробиологические процессы приостанавливаются, что прекращает разрушение высушенных растений. После высушивания в сене сохраняется большое количество эпифитов, которые находятся в анабиотическом состоянии, так как в такой среде нет условий для их размножения. При попадании воды внутрь скирды или стога деятельность микроорганизмов начинает усиливаться. Процесс характеризуется повышением температуры до 40-50 градусов и выше.

При этом происходит гибель мезофилов, а деятельность микроорганизмов начинает усиливаться. Через 4-5 дней температура повышается до 70-80 градусов, происходит обугливание, растения становятся сначала бурыми, а затем черными. При 90 градусов микроорганизмы прекращают свою деятельность. Бурое сено готовят так: скошенную и хорошо провяленную траву складывают в небольшие копны, затем в стога, скирды. Поскольку в растительной массе содержится еще свободная вода, то начинают размножаться микроорганизмы, выделяется тепло, которое способствует досушиванию растений.

Сенажирование - способ консервирования провяленных трав, главный образом бобовых, убранных в начале бутонизации. Травы скашивают, укладывают в валки. Через сутки траву, провяленную до 50-55 % влажности, подбирают, измельчают и загружают в хорошо изолированные кормохранилища.

В траншеях растительную массу уплотняют, изолируют пластмассовой пленкой, на которую кладут солому, опилки, а затем землю. Сенаж - это зеленая растительная масса с пониженной влажностью, сохраняемая под влиянием физиологической сухости и биохимических процессов, вызываемых микроорганизмами, при нахождении ее в кормохранилищах, изолированных от кислорода воздуха. Количество молочнокислых и гнилостных микробов в сенаже в 4-5 раз меньше, чем в силосе.

Максимальное количество микроорганизмов образовывается на 15 день. Скорость течения микробиологических процессов связана с образованием органических кислот. Углеводы служат энергетическим материалом для животных и микроорганизмов. Растворимые углеводы микроорганизмы переводят в органические кислоты и тем самым обедняют корм.

В сенаже в результате гидролиза полисахаридов количество сахара возрастает. Повышенное осмотические давление в первую очередь угнетает рост маслянокислых микробов, затем молочнокислых и гнилостных. Это создает благоприятные условия для развития молочнокислых бактерий. При этом понижается pH, который вместе с давлением препятствует развитию маслянокислых бактерий, поэтому масляная кислота в сенаже отсутствует. Дрожжевание кормов - микробиологический способ подготовки кормов к скармливанию.

Дрожжи обогащают корм не только белком, но и витаминами, ферментами. Для хозяйственных целей выведены культурные расы дрожжей: пивные, пекарские, кормовые. В дрожжах содержится 48-52 % белков, 13-16 углеводов, 2-3 жиров, 22-40 БЭВ, 6-10 % золы, много аминокислот.

Дрожжи требует для своего роста и развития кислород, температуру 25-30 градусов, процесс дрожжевания длится 9-12 часов. Дрожжи размножаются на кормах растительного происхождения, которые богаты углеводами. Не следует дрожжевать корма животного происхождения, так как на таких средах быстро развиваются гнилостные микроорганизмы.

Дрожжевания проводят в сухом, светлом и просторном помещении. 3 способа: опарный, безопарный, заквасочный. Опарный: готовят опару - разведенные прессованные дрожжи 1% смешивают с кормом (пятая часть), в течение 6 часов каждые 20 минут перемешивают, затем добавляют остальной корм, двойное количество воды и снова перемешивают.

Смесь оставляют еще на 3 часа, в течение которых при периодическом перемешивании идет дрожжевание. Безопарный способ основан на дрожжевании сразу всей массы корма. Берут 1% прессованных дрожжей, разводят теплой водой, смешивают с кормом и двойным количеством воды. На протяжении 8-10 часов смесь помешивают каждые 30 минут.

Заквасочный способ применяют, когда мало дрожжей. Готовят закваску: 0.5 кг прессованных дрожжей размножают в небольшой количестве хорошо дрожжующихся углеводистых кормов при температуре 30 градусов в течение 5 часов. Затем корма осолаживают, обливая их крутым кипятком, и выдерживают при температуре не ниже 60 градусов в течение 5-6 часов. К осоложенному корму добавляют такое же количество воды и половину закваски. Перемешивают, накрывают и оставляют на 6 часов в теплом месте.

Вторую часть закваски добавляют к новой порции осоложенного корма и так делают 5-10 раз, после чего готовят новую первичную закваску.

6. Роль микроорганизмов в природе и сельскохозяйственном производстве

Широкое распространение микроорганизмов свидетельствует об их огромной роли в природе. При их участии происходит разложение различных органических веществ в почвах и водоемах, они обуславливают круговорот веществ и энергии в природе; от их деятельности зависит плодородие почв, формирование каменного угля, нефти, многих других полезных ископаемых. Микроорганизмы участвуют в выветривании горных пород и прочих природных процессах. При самом активном, широком участии микроорганизмов в природе, главным образом в почве и гидросфере, постоянно осуществляется два противоположных процесса: синтез из минеральных веществ сложных органических соединений и, наоборот, разложение органических веществ до минеральных. Единство этих противоположных процессов лежит в основе биологической роли микроорганизмов в круговороте веществ в природе.

Среди различных процессов превращения веществ в природе, в которых микроорганизмы принимают активное участие, важнейшее значение для осуществления жизни растений, животных и человека на Земле имеют круговорот азота, углерода, фосфора, серы, железа. Многие микроорганизмы используют в промышленном и сельскохозяйственном производстве. Так, хлебопечение, изготовление кисломолочных продуктов, виноделие, получение витаминов, ферментов, пищевых и кормовых белков, органических кислот и многих веществ, применяемых в сельском хозяйстве, промышленности и медицине, основаны на деятельности разнообразных микроорганизмов.

Особенно важно использование микроорганизмов в растениеводстве и животноводстве. От них зависит обогащение почвы азотом, борьба с вредителями сельскохозяйственных культур при помощи микробных препаратов, правильное приготовление и хранение кормов, создание кормового белка, антибиотиков и веществ микробного происхождения для кормления животных. Микроорганизмы оказывают положительное влияние на процессы разложения веществ неприродного происхождения - ксенобиотиков, искусственно синтезированных, попадающих в почвы и водоемы и загрязняющих их.

Наряду с полезными микроорганизмами существует большая группа так называемых болезнетворных, или патогенных, микроорганизмов, вызывающих разнообразные болезни сельскохозяйственных животных, растений, насекомых и человека. Некоторые микроорганизмы вызывают поражение сельскохозяйственной продукции, приводят к обеднению почвы азотом, вызывают загрязнение водоемов, накопление ядовитых веществ (например, микробных токсинов). В результате их жизнедеятельности возникают эпидемии заразных болезней человека и животных, что сказывается на развитии экономики и производительных сил общества. Последние научные данные не только существенно расширили представления о почвенных микроорганизмах и процессах, вызываемых ими в окружающей среде, но и позволили создать новые отрасли в промышленности и сельскохозяйственном производстве.

Например, открыты антибиотики, выделяемые почвенными микроорганизмами, и показана возможность их использования для лечения человека, животных и растений, а также при хранении сельскохозяйственных продуктов. Обнаружена способность почвенных микроорганизмов образовывать биологически активные вещества: витамины, аминокислоты, стимуляторы роста растений - ростовые вещества и т.д. Найдены пути использования белка микроорганизмов для кормления сельскохозяйственных животных. Выделены микробные препараты, усиливающие поступление в почву азота из воздуха. Открытие новых методов получения наследственно измененных форм полезных микроорганизмов позволило шире применять микроорганизмы в сельскохозяйственном и промышленном производстве, а также в медицине.

Особенно перспективно развитие генной, или генетической, инженерии. Ее достижения обеспечили развитие биотехнологии, появление высокопродуктивных микроорганизмов, синтезирующих белки, ферменты, витамины, антибиотики, ростовые вещества и другие, необходимые для животноводства и растениеводства продукты. С микроорганизмами человечество соприкасалось всегда, тысячелетия даже не догадываясь об этом.

С незапамятных времен люди наблюдали брожение теста, готовили спиртные напитки, сквашивали молоко, делали сыры, переносили различные заболевания, в том числе эпидемические. Однако до середины прошлого века никто даже не представлял, что разного рода бродильные процессы и заболевания могут быть следствием деятельности ничтожно малых существ.

Заключение

На основании некоторых фактов можно предполагать, что вирусологические исследования по меньшей мере в ближайшие тридцать -- пятьдесят лет сохранят в микробиологии роль основной движущей силы. Современное состояние этих быстро развивающихся исследований позволяет предположить, что прогресс, достигнутый в усовершенствовании и ускорении процессов диагностики вирусных заболеваний, столь важных для немедленных и специфических терапевтических мер, будет продолжаться и далее.

Почему так важно немедленное вмешательство? Да потому, что, как только вирус в клетках начнет размножаться и вызовет в организме больного характерные симптомы болезни, введение каких-либо лекарственных препаратов уже не сможет достичь полного успеха.

В связи с развитием диагностики, несомненно, будут быстрее создавать новые «генерации» лекарств, более совершенно «пригнанных» к данному заболеванию. Изготовляя их, будут исходить из знания особенностей молекулярной биологии размножения тех или иных видов вирусов, а также специфики биохимических свойств различных типов клеток (нервных, клеток печени и т. п.).

С большой вероятностью можно ожидать и значительного расширения и углубления познаний о вирусном происхождении многих поражений центральной нервной системы, протекающих по дегенеративному типу, от которых страдает немало людей. Несомненно, существенно расширится список заболеваний, либо вызываемых вирусами, либо таких, при которых вирус играет главенствующую роль наряду с другими факторами.

Ускоренный и все более эффективный ход исследований инфекционных болезней в современную эпоху можно иллюстрировать многими убедительными фактами. С 1880 по 1950 год новые открытия накапливались сравнительно медленно, хотя именно4за эти 70 лет было сделано немало основных наблюдений. В последующий период вирусология стала развиваться значительно более быстрыми темпами в связи с использованием новых научных подходов и технических приемов.

Вирусологи получили более или менее завершенную картину структуры вирусов и сведения о механизме инфицирования клетки вирусом. Большой прогресс можно отметить и в исследованиях вирусных инфекций на молекулярном уровне, в связи с чем можно ожидать успеха и в области поисков новых противовирусных веществ. Здесь уже есть кое-какие обнадеживающие факты, касающиеся в том числе и опухолей вирусного происхождения.

Благодаря усилиям Всемирной организации здравоохранения и интенсивному развитию медицины во многих государствах мира была усовершенствована система вирусологического и эпидемиологического наблюдения при ликвидации массовых вирусных инфекций, а также при выявлении заразных болезней, до тех пор не встречавшихся в данных районах. Медицинская служба строго контролирует пассажирский и товарный, международный «и межконтинентальный транспорт в целях предотвращения «импорта» инфекций из других стран не только пассажирами, экипажем, но и перевозимыми животными, и даже растениями. Поиски возможных очагов заразных болезней проводятся в самых отдаленных уголках нашей планеты, и высокоспециализированные отряды службы здравоохранения проникают в развивающиеся страны, где еще в недалеком прошлом трудно было и думать о ликвидации инфекционных болезней. В наше время интенсивного использования транспорта и оживленного обмена товарами нельзя пренебрегать серьезностью «местных» инфекций. Сегодня такая инфекция, имеющая место в одной стране, может благодаря скоростному транспорту проявиться в месте, отдаленном на сотни и тысячи километров от исходного очага.

Список использованной литературы

1.Достижения советской микробиологии, Микробиология, 1989; Микробиология, Основы микробиологии, пер. с англ., Микробиология, 1995;

2.Работнова И.Л., Общая микробиология, Микробиология, 1966; «Микробиология», 1987, т. 36, в. 6;

3. Мейнелл Дж., Мейнелл Э., Экспериментальная микробиология, пер. с англ., Микробиология, 1967;

4.Шлегель Г., Общая микробиология, пер. с нем., Микробиология, 1972.

Размещено на Allbest.ru

Подобные документы

    Роль микроорганизмов в круговороте азота, водорода, кислорода, серы, углерода и фосфора в природе. Различные типы жизни бактерий, основанные на использовании соединений различных химических веществ. Роль микроорганизмов в эволюции жизни на Земле.

    реферат , добавлен 28.01.2010

    Роль микроорганизмов в круговороте углерода в природе. Углеродное и азотное питание прокариот с различными типами жизни. Значение микроорганизмов в геологических процессах. Типы микрофлоры почвы: зимогенная, автохтонная, олиготрофная и автотрофная.

    презентация , добавлен 18.12.2013

    Характеристика основных показателей микрофлоры почвы, воды, воздуха, тела человека и растительного сырья. Роль микроорганизмов в круговороте веществ в природе. Влияние факторов окружающей среды на микроорганизмы. Цели и задачи санитарной микробиологии.

    реферат , добавлен 12.06.2011

    Свойства прокариотных микроорганизмов. Методы определения подвижности у бактерий. Участие микроорганизмов в круговороте азота в природе. Нормальная и анормальная микрофлора молока. Культивирование анаэробных микроорганизмов в условиях лаборатории.

    шпаргалка , добавлен 04.05.2009

    Роль микробов в природе и жизни человека. Использование микробиологических процессов в промышленности и сельском хозяйстве. Личная гигиена работников предприятия общественного питания. Строение, сущность процессов пищеварения. Пути заражения гельминтами.

    контрольная работа , добавлен 23.02.2009

    История развития микробиологии, задачи и связь с другими науками. Роль микробов в народном хозяйстве и патологии животных. Изучение плесеней и дрожжей. Микрофлора животных, почвы и кормов. Понятие и значение антибиотиков, стерилизации и пастеризации.

    шпаргалка , добавлен 04.05.2014

    Участие микроорганизмов в биогеохимических циклах соединений углерода, азота, серы, в геологических процессах. Условия обитания микроорганизмов в почве и воде. Использование знаний о биогеохимической деятельности микроорганизмов на уроках биологии.

    курсовая работа , добавлен 02.02.2011

    Закономерности количественного и качественного содержания микроорганизмов в пресных водоемах от различных факторов. Поступление патогенных микроорганизмов воду и их выживаемость в водной среде. Понятие о санитарно-показательных микроорганизмах.

    курсовая работа , добавлен 28.11.2011

    Микробиологические стандарты питьевой воды и методы её очистки. Характеристика кишечных бактериофагов, их значение как санитарно-показательных микроорганизмов. Основные пищевые инфекции. Влияние сушки и замораживания рыбных продуктов на микроорганизмы.

    контрольная работа , добавлен 06.08.2015

    Почва как среда обитания и основные эдафические факторы, оценка ее роли и значения в жизнедеятельности живых организмов. Распределение животных в почве, отношение растений к ней. Роль микроорганизмов, растений и животных в почвообразовательных процессах.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Микрофлора кормов и пищевых продуктов

Выполнил студент 2 курса

Тутунарь Денис

Микрофлора кормов

Эпифитная микрофлора . На поверхностных частях растений постоянно присутствует разнообразная микрофлора, называемая эпифитной. На стеблях, листьях, цветах, плодах наиболее часто встречаются следующие неспоровые виды микроорганизмов: Bact, herbicola составляет 40% всей эпифитной микрофлоры, Ps. fluorescens - 40%, молочнокислые бактерии - 10 %, им подобные - 2 %, дрожжи, плесневые грибы, целлюлозные, маслянокислые, термофильные бактерии - 8 %.

После скашивания и потери сопротивляемости растений, а также в силу механического повреждения их тканей эпифитная и прежде всего гнилостная микрофлора, интенсивно размножаясь, проникает в толщу растительных тканей и вызывает их разложение. Именно поэтому продукцию растениеводства (зерно, грубые и сочные корма) от разрушительного действия эпифитной микрофлоры предохраняют различными методами консервирования.

Известно, что в растениях имеется связанная вода, входящая в состав их химических веществ и свободная -- капельно-жидкая. Микроорганизмы могут размножаться в растительной массе только при наличии в ней свободной воды. Одним из наиболее распространенных и доступных методов удаления из продуктов растениеводства свободной воды и, следовательно, их консервирования является высушивание и силосование.

Сушка зерна и сена предусматривает удаление из них свободной воды. Поэтому микроорганизмы на них размножаться не могут до тех пор, пока эти продукты будут сухими.

В свежескошенной неперестоявшей траве воды содержится 70 - 80 %, в высушенном сене только 12--16 %, оставшаяся влага находится в связанном состоянии с органическими веществами и микроорганизмами не используется. Во время сушки сена теряется около 10 % органических веществ, главным образом при разложении белков и Сахаров. Особенно большие потери питательных веществ, витаминов и минеральных соединений происходят в высушенном сене, находящемся в прокосах (валках), когда часто идут дожди. Дождевая дистиллированная вода вымывает их до 50 %. Значительные потери сухого вещества происходят в зерне при его самосогревании. Этот процесс обусловлен термогенезом, то есть созданием тепла микроорганизмами. Возникает он потому, что термофильные бактерии используют для своей жизни только 5 - 10 % энергии потребляемых ими питательных веществ, а остальная выделяется в окружающую их среду - зерно, сено.

Силосование кормов. При выращивании кормовых культур (кукурузы, сорго и др.) с одного гектара удается получить в зеленой массе значительно больше кормовых единиц, чем в зерне. По крахмальному эквиваленту питательность зеленой массы при сушке может снизиться до 50 %, а при силосовании только до 20 %. При силосовании не теряются мелкие листья растений, обладающие высокой питательностью, а при высушивании они опадают. Закладку силоса можно производить и при переменной погоде. Хороший силос является сочным, витаминным, молокогонным кормом.

Сущность силосования состоит в том, что в заложенной в емкости измельченной зеленой массе интенсивно размножаются молочнокислые микробы, разлагающие сахара с образованием молочной кислоты, накапливающейся до 1,5--2,5 % к массе силоса. Одновременно размножаются уксуснокислые бактерии, превращающие спирт и другие углеводы в уксусную кислоту; ее накапливается 0,4--0,6 % к массе силоса. Молочная и уксусная кислоты являются сильным ядом для гнилостных микробов, поэтому размножение их прекращается.

Силос сохраняется в хорошем состоянии до трех лет, пока в нем содержится не менее 2 % молочной и уксусной кислот, а рН составляет 4--4,2. Если размножение молочнокислых и уксусных бактерий ослабевает, то концентрация кислот снижается. В это время одновременно начинают размножаться дрожжи, плесени, маслянокислые и гнилостные бактерии и силос портится. Таким образом, получение хорошего силоса зависит прежде всего от наличия в зеленой массе сахароз и интенсивности развития молочнокислых бактерий.

В процессе созревания силоса различают три микробиологические фазы, характеризующиеся специфическим видовым составом микрофлоры.

Первая фаза характеризуется размножением смешанной микрофлоры с некоторым преобладанием гнилостных аэробных неспоровых бактерий -- кишечной палочки, псевдомонас, молочнокислых микробов, дрожжей. Спороносные гнилостные и маслянокислые бактерии размножаются медленно и не преобладают над молочнокислыми. Основной средой для развития смешанной микрофлоры в этой стадии является растительный сок, выделяющийся из тканей растений и заполняющий пространство между измельченной растительной массой. Это способствует созданию анаэробных условий в силосе, что угнетает развитие гнилостных бактерий и благоприятствует размножению молочнокислых микробов. Первая фаза при плотной укладке силоса, то есть в анаэробных условиях, продолжается всего 1--3 дня, при рыхлой укладке в аэробных условиях она более продолжительна и длится 1--2 недели. За это время силос разогревается благодаря интенсивным аэробным микробиологическим процессам. Вторая фаза созревания силоса характеризуется бурным размножением молочнокислых микробов, причем вначале развиваются преимущественно кокковые формы, которые затем сменяются молочнокислыми бактериями.

Благодаря накоплению молочной кислоты прекращается развитие всех гнилостных и маслянокислых микроорганизмов, при этом вегетативные их формы погибают, остаются лишь спороносные (в форме спор). При полном соблюдении технологии закладки силоса в этой фазе размножаются гомоферментативные молочнокислые бактерии, образующие з Сахаров только молочную кислоту. При нарушении технологии закладки силоса, когда в нем. содержится воздух, развивается микрофлора гетероферментативного брожения, в результате чего образуются нежелательные летучие кислоты -- масляная, уксусная и др. Длительность второй фазы -- от двух недель до трех месяцев.

Третья фаза характеризуется постепенным отмиранием в силосе молочнокислых микробов из-за высокой концентрации молочной кислоты (2,5 %). В это время созревание силоса завершается, условным показателем пригодности его к скармливанию считается кислотность силосной массы, снижающаяся до рН 4,2 - 4,5 (рис. 37). В аэробных условиях начинают размножаться плесени и дрожжи, которые расщепляют молочную кислоту, этим пользуются маслянокислые и гнилостные бактерии, прорастающие из спор, в результате силос плесневеет и загнивает.

Пороки силоса микробного происхождения . При несоблюдении надлежащих условий закладки и хранения силоса в нем возникают определенные пороки.

Гниение силоса, сопровождающееся значительным самосогреванием, отмечают при рыхлой его укладке и недостаточном уплотнении. Бурному развитию гнилостных и термофильных микробов способствует находящийся в силосе воздух. В результате разложения белка силос приобретает гнилостный, аммиачный запах и становится непригодным к скармливанию. Гниение силоса происходит в первой микробиологической фазе, когда задерживается развитие молочнокислых микробов и накопление молочной кислоты, подавляющей гнилостных бактерий. Чтобы прекратить развитие последних, необходимо рН в силосе снизить до 4,2--4,5. Гниение силоса вызывают Er. herbicola, E. coli, Ps. aerogenes. P. vulgaris, B. subtilis, Ps. fluorescens, а также плесневые грибы.

Прогоркание силоса обусловлено накоплением в нем масляной кислоты, обладающей резким горьким вкусом и неприятным запахом. В хорошем силосе масляная кислота отсутствует, в силосе среднего качества ее обнаруживают до 0,2%, а в непригодном к скармливанию -- до I %.

Возбудители маслянокислого брожения способны превращать молочную в масляную кислоту, а также вызывать гнилостный распад белков, что усугубляет их отрицательное действие на качество силоса. Маслянокислое брожение проявляется при медленном развитии молочнокислых бактерий и недостаточном накоплении молочной кислоты, при рН выше 4,7. При быстром же накоплении молочной кислоты в силосе до 2 % и рН 4--4,2 маслянокислого брожения не происходит.

Основные возбудители маслянокислого брожения в силосе: Ps. fluo-rescens, Cl. pasteurianum, Cl. felsineum.

Перекисание силоса наблюдается при энергичном размножении в нем уксуснокислых, а также гнилостных бактерий, способных продуцировать уксусную кислоту. Уксуснокислые бактерии особенно интенсивно размножаются при наличии в силосе этилового спирта, накапливаемого дрожжами спиртового брожения. Дрожжи и уксуснокислые бактерии -- аэробы, поэтому значительное содержание уксусной кислоты в силосе и, следовательно, его перекисание отмечают при наличии в силосе воздуха.

Плесневение силоса происходит при наличии в силосе воздуха, что благоприятствует интенсивному развитию плесеней и дрожжей. Эти микроорганизмы всегда обнаруживают на растениях, поэтому при благоприятных условиях начинается их быстрое размножение.

Ризосферная и эпифитная микрофлора могут играть и негативную роль. Корнеплоды нередко поражают гнилью (черный - Alternaria radicina, серый -Botrutus cinirea, картофельный - Phitophtora infenstans). К порче силоса приводит чрезмерная деятельность возбудителей маслянокислого брожения. На вегетирующих растениях размножаются спорынья (claviceps purpurae), вызывающая заболевание эрготизм. Грибы вызывают токсикозы. Возбудитель ботулизма (Cl. вotulinum), попадая в корм с почвой и фикалиями, вызывает тяжелый токсикоз, нередко с летальным исходом. Многие грибы (Aspergillus, Penicillum, Mucor, Fusarium, Stachybotrus) заселяют корма, размножаясь при благоприятных условиях, и вызывают у животных острые или хронические токсикозы, чаще сопровождающиеся неспецифическими симптомами.

Микробиологические препараты используются в рационах животных и птиц. Ферменты улучшают усвоение корма. На микробиологической основе получают витамины, аминокислоты. Возможно использование бактериального белка. Кормовые дрожжи представляют собой хороший белково-витаминный корм. В дрожжах содержится легкопереваримый белок, провитамин D (зргостерин), а также витамины А, В, Е. Размножаются дрожжи очень быстро, поэтому в промышленных условиях удается получать большое количество дрожжевой массы при культивировании их на патоке или осахаренной клетчатке. В настоящее время в нашей стране сухие кормовые дрожжи готовят в большом коли честве. Для их изготовления используется культура кормовых дрожжей.

Микрофлора пищевых продуктов при холодильном хранении

Микрофлора сырых пищевых продуктов растительного и животного происхождения очень разнообразна. К микроорганизмам, составляющим микрофлору продуктов относятся бактерии, дрожжи, плесени, простейшие животные (протоза) и некоторые водоросли. Микроорганизмы в природе широко распространены благодаря лёгкой приспосабливаемости к теплу, холоду, недостатку влаги, а так же благодаря их высокой стойкости и быстрому размножению. силос микробный микрофлора плесень

Развитие микробиологических процессов в пищевых продуктах может привести к снижению пищевой ценности и резко ухудшить органолептические показатели пищевых продуктов, вызвать образование вредных для продуктов веществ. Поэтому одна из задач пищевой промышленности - ограничение вредного воздействия микроорганизмов на продукты. Однако существуют определенные микроорганизмы, присутствие которых в пищевых продуктах придает им новые вкусовые свойства. Метод замещения нежелательной микрофлоры на микрофлору c требуемыми свойствами используется при производстве кефира, простокваши, ацидофилина, сыров, квашеной капусты и др.

Для развития микроорганизмов необходимо наличие воды в доступной для них форме. Потребность микроорганизмов в воде может быть выражена количественно в виде активности воды, которая зависит от концентрации растворенных веществ и степени их диссоциации.

Развитие микрофлоры при понижении температуры резко тормозится, причем тем больше, чем ближе температура к точке замерзания тканевой жидкости продукта. Эффект влияния понижения температуры на микробную клетку обусловлен нарушением сложной взаимосвязи метаболических реакций в результате различного уровня изменений их скоростей и повреждением молекулярного механизма активного переноса растворимых веществ через клеточную мембрану. Наряду с этим происходит изменение и качественного состава микроорганизмов. Некоторые группы их размножаются и при низких температурах, вызывая заражение травмированных при уборке и транспортировке плодов и овощей. Затем инфекция распространяется и на здоровые, неповрежденные плоды и овощи.

По отношению к температуре все микроорганизмы делят на три группы: ТЕРМОФИЛЫ (55-75 о С); МЕЗОФИЛЫ (25-37 о С); ПСИХРОФИЛЫ (0-15 о С).

Для холодильной технологии важное значение имеют психрофильные микроорганизмы в пищевых продуктах. Они содержатся в почве, воде, воздухе, обладая способностью обсеменять технологическое оборудование, инструменты, тару, непосредственно пищевые продукты. Они активно размножаются на продуктах с небольшой кислотностью - мясе, рыбе, молоке и овощах.

Замораживание пищевых продуктов сопровождается понижением количества микроорганизмов и их активности. В начальный период замораживания, когда основная часть воды превращается в лёд, происходит резкое снижение числа клеток микроорганизмов (зона А). Затем следует замедление размножения микроорганизмов (зона В). Затем процесс стабилизируется, и остаётся некоторое количество устойчивых клеток микроорганизмов (зона С).

Гибель микроорганизмов при замораживании с наибольшей интенсивностью происходит при температуре от -5 до -10 о С. Ряд дрожжей и плесневых грибов способны к процессам жизнедеятельности вплоть до температуры -10 - -12 о С.

Размещено на Allbest.ru

...

Подобные документы

    Обзор способов размножения бактерий, актиномицетов, дрожжей, плесневых грибов. Влияние лучистой энергии и антисептиков на развитие микроорганизмов. Роль пищевых продуктов в возникновении пищевых заболеваний, источники инфицирования, меры профилактики.

    контрольная работа , добавлен 24.01.2012

    Основные группы микроорганизмов, используемых в пищевой промышленности: бактерии, дрожжи и плесени, их характеристика. Спиртовое брожение, разложение сахара на спирт и углекислый газ. Процесс молочнокислого, пропионовокислого и маслянокислого брожения.

    курсовая работа , добавлен 07.12.2013

    Описание структуры воды пресных водоемов и донных иловых отложений. Характеристика почвы как среды обитания микроорганизмов. Исследование влияния вида и возраста растений на ризосферную микрофлору. Рассмотрение микробного населения почв разных типов.

    курсовая работа , добавлен 01.04.2012

    Основные свойства молока и причины возникновения патогенной микрофлоры. Сущность биохимических процессов брожения и гниения. Фазы изменения микрофлоры парного молока. Характеристика кисломолочных продуктов, особенности их использования человеком.

    курсовая работа , добавлен 12.04.2012

    Типичные процессы брожения. Краткая характеристика микроорганизмов-возбудителей. Микрофлора плодов и овощей, зерномучных продуктов, стерилизация баночных консервов. Основные виды микробиологической порчи. Понятие и способы дезинфекции. Санитарный надзор.

    контрольная работа , добавлен 26.10.2010

    Функции микроорганизмов: разложение растительных и животных остатков, использование в технологиях производства пищевых продуктов и биологически активных соединениях. Виды анаэробных процессов: спиртового, молочнокислого, пропионового и масляного брожения.

    реферат , добавлен 20.01.2011

    История развития микробиологии, задачи и связь с другими науками. Роль микробов в народном хозяйстве и патологии животных. Изучение плесеней и дрожжей. Микрофлора животных, почвы и кормов. Понятие и значение антибиотиков, стерилизации и пастеризации.

    шпаргалка , добавлен 04.05.2014

    Общая информация о пропионовокислых бактериях. Основные продукты пропионовокислого брожения, химизм, особенности. Зависимость соотношения продуктов брожения от степени окисленности источника углерода. Применение пропионовокислых бактерий в промышленности.

    реферат , добавлен 01.06.2010

    Исследование основных типов микроорганизмов: бактерий, грибов и водорослей. Анализ условий, необходимых для роста микроорганизмов. Механизм образования микробиологических отложений. Изучение методов микробиологического тестирования и приборов мониторинга.

    презентация , добавлен 23.10.2013

    Свойства прокариотных микроорганизмов. Методы определения подвижности у бактерий. Участие микроорганизмов в круговороте азота в природе. Нормальная и анормальная микрофлора молока. Культивирование анаэробных микроорганизмов в условиях лаборатории.

Республики Беларусь

Учреждение Образования

«Витебская ордена «Знак Почета» государственная академия

ветеринарной медицины»

Кафедра микробиологии и вирусологии

Кафедра кормления с.-х. животных им. профессора Лемеша В.Ф.

МИКРОБИОЛОГИЯ РАСТИТЕЛЬНЫХ КОРМОВ

Учебно-методическое пособие к лабораторно- практическим занятиям по микробиологии для студентов специальности 2-740301 «Зоотехния», слушателей ФПК, специалистов кормопроизводства, аспирантов и преподавателей.

Гласкович Алефтина Абликасовна , кандидат вет. наук, доцент УО «ВГАВМ»

Вербицкий Анатолий Анатольевич , зав. кафедрой, кандидат вет. наук, доцент. УО «ВГАВМ»

Ганущенко Олег Федорович , кандидат с.-х. наук, доцент УО «ВГАВМ»

Рецензенты:

доктор вет. наук, профессор кафедры микробиологии и вирусологии

Медведев А.П .

кандидат с.х.н., доцент кафедры кормопроизводства Шагалеев Ф.Ф.

кандидат вет. наук, доцент, зав. кафедрой болезней мелких животных и птиц Зелютков Ю.Г.

Учебно-методическое пособие.

« 17 » октября 2003 г. (протокол № 1)

Разрешено к печати редакционно-издательским советом УО «ВГАВМ»

Введение

Консервирование кормов в настоящее время сопровождается большими потерями. Если силосование выполняется надлежащим образом, к примеру, в горизонтальных силосохранилищах потери составляют в среднем около 20%. При неквалифицированной работе они значительно возрастают. На основании многочисленных исследований можно констатировать, что величину потерь, вызванных деятельностью микроорганизмов кормов, часто недооценивают. При составлении кормового баланса предусматриваются только «неизбежные» потери в результате «угара». Однако, следует иметь в виду, что силос, находившийся под испорченным в результате вторичного брожения слоем (верхний и боковые слои), характеризуется высоким рН и непригоден для скармливания. Сенаж, подвернувшийся самосогреванию в результате аэробных процессов, теряет свое кормовое достоинство наполовину. Плесневелое сено, зерно, кислый силос является причиной многих болезний с.-х. животных.

Знание физиолого-биохимических особенностей отдельных групп микроорганизмов, встречающихся в консервированных кормах, и факторов, ограничивающих или стимулирующих их развитие необходимо для того, чтобы исключить ошибки при заготовке, хранении и скармливании консервированных кормов.

Учебно-методическое пособие рассчитано на 4 часа лекций и 22 часа лабораторно-практических занятий.

1. Краткая характеристика микроорганизмов кормов.

      Эпифитная микрофлора, ее состав и особенности.

Эпифитная микрофлора – это микроорганизмы, встречающиеся на поверхности растущих растений. Ее количественный и качественный (видовой) состав сильно колеблется и зависит от времени года, местности, вида и стадии развития растений, степени их загрязненности и многих других условий. Так, на 1 г сырой массы приходилось следующее количество микроорганизмов: свежая лугопастбищная трава – 16000, люцерна – 1600000, кукуруза – 17260000.

В разнообразной микрофлоре содержится лишь сравнительно небольшое количество молочнокислых бактерий (таблица 1).

Таблица 1

Количественный и качественный состав микроорганизмов, клеток/ г

В 1 г люцерны насчитывалось около 1,6 млн. микроорганизмов, но среди них было только 10 молочнокислых бактерий. Следовательно, на 1 желательный микроорганизм приходилось 160000 нежелательных. Исключение составляет кукуруза. На 1 г свежей массы этого растения приходилось более 100000 молочнокислых бактерий. По-видимому, хорошая силосуемость кукурузы объясняется как благоприятным соотношением питательных веществ, так и большей численностью молочнокислых бактерий. Этими же факторами обуславливается хорошая силосуемость также других кормов с повышенным содержанием сахаров (свекловичная ботва, просо и др.).

Таким образом, на растениях находится огромное количество разнообразных микроорганизмов, однако это количество незначительно по сравнению с плотностью микроорганизмов после закладки и хранении в том или ином хранилище.

      Микробиологические процессы, происходящие при силосовании.

Количественный и качественный (видовой) состав сообщества микроорганизмов, участвующих в созревании силоса, также зависит от ботанического состава зеленой массы, содержания в ней растворимых углеводов и протеина, влажности исходной массы. Так, например, сырье богатое белками (клевер, люцерна, донник, эспарцет) в отличие от сырья, богатого углеводами (кукуруза, просо и др.), силосуется при длительном участии в процессах гнилостных бактерий и при замедленном нарастании численности молочнокислых бактерий.

Однако, в любом случае после закладки растительной массы в хранилище наблюдается массовое размножение микроорганизмов. Их общее количество уже через 2-9 суток может значительно превышать количество микроорганизмов, попадающих с растительной массой (таблица 2).

При всех способах силосования в созревании силосов участвует сообщество микроорганизмов, состоящее из двух диаметрально противоположных групп по характеру воздействия на растительный материал: вредные (нежелательные) и полезные (желательные) группы . Характер их взаимоотношений варьирует не только от симбиотических до антагонистических, обуславливающих в конечном итоге успех или неудачу в исходе силосования, но и от природы силосуемого материала, воздушного и температурного режима .

Таблица 2

Динамика развития молочнокислых и гнилостных микроорганизмов при силосовании кукурузы и клевера.

Анализируемый материал

Количество микроорганизмов (млн. на 1 г силосуемой массы)

Молочнокислые

Гнилостные

Исходная масса кукурузы с початками

Силос: 2-суточный

7-суточный

15-суточный

Исходная масса клевера

Силос: 5-суточный

9-суточный

30-суточный

Таким образом, в процессе силосования происходит замена гнилостных микроорганизмов молочнокислыми, которые вследствие образования молочной и частично уксусной кислот снижают рН корма до 4,0-4,2 и тем самым создают неблагоприятные условия для развития гнилостных микроорганизмов (табл.2).

Условия для существования (потребность в кислороде, отношение к температуре, активной кислотности и т.д.) для различных групп микроорганизмов неодинаковые. С точки зрения потребности в кислороде различают условно три группы микроорганизмов:

    размножающиеся только при полном отсутствии кислорода (облигатные анаэробы);

    размножающиеся только при наличии кислорода (облигатные аэробы);

    размножающиеся как при наличии кислорода, так и без него (факультативные анаэробы).

Большинство микроорганизмов, которые вызывают порочное брожение, не выдерживают рН ниже 4,0, поэтому желательно быстро достичь этого оптимального уровня кислотности.

Чтобы ограничить деятельность вредных микроорганизмов и стимулировать размножение полезных бактерий следует знать особенности отдельных групп микроорганизмов. В таблице 3 схематично представлены физиолого-биохимические особенности основных представителей микроорганизмов, участвующих в процессах силосования.

1.2.1. Молочнокислые бактерии.

Среди разнообразной эпифитной микрофлоры растений содержится лишь сравнительно небольшое количество неспорообразующих факультативных анаэробов, гомо, - гетероферментативных молочнокислых бактерий. Их численность при благоприятных условиях силосования быстро достигает 10 4 -10 8 , а иногда – 10 9 , а оптимальным количеством считают 10 5 -10 7 клеток/г сырого материала.

Основным свойством молочнокислых бактерий, по которым их объединяют в отдельную обширную группу микроорганизмов, является способность образовывать в качестве продукта брожения молочную кислоту:

С 6 Н 12 О 6 ═ 2С 3 Н 6 О 3 .

глюкоза молочная кислота

Она создает в среде активную кислотность (рН 4,2 и ниже), неблагоприятно действующую на нежелательные микроорганизмы. Помимо этого, значение молочнокислых бактерий заключается в бактерицидном действии недиссоциированной молекулы молочной кислоты и способности их образовывать специфические антибиотические и др. биологически активные вещества.

В процессе брожения, протекающем в обычных благоприятных условиях, гомоферментативные молочнокислые бактерии (Streptococcus sp., Pediococcus sp., Lactobacterium plantarum и др.) образуют из глюкозы (гексозы) преимущественно молочную кислоту по гликолитическому пути Эмбдена-Мейергофа-Парнаса. Выход молочной кислоты составляет 95-97%. Одновременно образуются следовые количества летучих кислот, этилового спирта, фумаровой кислоты и углекислоты. Из субстрата извлекается значительно меньше энергии, чем при других (аэробных) процессах энергетического обмена. Тем не менее этот путь энергетических превращений при достаточном уровне углеводов обеспечивает быстрое развитие культур. Кроме глюкозы субстратом для гомофермантативного молочнокислого брожения могут служить другие гексозы (фруктоза, манноза, галактоза), пентозы (ксилоза, арабиноза), дисахариды (лактоза, мальтоза, сахароза) и полисахариды (декстрины). Негидролизованный крахмал не доступен для большинства молочнокислых бактерий. В растениях при сбраживании пентоз (сахаров с пять атомами углерода) молочнокислыми бактериями кроме молочной образуется и уксусная кислота:

6С 5 Н 10 О 5 ═ 8 С 3 Н 6 О 3 + 3С 2 Н 4 О 2

пентоза молочная кислота уксусная кислота

Уксуснокислые бактерии являются ацидофилами, то есть переносят кислую среду. Но так как они являются аэробами, поэтому в хорошо уплотненной массе они не способны развиваться.

Гетероферментативные формы (Leuconostoc sp., Lactobacillus sp.) сбраживают углеводы пентозофосфатным путем. Они менее желательны в силосе, так как кроме молочной кислоты образуют значительное количество побочных продуктов распада углеводов (этиловый спирт, уксусная кислота, углекислый газ, глицерин и др.), используя на это до 50% сбраживаемых углеводов (гексозы, пентозы). Судя по интенсивности роста гетероферментативных бактерий, выход энергии на 1 моль глюкозы оказывается на одну треть ниже, чем у гомоферментативных молочнокислых бактерий.

Таблица 3

Условия существования микроорганизмов в силосе

Микроорганизмы

Разлагают

Потребность в кислороде

углеводы

молочную кислоту

Молочнокислые

До молочной кислоты и некоторых побочных продуктов

Факультативные анаэробы

Маслянокислые (клостридии)

До масляной кислоты и СО 2

До аминокислот, аминов, аммиака

До масляной кислоты, СО 2 и Н 2

Облигатные анаэробы

Гнилостные (бациллы)

До газов

До аминов, аммиака

До газов

Облигатные аэробы

Грибы: плесневые

До СО 2 и Н 2 О

До аминнов, аммиака

До СО 2 и Н 2 О

Облигатные аэробы

До спирта и СО 2

До аминнов, аммиака

До спирта

Факультативные анаэробы

Продолжение таблицы 3

Требования

Образуют споры

Влияние на качество силоса и молочные продукты

кислотности, рН

температуры, С 0

Оптимальная

Минимальная

Желательны:

молочная кислота – консервирующий фактор, образуют др. биологически активные вещества

Вредны: разлагают углеводы, молочную кислоту и белок, «вспучивают» сыры

(но не все виды)

Вредны: разлагают углеводы, белок, молочную кислоту, с образованием токсичных аминов

Вредны: образуют токсины, в крайних случаях делают корм непригодным

Вредны: возбудители вторичных процессов брожения

Существует целый ряд причин, в силу которых молочнокислые бактерии не занимают доминирующего положения. Существенным фактором, лимитирующим размножение молочнокислых бактерий, является низкое содержание легкосбраживаемых углеводов (моно- и дисахаридов) в исходной траве. Повышенные требования молочнокислых бактерий распространяются не только на определенные углеводы, но и на аминокислоты, витамины. Даже при незначительном недостатке этих веществ, несмотря на прочие оптимальные условия (отсутствие кислорода, оптимальная температура), молочнокислые бактерии не всегда размножаются.

Температурный фактор влияет как на рост молочнокислых бактерий, так и на характер конечных продуктов брожения. Педиококки, преобладающая форма молочнокислых бактерий в первые дни созревания силоса, хорошо растут при 45 0 С. Оптимальной температурой роста палочковидных форм молочнокислых бактерий (L. plantarum, L. brevis), которые приходят на смену коккам, является 30-35 0 С. При температуре выше 40 0 С их количество резко падает, угнетается кислотообразование в 1,3-3 раза. Установлено, что наибольший выход молочной кислоты и наименьший – уксусной наблюдается при температуре ниже 30 0 С.

Для получения качественного силоса не меньшее значение имеет создание анаэробных условий – плотная трамбовка и хорошая герметизация. В силосе, полученном в негерметичных условиях (аэробных), количество молочнокислых бактерий после начального увеличения быстро падает, в герметичных (анаэробных) – оно остается высоким. На седьмые сутки брожения при анаэробных условиях наблюдается высокий процент гомоферментативных бактерий, в аэробных – педиококков. Хотя позднее в этом силосе и появляется достаточное количество молочнокислых палочек, но они уже не могут предотвратить размножение нежелательных микроорганизмов.

Таким образом, молочнокислые бактерии отличаются следующими особенностями, важными для силосования:

    Нуждаются для обмена веществ, главным образом, в углеводах (сахар, реже крахмал);

    Белок не разлагают (некоторые виды в ничтожном количестве);

    Они факультативные анаэробы, т.е. развиваются без кислорода и при наличии кислорода;

    Температурный оптимум чаще всего составляет 30 0 С (мезофильные молочнокислые бактерии), но у некоторых форм он достигает 60 0 С (термофильные молочнокислые бактерии);

    Выдерживают кислотность до рН 3,0;

    Могут размножаться в силосе с очень высоким содержанием сухого вещества;

    Легко переносят высокие концентрации NаCl и обладают устойчивостью к некоторым другим химическим препаратам;

    Помимо молочной кислоты, которая играет решающую роль в подавлении нежелательных типов брожения, молочнокислые бактерии выделяют биологически активные вещества (витамины группы В и др.). Они обладают профилактическими (или лечебными) свойствами, стимулируют рост и развитие с.-х. животных.

При благоприятных условиях (достаточное содержание в исходном растительном материале водорастворимых углеводов, анаробиоз) молочнокислое брожение заканчивается всего за несколько дней и рН достигает оптимального значения – 4,0-4,2.

1.2.2. Маслянокислые бактерии.

Маслянокислые бактерии (Clostridium sp.) - спорообразующие, подвижные, палочковидные анаэробные маслянокислые бактерии (клостридии) широко распространены в почве. Присутствие клостридий в силосе является результатом загрязнения почвой, поскольку их численность на зеленой массе кормовых культур, как правило, очень низка. Почти сразу же после заполнения хранилища зеленой массой маслянокислые бактерии начинают интенсивно размножаться вместе с молочнокислыми в первые несколько дней.

Высокая влажность растений, обуславливающаяся наличием в измельченной силосной массе клеточного сока растений и анаэробные условия в силосохранилище – идеальные условия для роста клостридий. Поэтому уже к концу первых суток их численность возрастает и в дальнейшем зависит от интенсивности молочнокислого брожения. В случае слабого накопления молочной кислоты и снижения рН маслянокислые бактерии энергично размножаются и число их достигает максимума (10 3 -10 7 клеток/г) в несколько суток.

По мере увеличения влажности (при содержании в силосной массе 15% сухого вещества) чувствительность клостридий к кислотности среды снижается даже при рН 4,0 (4)

Трудно указать точное критическое значение рН силоса, при котором начинается ингибирование клостридий, так как оно зависит не только от количества образованной молочной кислоты, но также от воды в корме и температуры среды.

Клостридии чувствительны к недостатку воды. Доказано, что с увеличением свободной воды чувствительность этих бактерий к кислотности среды снижается.

Температура корма оказывает заметное влияние на рост клостридий. Оптимальная температура для роста большинства этих бактерий около 37 0 С. Высокой термоустойчивостью характеризуются споры клостридий. Поэтому маслянокислые бактерии могут долгое время сохраняться в силосе в виде спор и при попадании в благопринятные условия для их развития начинают размножаться. Этим объясняется расхождение в биохимических и микробиологических показателях силоса: масляная кислота отсутствует, а титр маслянокислых бактерий в этих же образцах корма высокий.

Изучение в силосе продуктов маслянокислого брожения показало, что встречаются две физиологические группы: сахаролитические и протеолитические.

Сахаролитические клостридии (Cl.butyricum, Cl.pasteurianum) сбраживают главным образом моно- и дисахариды. Количество образовавшихся продуктов разнообразно (масляная, уксусная, муравьиная кислоты, бутиловый, этиловый, амиловый и пропиловый спирты, ацетон, водород и углекислота) и сильно колеблется. Это обусловлено видовой принадлежностью микроорганизмов, субстратом, рН, температурой. Отношение углекислоты и водорода обычно 1:1. Предполагается, что масляная кислота возникает в результате конденсации двух молекул уксусной кислоты. Непосредственное образование масляной кислоты не может служить источником энергии для клостридий. Для поддержания их жизнедеятельности необходима уксусная кислота, которая образуется при окислении уксусного альдегида в результате декарбоксилирования пировиноградной или молочной кислоты.

К сахаролитическим клостридиям, сбраживающим молочную кислоту и сахар, относят Cl. butyricum, Cl.tyrobutyricum, Cl.papaputrificum. В силосе с преобладанием этих клостридий обычно почти не обнаруживают молочную кислоту и сахар. В основном присутствует масляная, хотя нередко может быть много уксусной кислоты.

С 6 Н 12 О 6 = С 4 Н 8 О 2 +2СО 2 +2Н 2

сахар масляная углекис- водород

кислота лый газ

2С 3 Н 6 О 3 = С 4 Н 8 О 2 +2СО 2 +2Н 2

молочная масляная углекис- водород

кислота кислота лый газ

Протеолитические клостридии сбраживают, главным образом, белки, а также аминокислоты и амиды. В результате катаболизма аминокислот образуются летучие жирные кислоты, среди которых преобладает уксусная. Выявлено значительное участие протеолитических клостридий в разложении и углеводов. В силосах встречаются протеолитические клостридии видов Cl.sporogenes, Cl.acetobutyricum, Cl.subterminale, Cl.bifermentas. Количество масляной кислоты в силосе – надежный показатель масштабов деятельности клостридий.

Маслянокислое брожение приводит к высоким потерям питательных веществ в результате катаболизма белков, углеводов и энергии. Энергии теряется в 7-8 раз больше, чем при молочнокислом. Кроме того, происходит смещение реакции силоса в нейтральную сторону из-за образования щелочных соединений при расщеплении белка и молочной кислоты. Органолептические показатели корма ухудшаются вследствие накопления масляной кислоты, аммиака и сероводорода. При кормлении коров таким силосом споры клостридий с молоком попадают в сыр и, прорастая в нем при определенных условиях, могут быть причиной его «вспучивания» и прогоркания.

Таким образом, для возбудителей маслянокислого брожения характерны следующие основные физиолого-биохимические особенности:

    Маслянокислые бактерии, являясь облигатными анаэробами, начинают развиваться в условиях сильного уплотнения силосной массы;

    Разлагая сахар, они конкурируют с молочнокислыми бактериями, а используя белки и молочную кислоту, приводят к образованию сильнощелочных продуктов распада белка (аммиака) и токсичных аминов;

    Маслянокислые бактерии нуждаются для своего развития во влажном растительном сырье и при высокой влажности исходной массы имеют наибольшие шансы подавить все остальные типы брожения;

    Оптимальные температуры для маслянокислых бактерий колеблются от 35-40 0 С, но их споры переносят более высокие температуры;

    Чувствительны к кислотности и прекращают свою деятельность при рН ниже 4,2.

Эффективными мерами против возбудителей маслянокислого брожения являются – быстрое подкисление растительной массы, подвяливание влажных растений. Существуют биопрепараты на основе молочнокислых бактерий для активации молочнокислого брожения в силосе. Кроме того, разработаны химические вещества, которые оказывают бактерицидное (подавляющее) и бактериостатическое (тормозящее) действие на маслянокислые бактерии.

1.2.3. Гнилостные бактерии (Bacillus, Pseudomonas).

Представители рода бацилл (Bac.mesentericus, Вac.megatherium) сходны по своим физиолого-биохимическим особенностям с представителями клостридий, но в отличие от них способны развиваться в аэробных условиях. Поэтому они одними из первых включаются в процесс ферментации и чаще всего встречаются в количестве 10 4 -10 6 , но в некоторых случаях (нарушения технологии) – до 10 8 -10 9 . Эти микроорганизмы являются активными продуцентами разнообразных гидролитических ферментов. Они используют в качестве питательных веществ различные белки, углеводы (глюкозу, сахарозу, мальтозу и др.) и органические кислоты. Значительная часть белкового азота (до 40% и более) под действием бацилл может быть переведена в аминную и аммиачную форму, а часть аминокислот в моно- и диамины, особенно в условиях медленного подкисления массы. Декарбоксилирование имеет свой максимум в кислой среде, тогда как дезаминирование происходит в нейтральной и щелочной. При декарбоксилировании могут возникать амины. Некоторые из них обладают токсическими свойствами (индол, скатол, метилмеркаптан и др.) и при скармливании силоса эти вещества поступая в кровь, вызывают различные заболевания и отравления животных. Некоторые виды бацилл сбраживают глюкозу, образуя 2, 3-бутиленгликоль, уксусную кислоту, этиловый спирт, глицерин, углекислоту и в следовых количествах муравьиную и янтарную кислоты.

Важным свойством гнилостных бактерий, которое имеет значение для протекающих в кормовой массе процессов, является их способность к спорообразованию. В некоторых разложившихся силосах, особенно кукурузном, были обнаружены бактерии, относящиеся к видам Bacillus. Они, видимо, свойственны силосу, а не привнесены извне (с воздухом). Из многих силосов после их длительного хранения выделяются бациллы, хотя в исходной траве они почти не обнаруживаются. Исходя из этого, было высказано предположение, что некоторые гнилостные бактерии могут в анаэробных условиях развиваться из спор.

Таким образом, исходя из вышесказанного основными особенностями для возбудителей гнилостного брожения являются следующие:

    Они не могут существовать без кислорода, поэтому в герметичном хранилище гниение невозможно;

    Гнилостные бактерии разлагают прежде всего белок (до аммиака и токсичных аминов), а также углеводы и молочную кислоту (до газообразных продуктов);

    Гнилостные бактерии размножаются при рН выше 5,5. При медленном подкислении корма значительная часть белкового азота переходит в аминную и аммиачную формы;

    Важным свойством гнилостных бактерий является их способность к спорообразованию. В случае длительного хранения и скармливания силоса, в котором дрожжи и маслянокислые бактерии разложат большую часть молочной кислоты или она будет нейтрализована продуктами разложения белка, гнилостные бактерии, развиваясь из спор, могут начать свою разрушительную деятельность.

Главным условием ограничения существования гнилостных бактерий является быстрое заполнение, хорошая трамбовка, надежная герметизация силосохранилища. Потери, вызываемые возбудителями гнилостного брожения, можно снизить при помощи химических консервантов и биопрепаратов.

1.2.4. Плесневые грибы и дрожжи.

Оба эти типа микроорганизмов относятся к грибам и являются весьма нежелательными представителями микрофлоры силоса. Как следует из таблицы 3, они легко переносят кислую реакцию среды (рН 3,2 и ниже). Поскольку плесневые грибы (Penicillium, Aspergillus и др.) являются облигатными аэробами, то они начинают развиваться сразу после заполнения хранилища, но с исчезновением кислорода развитие их прекращается. В правильно заполненном силосохранилище с достаточной степенью уплотнения и герметизацией это происходит уже через несколько часов. Если в силосе есть очаги плесени, значит вытеснение воздуха было недостаточным или герметизация была неполной. Опасность плесневения особенно велика в силосе из подвяленного материала, т.к. такой корм, особенно его верхние слои очень трудно уплотнить. В наземных буртах надежная герметизация практически недостижима. Почти 40% силоса заплесневает; корм имеет разложившуюся, мажущуюся структуру и становится непригодным к скармливанию.

Дрожжи (Hansenula, Pichia, Candida, Saccharomyces, Тorulopsis) развиваются непосредственно после заполнения хранилищ, т.к. они являются факультативными анаэробами и могут развиваться при незначительных количествах кислорода в силосе. Кроме того они обладают высокой устойчивостью к температурному фактору и низкому рН.

Дрожжевые грибы прекращают свое развитие только при полном отсутствии кислорода в силосохранилище, но небольшие их количества обнаруживаются в поверхностных слоях силоса.

В анаэробных условиях они используют простые сахара (глюкозу, фруктозу, маннозу, сахарозу, галактозу, рафинозу, мальтозу, декстрины) по гликолитическому пути и развиваются за счет окисления сахаров и органических кислот:

С 6 Н 12 О 6 = 2С 2 Н 5 ОН+2СО 2 +0,12 МДж

сахар спирт углекислый газ

Полное использование последних приводит к тому, что кислая среда силоса сменяется щелочной, создаются благоприятные условия для развития маслянокислой и гнилостной микрофлоры.

При спиртовом брожении наблюдаются большие потери энергии. Если при молочнокислом брожении теряется 3% энергии сахара, то при спиртовом – более половины. В аэробных условиях окисление углеводов дрожжами приводит к получению воды и СО 2 . Некоторые дрожжи используют пентозы (Д-ксилозу, Д-рибозу), полисахариды (крахмал).

Негативное действие дрожжей в процессах вторичного брожения состоит в том, что они развиваются за счет окисления органических кислот, наступающего после законченного брожения при доступе воздуха. В результате окисления молочной и др. органических кислот кислая реакция среды сменяется на щелочную – до рН-10,0.

В результате этого снижается качество силоса из кукурузы, а также из «глубоко» провяленных трав, т.е. кормов с наилучшими показателями по продуктам брожения.

Таким образом, для плесневых грибов и дрожжей свойственно:

    Плесневые грибы и дрожжи относятся к нежелательным представителям аэробной микрофлоры;

    Негативное действие плесневых грибов и дрожжей в том, что они вызывают окислительный распад углеводов, белков и органических кислот (в т.ч. молочной);

    Легко переносят кислую реакцию среды (рН ниже 3,0 и даже 1,2);

    Плесневые грибы выделяют опасные для здоровья животных и людей токсины;

    Дрожжи, являясь возбудителями вторичных процессов брожения, приводят к аэробной нестабильности силосов.

Ограничение доступа воздуха путем быстрой закладки, трамбовки и герметизации, правильная выемка и скармливание – решающие факторы, ограничивающие развитие плесневых грибов и дрожжей. Для подавления развития возбудителей вторичного брожения рекомендованы препараты с фунгистатической (фунгицидной) активностью (приложение 2).

Обобщая вышеизложенное, микроорганизмы в силосе можно разделить на полезные (молочнокислые бактерии) и вредные (маслянокислые, гнилостные бактерии, дрожжи и плесневые грибы).

Исходя из физиолого-биохимических особенностей микроорганизмов, встречающихся в силосе, быстрое снижение рН (до 4,0 и менее) тормозит размножение многих нежелательных микроорганизмов. В таком интервале рН наряду с молочнокислыми могут существовать только плесневые грибы и дрожжи. Но для них требуется кислород. Поэтому для успешного силосования необходимо как можно быстрее удалить воздух из хранилища за счет надежной трамбовки и быстрого заполнения хранилища, надлежащего укрытия. Этим самым обеспечиваются благоприятные условия для молочнокислых бактерий (анаэробов).

В идеальном случае, а именно, при достаточном содержании в исходном растительном материале водорастворимых углеводов и анаэробных условиях молочнокислое брожение занимает доминирующее положение. Всего за несколько дней рН достигает своего оптимального уровня, при котором прекращаются нежелательные типы брожения. При силосовании богатых протеином кормовых растений необходимо их провяливать или использовать химические и биологические консерванты, которые подавляют (ингибируют) развитие нежелательных микроорганизмов и позволяют получить доброкачественный корм независимо от силосуемости и влажности исходного сырья.

      Микробиологические процессы, происходящие при созревании сенажа.

Принято считать, что основное сообщество микроорганизмов, которое выявляется в процессе созревания сенажа представлено так же как и в силосе тремя основными физиологическими группами (молочнокислыми, гнилостными бактериями и дрожжами), но в меньшем количестве. Максимальное количество микроорганизмов в подвяленном материале выявляется до 15 суток (в силосе до 7). В сенаже меньше органических кислот, больше сахара, а его кислотность, как правило, ниже кислотности силоса.

Биологической основой приготовления сенажа является ограничение остаточного дыхания растительных клеток и нежелательных микроорганизмов путем «физиологической сухости». Водоудерживающая сила в сенаже равна примерно 50 атм., а осмотическое давление у большинства бактерий составляет 50-52 атм., т.е. при влажности травы 40-55% вода находится в малодоступной для большинства бактерий форме. Благодаря повышенному осмотическому давлению в сенажной массе маслянокислые бактерии и их споры не могут использовать влагу корма для своего развития и прорастания. Плесени могут развиваться с указанной влажностью, но их существование затруднено из-за отсутствия воздуха (кислорода).

Осмотолерантные виды молочнокислых бактерий могут развиваться при такой влажности. У культур молочнокислых бактерий сенажа осмотическая активность, активность размножения, накопление молочной кислоты, а также способность сбраживать сложные углеводы (крахмал и др.) выше, чем у культур молочнокислых бактерий силоса. . Поэтому как и при силосовании должны создаваться оптимальные условия для развития молочнокислых бактерий (непрерывное уплотнение во время закладки и герметичное укрытие полиэтиленовой пленкой для ограничения доступа воздуха). Если же хранилище недостаточно уплотнено и негерметично это приводит к разогреванию, плесневению корма и другим нежелательным аэробным процессам. В таких условиях сенаж хорошего качества приготовить нельзя. В результате процессов самосогревания резко снижаются переваримость питательных веществ, особенно протеина. Технология заготовки сенажа и силоса из трав с пониженной влажностью детально изложены во многих книгах и руководствах, мы лишь подчеркнем здесь, что при соблюдении основных технологических приемов питательность сенажа выше питательности силоса, приготовленного из корма естественной или пониженной влажности. В 1 кг натурального корма содержится 0,30-0,35 корм.ед.

      Микрофлора сена и влажного зерна.

Теоретически приготовление сена связано с высушиванием культуры с первоначального содержания воды 65-75% до ее содержания 10-16%, при котором прекращается вся биохимическая и микробиологическая деятельность. На практике сено не высушивается до такого низкого содержания воды и фактически считают безопасным хранить сено после того, как среднее содержание воды в нем снизилось до 20%. Это достаточно высокая влажность, при которой происходит плесневение, если только при хранении не происходит дальнейшей потери воды.

Во всех случаях в первые 2-3 дня хранения наблюдается первый пик температуры и за ним резко следует второй, более высокий пик. Именно второй пик обусловлен дыханием быстро развивающихся грибов. Чем выше содержание воды уровня 20%, тем сильнее возрастает опасность плесневения, увеличения потерь сухого вещества. Так, если рыхлые кипы сена хранятся при содержании воды 35-40%, потери сухого вещества будут около 15-20%, а растворимых углеводов – будут полными. Микробиологический анализ выявит большую численность микроорганизмов, включающих опасные термофильные актиномицеты (раздел 2.3.).

Термин «влажное зерно», как правило, применяется к зерну с влажностью от 18 до 20%. Влажное зерно начинает согреваться уже через несколько часов после уборки в основном за счет микроорганизмов. Если условия хранения неподходящие и не контролируются, температура зерна будет повышаться до уровня, при котором могут успешно расти очень опасные актиномицеты, которые вызывают целый ряд различных заболеваний животных и людей (раздел 2.1.3.). Если зерно содержит более 18% воды имеют место вторичные изменения, которые обусловлены дрожжами, относящимся к родам Candida и Hansenula. Эти микроорганизмы способны расти при очень низком содержании кислорода и в этих условиях может происходить слабое спиртовое брожение. Такого рода брожение приводит к снижению содержания сахарозы и увеличению содержания восстанавливающих сахаров, образованию различных привкусов, повреждению клейковины.

2. Масштабы потерь в консервированных кормах, вызванные деятельностью микроорганизмов.

При составлении баланса кормов нужно учитывать потери при заготовке и хранении консервированных кормов. Существует много схем, показывающих, что общие потери складываются из потерь в поле, хранилищах и происходят еще во время уборки зеленой массы. В данном руководстве рассматривается величина потерь, вызванных деятельностью микроорганизмов, которые зачастую недооцениваются и при неквалифицированной работе могут достигать огромных размеров.

2.1. Потери при брожении .

После отмирания растительных клеток в заполненном и хорошо уплотненном хранилище начинается интенсивное разложение и преобразование питательных веществ размножающимися микроорганизмами. Происходят потери в результате образования бродильных газов («угар»), потерь в верхних и боковых слоях, потерь из-за вторичных процессов брожения.

Непрерывное заполнение хранилищ (силосного, сенажного) позволяет значительно снизить образование газов. При быстром заполнении хранилища потери сухого вещества вследствие «угара» могут составлять 5-9%. При растянутом заполнении соответствующие показатели могут достигать 10-13% и более. Следовательно, путем непрерывного заполнения можно сократить потери от «угара» примерно на 4-5%. Следует учитывать, что в плохо уплотненном сенаже в результате процессов самосогревания происходит снижение переваримости протеина в два раза (раздел 1.3).

Интенсивное разложение питательных веществ происходит в верхних и боковых слоях в неукрытой силосной (сенажной) массы. При укрытии одной мякиной или без укрытия потери могут быть гораздо больше. Плесневые грибы развиваясь кладут начало сильному разложению белка. Продукты распада белка имеют щелочную реакцию и связывают молочную кислоту. Происходит также прямое разложение молочной кислоты. Перечисленные процессы ведут к повышению рН и ухудшению качества корма. Даже если в момент открытия хранилища толщина испорченного слоя не превышает 10 см, надо иметь в виду, что этот слой первоначально имел толщину 20-50 см, а силос, находящийся под испорченным слоем, характеризуется высоким рН, содержит ядовитые токсины и непригоден для скармливания.

Потери, вызванные вторичными процессами брожения могут достигать 20-25%. Установлено, что первую стадию порчи силоса вызывают именно дрожжи совместно с аэробными бактериями, связанную с его разогреванием, снижением кислотности. При второй стадии порчи силоса происходит последующее заражение плесенью. Такой корм считается непригодным в том случае, если в нем содержится более 5.10 5 грибов. Уже после 5-дневного аэробного хранения в случае длительного скармливания или неправильной выемки из хранилища кукурузный силос даже с хорошим начальным рН 4,1, но уже имеющим 3.10 7 дрожжей имеет астрономически высокое число дрожжей и плесеней Streptomycetcn.

2.2. Влияние кислого силоса на обмен веществ животных и качество молочных продуктов .

С силосом за сутки в организм животного вводится 0,7-0,9 кг органических кислот, которые оказывают существенное влияние на процессы пищеварения и обмен веществ. Скармливание перекисшего (кукурузного) силоса может привести к нарушению уровня сахара, щелочного резерва в крови, развитию кетозов. При этом кетонемия в организме высокопродуктивных коров развивается быстрее, чем у низкопродуктивных.

Длительное скармливание коровам по 25-30 кг в сутки силоса спонтанного брожения отрицательно отражается на воспроизводительной способности коров, биологической полноценности молозива и молока, что ведет к снижению роста телят и их сопротивляемости к желудочно-кишечным заболеваниям.

Если силос перекислен, он оказывает отрицательное влияние на вкусовые и технологические качества молока при его переработке в масло и сыры, ухудшает качество сливочного масла.

В настоящее время разработаны способы анаэробного раскисления перекисающих силосов из кукурузы с помощью заквасок на основе пропионовокислых бактерий и химических препаратов (углеаммонийные соли).

2.3. Кормовые токсикозы.

Известно, что животные поедают плесневое сено крайне неохотно или вовсе не едят его. Непригоден в качестве корма также плесневелый силос и сенаж. Ядовитые токсины, выделяемые некоторыми культурами грибов, обнаруживаются в силосе из наземных буртов и земляных силосохранилищах или в верхних слоях кормовой массы крупных силосных траншей при плохом уплотнении и негерметичном укрытии свежескошенной и особенно подвяленной массы. Имеются весомые медицинские свидетельства о том, что отмечаются легочные заболевания животных и работников, имеющих дело с плесневелым сеном и зерном. И у людей и животных они вызываются вдыханием термофильных микроорганизмов (Micropolispora, Тhermoactinomyces, Aspergillus).

Имеются многие другие потенциально опасные плесени, способные вызывать целый ряд микотоксикозов, в т.ч. снижение плодовитости, абортирование и общее ухудшение здоровья. Все эти заболевания вызываются микотоксинами, вырабатываемыми грибами Aspergillus, Fusarium, Penicillium (афлатоксины, цераленон, охратоксин).

3. Микробиологический анализ кормов.

Бактерии и грибы играют большую роль в консервировании кормовых растений, участвуя не только в процессах приготовления силоса, сенажа, но вызывая ферментацию влажного зерна, сена в стогах. Общее положительное влияние активности молочнокислых бактерий выражается, прежде всего, в разложении сложных органических веществ на более простые формы и образовании чаще всего органических кислот и витаминов. Однако, при неблагоприятных условиях консервирования (нарушении основных технологических приемов и т. д.) могут иметь место отрицательные последствия по причине нежелательных процессов. Хороший силос, сенаж и сено, к примеру, должны быть свободны от плесневого мицелия и плесневого запаха. Появление плесени при органолептической оценке служит признаком плохого качества растительных кормов, так как представляет угрозу для здоровья животных, людей. Такой корм должен выбраковываться или подвергаться ветеринарно-токсикологическому исследованию.

Насколько важна микробиологическая оценка качества корма наряду с биохимическими анализами очевидно со следующего примера. При созревании сыра обнаруживалось нежелательное “вспучивание” из-за образования газов, несмотря на то, что в скармливаемом коровами силосе масляная кислота отсутствовала. В результате микробиологического анализа был выявлен высокий титр маслянокислых бактерий, которые долгое время сохранялись в силосе в виде спор и лишь попав в благоприятные условия они развивались из спор. Силос, содержащий споры масляно-кислых бактерий, способствовал бактериальному заражению молока. Такое молоко характеризовалось плохой устойчивостью При хранении было совершенно непригодно для приготовления сыров. Поэтому иногда в некоторых сыродельческих районах ошибочно считают скармливание силоса нецелесообразным. Благодаря применению микробиологического анализа в сочетании с образцовой дезинфекцией доильных установок достигается улучшение качества молока.

3.1. Основные микробиологические методы определения качества кормов.

1. Подготовка исследуемого материала (суспензии корма)к анализу.

Среднюю пробу (весом 0,5-1,0 кг) исследуемого материала (силоса или сенажа) тщательно перемешивают (с соблюдением основных правил асептики) и измельчают на кусочки длиной 1-2 см. Затем навеску (50 г) хорошо перемешанной средней пробы помещают в стерильный гомогенизатор марки М.S.E. Ato-mix, добавляют 450 мл стерильной водопроводной воды и в течение 1 минуты гомогенизируют. Полученную суспензию разбавляют до 10 5 -10 6 раз стерильной водопроводной водой (5 мл суспензии + 45 мл воды), взбалтывают каждое разведение в течение 5 минут.

2. Высев суспензии на элективные среды (приложение 1) проводят по 1 мл суспензии – при глубинном посеве, по 0,05-0,1 мл суспензии при посеве в жидкие среды.

3. Определение количества молочнокислых бактерий проводят на капустном агаре с мелом (среда 1) и на капустном агаре со спиртом и мелом (среда 2) – глубинный посев.

Подсчет колоний молочнокислых бактерий на капустном агаре с мелом проводят на 5-6 день, а на капустном агаре со спиртом и мелом – на 7-10 день (при 28 0).

4. Количество посторонней микрофлоры (аэробных гнилостных микроорганизмов ) определяют глубинным посевом на пептонном агаре (среда 3). Подсчет колоний ведется на 5-7 день при 28 0 .

5. Колиство спор аэробных гнилостных бацилл на специальной среде (мясопептонный агар + сусло-агар) – среда 8. Посев поверхностный (0,05мл), подсчет колоний ведут на 4 день (при 28 0).

6.Количество микроскопических грибов и дрожжей определяют на сусло-агаре со стрептомицином (среда 4) поверхностным посевом (0,1 мл). Подсчет колоний ведут на 3-4 день (при необходимости повторно на 7-8 день) при 28 0 .

7. Титр маслянокислых бактерий устанавливают на жидкой картофельной среде (среда 5). Для определения количества спор маслянокислых бактерий проводят посев из суспензии после пастеризации в течение 10 минут при 75 0 .

Учет результатов анализа ведут по интенсивности и выделения газа (кусочки картофеля всплывают на поверхность жидкости), титр маслянокислых бактерий и их спор устанавливают по методу предельных разведений.

8. Анаэробные протеолитические бактерии определяют на мясо-пептонном бульоне (среда 6) по выделению газа в поплавках. Посевы выдерживаются при 28 0 в течение двух недель.

9. Денитрифицирующие бактерии учитывают на среде Гильтая (среда 7) при анализе корма из трав, выращенных по фону высоких доз азотных удобрений. Подсчет ведется по интенсивности выделения газа и посевы выдерживают в течение 10-12 дней при 28 0 .

10. Тест микробиологического роста.

Для определения фунгистатических (фунгицидных), бактериостатических (бактерицидных) свойств соединений две пробирки (в трех повторностях) с элективной средой, в одной из которых добавлен изучаемый препарат, засевается тест-культурой. Из пробирки с культурой, где после добавления того или иного ингибирующего препарата не наблюдалось роста, переносится петля на свежую среду (не содержащую препарата). Если через 24 часа начинается усиленный рост, изучаемый препарат обладает фунгистатическим, бактериостатическим (тормозящим) действием. Если через неделю роста не наблюдается делается вывод о фунгицидном, бактерицидном (ингибирующим) действии изучаемого вещества (приложение 2).

В качестве тест-культуры используют наиболее часто встречающиеся представители нежелательной микрофлоры (гнилостные и маслянокислые бактерии, дрожжи, плесневые грибы).

Лабораторно-практическое занятие 1

Тема : Основные микробиологические методы определения качества кормов. Выделение и учет молочнокислых бактерий.

Цель : Ознакомить студентов с основными микробиологическими методами определения качества кормов; элективными питательными средами №1 и №2; основными биологическими свойствами молочнокислых бактерий.

Время : 4 часа.

Место работы

Оборудование и материалы .

Рабочее место бактериолога, микроскопы, лупы, питательные среды №1 и №2 – по 2 чашки Петри. Тест-культуры молочнокислых микроорганизмов на плотной среде – Lactobacterium plantarum. Таблицы с рисунками молочнокислых бактерий. Термостат. Исследуемый корм (образцы силоса или сенажа). Гомогенизатор. Весы до 1 кг, разновесы. Стерильные чашки Петри – 2 шт. Стерильная водопроводная вода в 0,5 л флаконе. Пипетки 1,0; 5,0; 10,0 мл. Колбы 50,0; 100,0 мл. Бактериологические петли. Спиртовки.

Методические указания

Преподаватель проводит теоретический опрос по теме: «Микробиология силоса и сенажа».

Затем преподаватель дает краткую характеристику микроорганизмам кормов, объясняет микробиологические процессы, происходящие при силосовании и сенажировании.

Далее дает краткую характеристику представителям микрофлоры кормов – эпифитной микрофлоре растений, молочнокислым, маслянокислым и гнилостным бактериям, плесневелым грибам и дрожжам, обращая внимание студентов на морфологию колоний молочнокислых бактерий. Затем преподаватель обращает внимание студентов на масштабы потерь в консервированных кормах, вызванных деятельностью нежелательных микроорганизмов.

Преподаватель дает объяснение понятиям «микозы», «микотоксикозы» (кормовые токсикозы), а также рассказывает о влиянии силоса на обмен веществ животных.

Затем преподаватель знакомит студентов с ингредиентами элективных питательных сред №1 и №2 и назначением этих сред для культивирования молочнокислых групп микроорганизмов. Одновременно с объяснением преподаватель демонстрирует посев суспензии корма на питательные среды.

Методика выявления и учета молочнокислых бактерий .

1. Подготовка исследуемого материала к анализу.

Среднюю пробу (весом 0,5-1,0 кг) исследуемого материала (силоса или сенажа) тщательно перемешивают (с соблюдением основных правил асептики) и измельчают на кусочки длиной 1-2 см. Затем навеску (50 г) хорошо перемешанной средней пробы помещают в стерильный гомогенизатор марки типа М.S.E. Ato-mix, добавляют 450 мл стерильной водопроводной воды и в течение 1 минуты гомогенизируют. Полученную суспензию разбавляют до 10 5 -10 6 раз стерильной водопроводной водой (5 мл суспензии + 45 мл воды), взбалтывают каждое разведение в течение 5 минут.

2. Высев суспензии на элективные среды (приложение) проводится по 1 мл суспензии – при глубинном посеве, по 0,05-0,1 мл суспензии при посеве в жидкие среды.

3. Определение количества молочнокислых бактерий проводят на капустном агаре с мелом (среда 1) и на капустном агаре со спиртом и мелом (среда 2) – глубинный посев.

Подсчет колоний молочнокислых бактерий на капустном агаре с мелом проводится на 5-6 день, а на капустном агаре со спиртом и мелом – на 7-10 день (при 28 0).

Среда 2 необходима для выявления молочнокислых бактерий в составе эпифитной микрофлоры и свежих (с высоким содержанием сухого вещества) силосов, так как спирт заметно тормозит рост посторонней микрофлоры.

Посевы ставят в термостат при 28С на 5-10 суток.

Самостоятельная работа студентов .

1. Студенты записывают в тетрадь из таблицы морфологию молочнокислых бактерий, в т.ч. характер роста колоний, рецепты питательных сред.

2. На последующем занятии проводят подсчет колоний на среде №1 на 5-6 день, а на среде №2 – на 7-10 день.

Контрольные вопросы .

1. Какая микрофлора называется эпифитной?

2. Какие микроорганизмы относят к молочнокислым? Какова их роль при силосовании?

3. Методы выделения и учета молочнокислых бактерий.

Подведение итогов занятия :

Выставление оценок по теоретической части; прием выполненной практической работы; изложение замечаний.

Домашнее задание .

1. Микробиология кормов (силоса и сенажа).

2. Маслянокислое брожение.

Литература.

1. C.124-135; С.267-293

5. С.448-452

6. С.429-453

Лабораторно-практическое занятие 2.

Тема : Основные микробиологические методы определения качества кормов. Выделение и учет маслянокислых бактерий.

Цель : Ознакомить студентов с основными методами определения качества кормов; рецептом приготовления элективной питательной среды №5; основными биологическими свойствами маслянокислых бактерий.

Время : 4 часа.

Место работы : лаборатория кафедры микробиологии и вирусологии.

Оборудование и материалы .

Рабочее место бактериолога, микроскопы, лупы, питательная среда №5 в количестве 4 пробирок. Тест-культуры маслянокислых бактерий в жидкой среде – Clostridium butyricum; предварительно выполненные посевы тест-культуры на среде №5 (по 4 пробирки). Таблицы с рисунками маслянокислых бактерий. Термостат. Исследуемый корм (образцы силоса или сенажа). Гомогенизатор. Весы до 1 кг, разновесы. Стерильные Петри – 4 шт. Стерильная водопроводная вода в 0,5 л флаконе. Пипетки 1,0; 5,0; 10,0 мл. Колбы 50,0; 100,0 мл. Бактериологические петли. Спиртовки.

Методические указания (объяснение основных вопросов темы).

Преподаватель проводит теоретический опрос

ФГБОУ ВПО «Чувашская государственная сельскохозяйственная академия»

Кафедра Инфекционных и инвазионных болезней

На тему:
Микробиология кормов.

Выполнил студент 2-го курса
агрономического факультета
2-ой группы 3-ей подгруппы
Егоров М. Н.
Проверил:Тихонова Г.П

Чебоксары 2013 г.
Содержание:
*ПРОЦЕССЫ, ПРОИСХОДЯЩИЕ ПРИ СУШКЕ СЕНА И ДРУГИХ КОРМОВ
*КОНСЕРВИРОВАНИЕ КОРМОВ

Наиболее распространенный способ консервирования зеленой массы и других кормов - сушка. Сушку сена проводят по-разному -в прокосах, валках, в копнах, на вешалах и т. д. Даже при сухой погоде и быстро протекающей сушке некоторые потери питательных веществ в корме неизбежны, так как в растительной массе продолжают идти дыхание и другие ферментативные процессы. В случае более или менее затяжной сушки роль отмеченных процессов сильно возрастает, и это, в свою очередь, ведет к увеличению потерь, которые во многомсвязаны с размножающимися на влажной растительной массе микроорганизмами. Для ограничения потерь питательных веществ стремятся использовать искусственную досушку сена, применяя принудительное вентилирование атмосферным или подогретым воздухом.

При сушке кормов количество жизнедеятельных микроорганизмов в них постепенно уменьшается. Тем не менее на доброкачественном корме растительного происхождения всегдаможно найти большее или меньшее количество микробных клеток, свойственных эпифитной микрофлоре, а также других микроорганизмов, попадающих сюда из почвы и воздуха. Они находятся в анабиотическом состоянии.

При увлажнении хранящегося корма в нем бурно начинают протекать микробиологические процессы и одновременно повышается температура. Это явление, получившее название саморазогревания(термогенез), связано с жизнедеятельностью микрофлоры.

Микроорганизмы используют для синтетических целей не более 5-10% энергии потребленных ими питательных веществ. Остальная энергия выделяется в окружающую среду главным образом в виде тепла. Таким образом, термогенез зависит в основном от неполной утилизации микроорганизмами энергии, выделяющейся при осуществлении ими биохимических процессов.

Явлениетермогенеза становится осязаемым лишь в условиях затрудненной теплоотдачи. В противном случае тепло рассеивается из среды, где размножаются микроорганизмы, без заметного разогревания субстрата. Поэтому в практике отмечается разогревание лишь значительных скоплений различных материалов, то есть таких масс, в которых может происходить аккумуляция тепла.

При самонагревании растительной массы наблюдается четкопыраженная смена микрофлоры. Сначала в разогревающейся массе размножаются мезофильные микроорганизмы. С повышением температуры на смену им приходят термофилы, которые способствуют повышению температуры органических веществ, так как обладают исключительной скоростью размножения.

Сильное разогревание достаточно сухой и пористой массы может вызвать ее обугливание и образование горючих газов -метана и водорода, которые адсорбируются на пористой поверхности обуглившихся растительных частиц, вследствие чего может произойти самовоспламенение. Весьма вероятно, что роль катализатора при воспламенении играют соединения железа. Воспламенение происходит лишь в присутствии воздуха и только если масса недостаточно уплотнена. В ветреную погоду случаи самовоспламенения учащаются.

Термогенез причиняетсущественный вред. Он вызывает порчу сена. Однако при умеренном развитии самонагревания термогенез может быть желательным. Например, «самопрелая» солома в результате разогревания лучше поедается скотом и т. д. Явление термогенеза используют для приготовления так называемого бурого сена. Его готовят в местностях, где вследствие климатических условий затруднена сушка сена....